This file is indexed.

/usr/include/octave-4.2.2/octave/bsxfun-defs.cc is in liboctave-dev 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*

Copyright (C) 2009-2017 Jaroslav Hajek
Copyright (C) 2009 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if ! defined (octave_bsxfun_defs_h)
#define octave_bsxfun_defs_h 1

// This file should not include config.h.  It is only included in other
// C++ source files that should have included config.h before including
// this file.

#include <algorithm>
#include <iostream>

#include "dim-vector.h"
#include "oct-locbuf.h"
#include "lo-error.h"

#include "mx-inlines.cc"

template <typename R, typename X, typename Y>
Array<R>
do_bsxfun_op (const Array<X>& x, const Array<Y>& y,
              void (*op_vv) (size_t, R *, const X *, const Y *),
              void (*op_sv) (size_t, R *, X, const Y *),
              void (*op_vs) (size_t, R *, const X *, Y))
{
  int nd = std::max (x.ndims (), y.ndims ());
  dim_vector dvx = x.dims ().redim (nd);
  dim_vector dvy = y.dims ().redim (nd);

  // Construct the result dimensions.
  dim_vector dvr;
  dvr.resize (nd);
  for (int i = 0; i < nd; i++)
    {
      octave_idx_type xk = dvx(i);
      octave_idx_type yk = dvy(i);
      if (xk == 1)
        dvr(i) = yk;
      else if (yk == 1 || xk == yk)
        dvr(i) = xk;
      else
        (*current_liboctave_error_handler)
          ("bsxfun: nonconformant dimensions: %s and %s",
           x.dims ().str ().c_str (), y.dims ().str ().c_str ());
    }

  Array<R> retval (dvr);

  const X *xvec = x.fortran_vec ();
  const Y *yvec = y.fortran_vec ();
  R *rvec = retval.fortran_vec ();

  // Fold the common leading dimensions.
  octave_idx_type start, ldr = 1;
  for (start = 0; start < nd; start++)
    {
      if (dvx(start) != dvy(start))
        break;
      ldr *= dvr(start);
    }

  if (retval.is_empty ())
    ; // do nothing
  else if (start == nd)
    op_vv (retval.numel (), rvec, xvec, yvec);
  else
    {
      // Determine the type of the low-level loop.
      bool xsing = false;
      bool ysing = false;
      if (ldr == 1)
        {
          xsing = dvx(start) == 1;
          ysing = dvy(start) == 1;
          if (xsing || ysing)
            {
              ldr *= dvx(start) * dvy(start);
              start++;
            }
        }
      dim_vector cdvx = dvx.cumulative ();
      dim_vector cdvy = dvy.cumulative ();
      // Nullify singleton dims to achieve a spread effect.
      for (int i = std::max (start, octave_idx_type (1)); i < nd; i++)
        {
          if (dvx(i) == 1)
            cdvx(i-1) = 0;
          if (dvy(i) == 1)
            cdvy(i-1) = 0;
        }

      octave_idx_type niter = dvr.numel (start);
      // The index array.
      OCTAVE_LOCAL_BUFFER_INIT (octave_idx_type, idx, nd, 0);
      for (octave_idx_type iter = 0; iter < niter; iter++)
        {
          octave_quit ();

          // Compute indices.
          // FIXME: performance impact noticeable?
          octave_idx_type xidx = cdvx.cum_compute_index (idx);
          octave_idx_type yidx = cdvy.cum_compute_index (idx);
          octave_idx_type ridx = dvr.compute_index (idx);

          // Apply the low-level loop.
          if (xsing)
            op_sv (ldr, rvec + ridx, xvec[xidx], yvec + yidx);
          else if (ysing)
            op_vs (ldr, rvec + ridx, xvec + xidx, yvec[yidx]);
          else
            op_vv (ldr, rvec + ridx, xvec + xidx, yvec + yidx);

          dvr.increment_index (idx + start, start);
        }
    }

  return retval;
}

template <typename R, typename X>
void
do_inplace_bsxfun_op (Array<R>& r, const Array<X>& x,
                      void (*op_vv) (size_t, R *, const X *),
                      void (*op_vs) (size_t, R *, X))
{
  dim_vector dvr = r.dims ();
  dim_vector dvx = x.dims ();
  octave_idx_type nd = r.ndims ();
  dvx.redim (nd);

  const X* xvec = x.fortran_vec ();
  R* rvec = r.fortran_vec ();

  // Fold the common leading dimensions.
  octave_idx_type start, ldr = 1;
  for (start = 0; start < nd; start++)
    {
      if (dvr(start) != dvx(start))
        break;
      ldr *= dvr(start);
    }

  if (r.is_empty ())
    ; // do nothing
  else if (start == nd)
    op_vv (r.numel (), rvec, xvec);
  else
    {
      // Determine the type of the low-level loop.
      bool xsing = false;
      if (ldr == 1)
        {
          xsing = dvx(start) == 1;
          if (xsing)
            {
              ldr *= dvr(start) * dvx(start);
              start++;
            }
        }

      dim_vector cdvx = dvx.cumulative ();
      // Nullify singleton dims to achieve a spread effect.
      for (int i = std::max (start, octave_idx_type (1)); i < nd; i++)
        {
          if (dvx(i) == 1)
            cdvx(i-1) = 0;
        }

      octave_idx_type niter = dvr.numel (start);
      // The index array.
      OCTAVE_LOCAL_BUFFER_INIT (octave_idx_type, idx, nd, 0);
      for (octave_idx_type iter = 0; iter < niter; iter++)
        {
          octave_quit ();

          // Compute indices.
          // FIXME: performance impact noticeable?
          octave_idx_type xidx = cdvx.cum_compute_index (idx);
          octave_idx_type ridx = dvr.compute_index (idx);

          // Apply the low-level loop.
          if (xsing)
            op_vs (ldr, rvec + ridx, xvec[xidx]);
          else
            op_vv (ldr, rvec + ridx, xvec + xidx);

          dvr.increment_index (idx + start, start);
        }
    }
}

#define BSXFUN_OP_DEF(OP, ARRAY)                        \
  ARRAY bsxfun_ ## OP (const ARRAY& x, const ARRAY& y)

#define BSXFUN_OP2_DEF(OP, ARRAY, ARRAY1, ARRAY2)               \
  ARRAY bsxfun_ ## OP (const ARRAY1& x, const ARRAY2& y)

#define BSXFUN_REL_DEF(OP, ARRAY)                               \
  boolNDArray bsxfun_ ## OP (const ARRAY& x, const ARRAY& y)

#define BSXFUN_OP_DEF_MXLOOP(OP, ARRAY, LOOP)                           \
  BSXFUN_OP_DEF(OP, ARRAY)                                              \
  { return do_bsxfun_op<ARRAY::element_type, ARRAY::element_type, ARRAY::element_type> \
      (x, y, LOOP, LOOP, LOOP); }

#define BSXFUN_OP2_DEF_MXLOOP(OP, ARRAY, ARRAY1, ARRAY2, LOOP)          \
  BSXFUN_OP2_DEF(OP, ARRAY, ARRAY1, ARRAY2)                             \
  { return do_bsxfun_op<ARRAY::element_type, ARRAY1::element_type, ARRAY2::element_type> \
      (x, y, LOOP, LOOP, LOOP); }

#define BSXFUN_REL_DEF_MXLOOP(OP, ARRAY, LOOP)                          \
  BSXFUN_REL_DEF(OP, ARRAY)                                             \
  { return do_bsxfun_op<bool, ARRAY::element_type, ARRAY::element_type> \
      (x, y, LOOP, LOOP, LOOP); }

#define BSXFUN_STDOP_DEFS_MXLOOP(ARRAY)                 \
  BSXFUN_OP_DEF_MXLOOP (add, ARRAY, mx_inline_add)      \
  BSXFUN_OP_DEF_MXLOOP (sub, ARRAY, mx_inline_sub)      \
  BSXFUN_OP_DEF_MXLOOP (mul, ARRAY, mx_inline_mul)      \
  BSXFUN_OP_DEF_MXLOOP (div, ARRAY, mx_inline_div)      \
  BSXFUN_OP_DEF_MXLOOP (min, ARRAY, mx_inline_xmin)     \
  BSXFUN_OP_DEF_MXLOOP (max, ARRAY, mx_inline_xmax)

#define BSXFUN_STDREL_DEFS_MXLOOP(ARRAY)                \
  BSXFUN_REL_DEF_MXLOOP (eq, ARRAY, mx_inline_eq)       \
  BSXFUN_REL_DEF_MXLOOP (ne, ARRAY, mx_inline_ne)       \
  BSXFUN_REL_DEF_MXLOOP (lt, ARRAY, mx_inline_lt)       \
  BSXFUN_REL_DEF_MXLOOP (le, ARRAY, mx_inline_le)       \
  BSXFUN_REL_DEF_MXLOOP (gt, ARRAY, mx_inline_gt)       \
  BSXFUN_REL_DEF_MXLOOP (ge, ARRAY, mx_inline_ge)

//For bsxfun power with mixed integer/float types
#define BSXFUN_POW_MIXED_MXLOOP(INT_TYPE)                               \
  BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, INT_TYPE, NDArray, mx_inline_pow) \
  BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, INT_TYPE, FloatNDArray, mx_inline_pow) \
  BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, NDArray, INT_TYPE,  mx_inline_pow) \
  BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, FloatNDArray, INT_TYPE, mx_inline_pow)

#endif