/usr/include/octave-4.2.2/octave/DASPK-opts.h is in liboctave-dev 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | // DO NOT EDIT!
// Generated automatically from liboctave/numeric/DASPK-opts.in.
#if ! defined (octave_DASPK_options_h)
#define octave_DASPK_options_h 1
#include <cfloat>
#include <cmath>
#include <DAE.h>
class
DASPK_options
{
public:
DASPK_options (void)
: x_absolute_tolerance (),
x_relative_tolerance (),
x_compute_consistent_initial_condition (),
x_use_initial_condition_heuristics (),
x_initial_condition_heuristics (),
x_print_initial_condition_info (),
x_exclude_algebraic_variables_from_error_test (),
x_algebraic_variables (),
x_enforce_inequality_constraints (),
x_inequality_constraint_types (),
x_initial_step_size (),
x_maximum_order (),
x_maximum_step_size (),
reset ()
{
init ();
}
DASPK_options (const DASPK_options& opt)
: x_absolute_tolerance (opt.x_absolute_tolerance),
x_relative_tolerance (opt.x_relative_tolerance),
x_compute_consistent_initial_condition (opt.x_compute_consistent_initial_condition),
x_use_initial_condition_heuristics (opt.x_use_initial_condition_heuristics),
x_initial_condition_heuristics (opt.x_initial_condition_heuristics),
x_print_initial_condition_info (opt.x_print_initial_condition_info),
x_exclude_algebraic_variables_from_error_test (opt.x_exclude_algebraic_variables_from_error_test),
x_algebraic_variables (opt.x_algebraic_variables),
x_enforce_inequality_constraints (opt.x_enforce_inequality_constraints),
x_inequality_constraint_types (opt.x_inequality_constraint_types),
x_initial_step_size (opt.x_initial_step_size),
x_maximum_order (opt.x_maximum_order),
x_maximum_step_size (opt.x_maximum_step_size),
reset (opt.reset)
{ }
DASPK_options& operator = (const DASPK_options& opt)
{
if (this != &opt)
{
x_absolute_tolerance = opt.x_absolute_tolerance;
x_relative_tolerance = opt.x_relative_tolerance;
x_compute_consistent_initial_condition = opt.x_compute_consistent_initial_condition;
x_use_initial_condition_heuristics = opt.x_use_initial_condition_heuristics;
x_initial_condition_heuristics = opt.x_initial_condition_heuristics;
x_print_initial_condition_info = opt.x_print_initial_condition_info;
x_exclude_algebraic_variables_from_error_test = opt.x_exclude_algebraic_variables_from_error_test;
x_algebraic_variables = opt.x_algebraic_variables;
x_enforce_inequality_constraints = opt.x_enforce_inequality_constraints;
x_inequality_constraint_types = opt.x_inequality_constraint_types;
x_initial_step_size = opt.x_initial_step_size;
x_maximum_order = opt.x_maximum_order;
x_maximum_step_size = opt.x_maximum_step_size;
reset = opt.reset;
}
return *this;
}
~DASPK_options (void) { }
void init (void)
{
x_absolute_tolerance.resize (dim_vector (1, 1));
x_absolute_tolerance(0) = ::sqrt (std::numeric_limits<double>::epsilon ());
x_relative_tolerance.resize (dim_vector (1, 1));
x_relative_tolerance(0) = ::sqrt (std::numeric_limits<double>::epsilon ());
x_initial_condition_heuristics.resize (dim_vector (6, 1));
x_initial_condition_heuristics(0) = 5.0;
x_initial_condition_heuristics(1) = 6.0;
x_initial_condition_heuristics(2) = 5.0;
x_initial_condition_heuristics(3) = 0.0;
x_initial_condition_heuristics(4) = ::pow (std::numeric_limits<double>::epsilon (), 2.0/3.0);
x_initial_condition_heuristics(5) = 0.01;
x_algebraic_variables.resize (dim_vector (1, 1));
x_algebraic_variables(0) = 0;
x_inequality_constraint_types.resize (dim_vector (1, 1));
x_inequality_constraint_types(0) = 0;
x_initial_step_size = -1.0;
x_maximum_order = 5;
x_maximum_step_size = -1.0;
reset = true;
}
void set_options (const DASPK_options& opt)
{
x_absolute_tolerance = opt.x_absolute_tolerance;
x_relative_tolerance = opt.x_relative_tolerance;
x_compute_consistent_initial_condition = opt.x_compute_consistent_initial_condition;
x_use_initial_condition_heuristics = opt.x_use_initial_condition_heuristics;
x_initial_condition_heuristics = opt.x_initial_condition_heuristics;
x_print_initial_condition_info = opt.x_print_initial_condition_info;
x_exclude_algebraic_variables_from_error_test = opt.x_exclude_algebraic_variables_from_error_test;
x_algebraic_variables = opt.x_algebraic_variables;
x_enforce_inequality_constraints = opt.x_enforce_inequality_constraints;
x_inequality_constraint_types = opt.x_inequality_constraint_types;
x_initial_step_size = opt.x_initial_step_size;
x_maximum_order = opt.x_maximum_order;
x_maximum_step_size = opt.x_maximum_step_size;
reset = opt.reset;
}
void set_default_options (void) { init (); }
void set_absolute_tolerance (double val)
{
x_absolute_tolerance.resize (dim_vector (1, 1));
x_absolute_tolerance(0) = (val > 0.0) ? val : ::sqrt (std::numeric_limits<double>::epsilon ());
reset = true;
}
void set_absolute_tolerance (const Array<double>& val)
{ x_absolute_tolerance = val; reset = true; }
void set_relative_tolerance (double val)
{
x_relative_tolerance.resize (dim_vector (1, 1));
x_relative_tolerance(0) = (val > 0.0) ? val : ::sqrt (std::numeric_limits<double>::epsilon ());
reset = true;
}
void set_relative_tolerance (const Array<double>& val)
{ x_relative_tolerance = val; reset = true; }
void set_compute_consistent_initial_condition (octave_idx_type val)
{ x_compute_consistent_initial_condition = val; reset = true; }
void set_use_initial_condition_heuristics (octave_idx_type val)
{ x_use_initial_condition_heuristics = val; reset = true; }
void set_initial_condition_heuristics (const Array<double>& val)
{ x_initial_condition_heuristics = val; reset = true; }
void set_print_initial_condition_info (octave_idx_type val)
{ x_print_initial_condition_info = val; reset = true; }
void set_exclude_algebraic_variables_from_error_test (octave_idx_type val)
{ x_exclude_algebraic_variables_from_error_test = val; reset = true; }
void set_algebraic_variables (int val)
{
x_algebraic_variables.resize (dim_vector (1, 1));
x_algebraic_variables(0) = val;
reset = true;
}
void set_algebraic_variables (const Array<octave_idx_type>& val)
{ x_algebraic_variables = val; reset = true; }
void set_enforce_inequality_constraints (octave_idx_type val)
{ x_enforce_inequality_constraints = val; reset = true; }
void set_inequality_constraint_types (octave_idx_type val)
{
x_inequality_constraint_types.resize (dim_vector (1, 1));
x_inequality_constraint_types(0) = val;
reset = true;
}
void set_inequality_constraint_types (const Array<octave_idx_type>& val)
{ x_inequality_constraint_types = val; reset = true; }
void set_initial_step_size (double val)
{ x_initial_step_size = (val >= 0.0) ? val : -1.0; reset = true; }
void set_maximum_order (octave_idx_type val)
{ x_maximum_order = val; reset = true; }
void set_maximum_step_size (double val)
{ x_maximum_step_size = (val >= 0.0) ? val : -1.0; reset = true; }
Array<double> absolute_tolerance (void) const
{ return x_absolute_tolerance; }
Array<double> relative_tolerance (void) const
{ return x_relative_tolerance; }
octave_idx_type compute_consistent_initial_condition (void) const
{ return x_compute_consistent_initial_condition; }
octave_idx_type use_initial_condition_heuristics (void) const
{ return x_use_initial_condition_heuristics; }
Array<double> initial_condition_heuristics (void) const
{ return x_initial_condition_heuristics; }
octave_idx_type print_initial_condition_info (void) const
{ return x_print_initial_condition_info; }
octave_idx_type exclude_algebraic_variables_from_error_test (void) const
{ return x_exclude_algebraic_variables_from_error_test; }
Array<octave_idx_type> algebraic_variables (void) const
{ return x_algebraic_variables; }
octave_idx_type enforce_inequality_constraints (void) const
{ return x_enforce_inequality_constraints; }
Array<octave_idx_type> inequality_constraint_types (void) const
{ return x_inequality_constraint_types; }
double initial_step_size (void) const
{ return x_initial_step_size; }
octave_idx_type maximum_order (void) const
{ return x_maximum_order; }
double maximum_step_size (void) const
{ return x_maximum_step_size; }
private:
Array<double> x_absolute_tolerance;
Array<double> x_relative_tolerance;
octave_idx_type x_compute_consistent_initial_condition;
octave_idx_type x_use_initial_condition_heuristics;
Array<double> x_initial_condition_heuristics;
octave_idx_type x_print_initial_condition_info;
octave_idx_type x_exclude_algebraic_variables_from_error_test;
Array<octave_idx_type> x_algebraic_variables;
octave_idx_type x_enforce_inequality_constraints;
Array<octave_idx_type> x_inequality_constraint_types;
double x_initial_step_size;
octave_idx_type x_maximum_order;
double x_maximum_step_size;
protected:
bool reset;
};
#endif
|