This file is indexed.

/usr/include/odb/sqlite/polymorphic-object-result.txx is in libodb-sqlite-dev 2.4.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// file      : odb/sqlite/polymorphic-object-result.txx
// copyright : Copyright (c) 2009-2015 Code Synthesis Tools CC
// license   : GNU GPL v2; see accompanying LICENSE file

#include <cassert>

#include <odb/callback.hxx>
#include <odb/exceptions.hxx> // result_not_cached

#include <odb/sqlite/polymorphic-object-statements.hxx>

namespace odb
{
  namespace sqlite
  {
    template <typename T>
    polymorphic_object_result_impl<T>::
    ~polymorphic_object_result_impl ()
    {
      if (!this->end_)
        statement_->free_result ();
    }

    template <typename T>
    void polymorphic_object_result_impl<T>::
    invalidate ()
    {
      if (!this->end_)
      {
        statement_->free_result ();
        this->end_ = true;
      }

      params_.reset ();
      statement_.reset ();
    }

    template <typename T>
    polymorphic_object_result_impl<T>::
    polymorphic_object_result_impl (
      const query_base& q,
      const details::shared_ptr<select_statement>& s,
      statements_type& sts,
      const schema_version_migration* svm)
        : base_type (sts.connection ()),
          params_ (q.parameters ()),
          statement_ (s),
          statements_ (sts),
          tc_ (svm)
    {
    }

    template <typename T>
    void polymorphic_object_result_impl<T>::
    load (object_type* pobj, bool fetch)
    {
      if (fetch)
        load_image ();

      typename statements_type::root_statements_type& rsts (
        statements_.root_statements ());

      // This is a top-level call so the statements cannot be locked.
      //
      assert (!rsts.locked ());
      typename statements_type::auto_lock l (rsts);

      typename object_traits::image_type& i (statements_.image ());
      typename root_traits::image_type& ri (rsts.image ());

      id_type id (root_traits::id (ri));

      // Determine this object's dynamic type.
      //
      typedef typename root_traits::info_type info_type;
      discriminator_type d (root_traits::discriminator (ri));
      discriminator_type disc (d);

      // Use the polymorphic_info() helper to get concrete_info if
      // object_type is concrete and NULL if it is abstract.
      //
      const info_type* spi (polymorphic_info (object_traits::info));
      const info_type& pi (
        spi != 0 && spi->discriminator == d
        ? *spi
        : root_traits::map->find (d));

      typedef typename root_traits::pointer_type root_pointer_type;
      typedef typename root_traits::pointer_traits root_pointer_traits;

      typename object_traits::pointer_cache_traits::insert_guard ig;

      if (pobj == 0)
      {
        // Need to create a new instance of the dynamic type.
        //
        root_pointer_type rp (pi.create ());
        pointer_type p (
          root_pointer_traits::template static_pointer_cast<object_type> (rp));

        // Insert it as a root pointer (for non-unique pointers, rp should
        // still be valid and for unique pointers this is a no-op).
        //
        ig.reset (
          object_traits::pointer_cache_traits::insert (this->db_, id, rp));

        pobj = &pointer_traits::get_ref (p);
        current (p);
      }
      else
      {
        // We are loading into an existing instance. If the static and
        // dynamic types differ, then make sure the instance is at least
        // of the dynamic type.
        //
        if (&pi != &object_traits::info)
        {
          const info_type& dpi (root_traits::map->find (typeid (*pobj)));

          if (&dpi != &pi && dpi.derived (pi))
            throw object_not_persistent (); // @@ type_mismatch ?
        }
      }

      callback_event ce (callback_event::pre_load);
      pi.dispatch (info_type::call_callback, this->db_, pobj, &ce);

      tc_.init (*pobj, i, &this->db_);

      // Initialize the id image and binding and load the rest of the object
      // (containers, dynamic part, etc).
      //
      typename object_traits::id_image_type& idi (statements_.id_image ());
      root_traits::init (idi, id);

      binding& idb (statements_.id_image_binding ());
      if (idi.version != statements_.id_image_version () || idb.version == 0)
      {
        object_traits::bind (idb.bind, idi);
        statements_.id_image_version (idi.version);
        idb.version++;
      }

      tc_.load_ (statements_, *pobj, false);

      // Load the dynamic part of the object unless static and dynamic
      // types are the same.
      //
      if (&pi != &object_traits::info)
      {
        std::size_t d (object_traits::depth);
        pi.dispatch (info_type::call_load, this->db_, pobj, &d);
      };

      rsts.load_delayed (tc_.version ());
      l.unlock ();

      ce = callback_event::post_load;
      pi.dispatch (info_type::call_callback, this->db_, pobj, &ce);
      object_traits::pointer_cache_traits::load (ig.position ());
      ig.release ();
    }

    template <typename T>
    typename polymorphic_object_result_impl<T>::id_type
    polymorphic_object_result_impl<T>::
    load_id ()
    {
      load_image ();
      return root_traits::id (statements_.root_statements ().image ());
    }

    template <typename T>
    typename polymorphic_object_result_impl<T>::discriminator_type
    polymorphic_object_result_impl<T>::
    load_discriminator ()
    {
      load_image ();
      return root_traits::discriminator (
        statements_.root_statements ().image ());
    }

    template <typename T>
    void polymorphic_object_result_impl<T>::
    next ()
    {
      this->current (pointer_type ());

      if (!statement_->next ())
      {
        statement_->free_result ();
        this->end_ = true;
      }
    }

    template <typename T, typename R>
    struct polymorphic_image_rebind
    {
      // Derived type version.
      //
      typedef object_traits_impl<T, id_sqlite> traits;

      static bool
      rebind (typename traits::statements_type& sts,
              const schema_version_migration* svm)
      {
        typename traits::image_type& im (sts.image ());

        if (traits::check_version (sts.select_image_versions (), im))
        {
          binding& b (sts.select_image_binding (traits::depth));
          object_traits_calls<T> tc (svm);
          tc.bind (b.bind, 0, 0, im, statement_select);
          traits::update_version (
            sts.select_image_versions (), im, sts.select_image_bindings ());
          return true;
        }

        return false;
      }
    };

    template <typename R>
    struct polymorphic_image_rebind<R, R>
    {
      // Root type version.
      //
      typedef object_traits_impl<R, id_sqlite> traits;

      static bool
      rebind (typename traits::statements_type& sts,
              const schema_version_migration* svm)
      {
        typename traits::image_type& im (sts.image ());

        if (im.version != sts.select_image_version ())
        {
          binding& b (sts.select_image_binding ());
          object_traits_calls<R> tc (svm);
          tc.bind (b.bind, im, statement_select);
          sts.select_image_version (im.version);
          b.version++;
          return true;
        }

        return false;
      }
    };

    template <typename T>
    void polymorphic_object_result_impl<T>::
    load_image ()
    {
      typedef polymorphic_image_rebind<object_type, root_type> image_rebind;

      // The image can grow between calls to load() as a result of other
      // statements execution.
      //
      image_rebind::rebind (statements_, tc_.version ());

      select_statement::result r (statement_->load ());

      if (r == select_statement::truncated)
      {
        typename object_traits::image_type& im (statements_.image ());

        if (tc_.grow (im, statements_.select_image_truncated ()))
          im.version++;

        if (image_rebind::rebind (statements_, tc_.version ()))
          statement_->reload ();
      }
    }

    template <typename T>
    void polymorphic_object_result_impl<T>::
    cache ()
    {
    }

    template <typename T>
    std::size_t polymorphic_object_result_impl<T>::
    size ()
    {
      throw result_not_cached ();
    }
  }
}