/usr/include/octave-4.2.2/octave/oct-cmplx.h is in liboctave-dev 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | /*
Copyright (C) 1995-2017 John W. Eaton
Copyright (C) 2009 VZLU Prague, a.s.
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#if ! defined (octave_oct_cmplx_h)
#define octave_oct_cmplx_h 1
#include "octave-config.h"
#include <complex>
typedef std::complex<double> Complex;
typedef std::complex<float> FloatComplex;
// For complex-complex and complex-real comparisons, we use the following
// ordering: compare absolute values first; if they match, compare phase angles.
// This is partially inconsistent with M*b, which compares complex numbers only
// by their real parts; OTOH, it uses the same definition for max/min and sort.
// The abs/arg comparison is definitely more useful (the other one is emulated
// rather trivially), so let's be consistent and use that all over.
// The standard C library function arg() returns [-pi,pi], which creates a
// non-unique representation for numbers along the negative real axis branch
// cut. Change this to principal value (-pi,pi] by mapping -pi to pi.
#define DEF_COMPLEXR_COMP(OP, OPS) \
template <typename T> \
inline bool operator OP (const std::complex<T>& a, const std::complex<T>& b) \
{ \
OCTAVE_FLOAT_TRUNCATE const T ax = std::abs (a); \
OCTAVE_FLOAT_TRUNCATE const T bx = std::abs (b); \
if (ax == bx) \
{ \
OCTAVE_FLOAT_TRUNCATE const T ay = std::arg (a); \
OCTAVE_FLOAT_TRUNCATE const T by = std::arg (b); \
if (ay == static_cast<T> (-M_PI)) \
{ \
if (by != static_cast<T> (-M_PI)) \
return static_cast<T> (M_PI) OP by; \
} \
else if (by == static_cast<T> (-M_PI)) \
{ \
return ay OP static_cast<T> (M_PI); \
} \
return ay OP by; \
} \
else \
return ax OPS bx; \
} \
template <typename T> \
inline bool operator OP (const std::complex<T>& a, T b) \
{ \
OCTAVE_FLOAT_TRUNCATE const T ax = std::abs (a); \
OCTAVE_FLOAT_TRUNCATE const T bx = std::abs (b); \
if (ax == bx) \
{ \
OCTAVE_FLOAT_TRUNCATE const T ay = std::arg (a); \
if (ay == static_cast<T> (-M_PI)) \
return static_cast<T> (M_PI) OP 0; \
return ay OP 0; \
} \
else \
return ax OPS bx; \
} \
template <typename T> \
inline bool operator OP (T a, const std::complex<T>& b) \
{ \
OCTAVE_FLOAT_TRUNCATE const T ax = std::abs (a); \
OCTAVE_FLOAT_TRUNCATE const T bx = std::abs (b); \
if (ax == bx) \
{ \
OCTAVE_FLOAT_TRUNCATE const T by = std::arg (b); \
if (by == static_cast<T> (-M_PI)) \
return 0 OP static_cast<T> (M_PI); \
return 0 OP by; \
} \
else \
return ax OPS bx; \
}
DEF_COMPLEXR_COMP (>, >)
DEF_COMPLEXR_COMP (<, <)
DEF_COMPLEXR_COMP (<=, <)
DEF_COMPLEXR_COMP (>=, >)
#endif
|