This file is indexed.

/usr/include/octave-4.2.2/octave/oct-locbuf.h is in liboctave-dev 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*

Copyright (C) 2008-2017 Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if ! defined (octave_oct_locbuf_h)
#define octave_oct_locbuf_h 1

#include "octave-config.h"

#include <cstddef>
#include "oct-cmplx.h"

// The default local buffer simply encapsulates an *array* pointer
// that gets deleted automatically.  For common POD types, we provide
// specializations.

template <typename T>
class octave_local_buffer
{
public:
  octave_local_buffer (size_t size)
    : data (0)
  {
    if (size)
      data = new T [size];
  }

  ~octave_local_buffer (void) { delete [] data; }

  operator T *() const { return data; }

private:
  T *data;

  // No copying!
  octave_local_buffer (const octave_local_buffer&);
  octave_local_buffer& operator = (const octave_local_buffer&);
};

// For buffers of POD types, we'll be smarter.  There is one thing
// that differentiates a local buffer from a dynamic array - the local
// buffers, if not manipulated improperly, have a FIFO semantics,
// meaning that if buffer B is allocated after buffer A, B *must* be
// deallocated before A.  This is *guaranteed* if you use local buffer
// exclusively through the OCTAVE_LOCAL_BUFFER macro, because the C++
// standard requires that explicit local objects be destroyed in
// reverse order of declaration.  Therefore, we can avoid memory
// fragmentation by allocating fairly large chunks of memory and
// serving local buffers from them in a stack-like manner.  The first
// returning buffer in previous chunk will be responsible for
// deallocating the chunk.

class octave_chunk_buffer
{
public:

  OCTAVE_API octave_chunk_buffer (size_t size);

  OCTAVE_API virtual ~octave_chunk_buffer (void);

  char *data (void) const { return dat; }

  static OCTAVE_API void clear (void);

private:

  // The number of bytes we allocate for each large chunk of memory we
  // manage.
  static const size_t chunk_size;

  // Pointer to the end end of the last allocation.
  static char *top;

  // Pointer to the current active chunk.
  static char *chunk;

  // The number of bytes remaining in the active chunk.
  static size_t left;

  // The number of active allocations.
  static size_t active;

  // Pointer to the current chunk.
  char *cnk;

  // Pointer to the beginning of the most recent allocation.
  char *dat;

  // No copying!
  octave_chunk_buffer (const octave_chunk_buffer&);
  octave_chunk_buffer& operator = (const octave_chunk_buffer&);
};

// This specializes octave_local_buffer to use the chunked buffer
// mechanism for POD types.
#define SPECIALIZE_POD_BUFFER(TYPE)                             \
  template <>                                                   \
  class octave_local_buffer<TYPE> : private octave_chunk_buffer \
  {                                                             \
  public:                                                       \
    octave_local_buffer (size_t size)                           \
      : octave_chunk_buffer (size * sizeof (TYPE)) { }          \
                                                                \
    operator TYPE *() const                                     \
    {                                                           \
      return reinterpret_cast<TYPE *> (this->data ());          \
    }                                                           \
  }

SPECIALIZE_POD_BUFFER (bool);
SPECIALIZE_POD_BUFFER (char);
SPECIALIZE_POD_BUFFER (unsigned short);
SPECIALIZE_POD_BUFFER (short);
SPECIALIZE_POD_BUFFER (int);
SPECIALIZE_POD_BUFFER (unsigned int);
SPECIALIZE_POD_BUFFER (long);
SPECIALIZE_POD_BUFFER (unsigned long);
SPECIALIZE_POD_BUFFER (float);
SPECIALIZE_POD_BUFFER (double);
// FIXME: Are these guaranteed to be POD and satisfy alignment?
SPECIALIZE_POD_BUFFER (Complex);
SPECIALIZE_POD_BUFFER (FloatComplex);
// MORE ?

// All pointers and const pointers are also POD types.
template <typename T>
class octave_local_buffer<T *> : private octave_chunk_buffer
{
public:
  octave_local_buffer (size_t size)
    : octave_chunk_buffer (size * sizeof (T *))
  { }

  operator T **() const { return reinterpret_cast<T **> (this->data ()); }
};

template <typename T>
class octave_local_buffer<const T *> : private octave_chunk_buffer
{
public:
  octave_local_buffer (size_t size)
    : octave_chunk_buffer (size * sizeof (const T *))
  { }

  operator const T **() const
  {
    return reinterpret_cast<const T **> (this->data ());
  }
};

// If the compiler supports dynamic stack arrays, we can use the
// attached hack to place small buffer arrays on the stack.  It may be
// even faster than our obstack-like optimization, but is dangerous
// because stack is a very limited resource, so we disable it.

#if 0 // defined (HAVE_DYNAMIC_AUTO_ARRAYS)

// Maximum buffer size (in bytes) to be placed on the stack.

#define OCTAVE_LOCAL_BUFFER_MAX_STACK_SIZE 8192

// If we have automatic arrays, we use an automatic array if the size
// is small enough.  To avoid possibly evaluating 'size' multiple
// times, we first cache it.  Note that we always construct both the
// stack array and the octave_local_buffer object, but only one of
// them will be nonempty.

#define OCTAVE_LOCAL_BUFFER(T, buf, size)                               \
  const size_t _bufsize_ ## buf = size;                                 \
  const bool _lbufaut_ ## buf = _bufsize_ ## buf * sizeof (T)           \
    <= OCTAVE_LOCAL_BUFFER_MAX_STACK_SIZE;                              \
  T _bufaut_ ## buf [_lbufaut_ ## buf ? _bufsize_ ## buf : 0];          \
  octave_local_buffer<T> _bufheap_ ## buf (! _lbufaut_ ## buf ? _bufsize_ ## buf : 0); \
  T *buf = (_lbufaut_ ## buf                                            \
            ? _bufaut_ ## buf : static_cast<T *> (_bufheap_ ## buf))

#else

// If we don't have automatic arrays, we simply always use
// octave_local_buffer.

#define OCTAVE_LOCAL_BUFFER(T, buf, size)               \
  octave_local_buffer<T> _buffer_ ## buf (size);        \
  T *buf = _buffer_ ## buf

#endif

// Note: we use weird variables in the for loop to avoid warnings
// about shadowed parameters.

#define OCTAVE_LOCAL_BUFFER_INIT(T, buf, size, value)   \
  OCTAVE_LOCAL_BUFFER (T, buf, size);                   \
  for (size_t _buf_iter = 0, _buf_size = size;          \
       _buf_iter < _buf_size; _buf_iter++)              \
    buf[_buf_iter] = value

#endif