/usr/include/OGRE/OgreMath.h is in libogre-1.9-dev 1.9.0+dfsg1-10.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 | /*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2013 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __Math_H__
#define __Math_H__
#include "OgrePrerequisites.h"
#include "OgreHeaderPrefix.h"
namespace Ogre
{
/** \addtogroup Core
* @{
*/
/** \addtogroup Math
* @{
*/
/** Wrapper class which indicates a given angle value is in Radians.
@remarks
Radian values are interchangeable with Degree values, and conversions
will be done automatically between them.
*/
class Radian
{
Real mRad;
public:
explicit Radian ( Real r=0 ) : mRad(r) {}
Radian ( const Degree& d );
Radian& operator = ( const Real& f ) { mRad = f; return *this; }
Radian& operator = ( const Radian& r ) { mRad = r.mRad; return *this; }
Radian& operator = ( const Degree& d );
Real valueDegrees() const; // see bottom of this file
Real valueRadians() const { return mRad; }
Real valueAngleUnits() const;
const Radian& operator + () const { return *this; }
Radian operator + ( const Radian& r ) const { return Radian ( mRad + r.mRad ); }
Radian operator + ( const Degree& d ) const;
Radian& operator += ( const Radian& r ) { mRad += r.mRad; return *this; }
Radian& operator += ( const Degree& d );
Radian operator - () const { return Radian(-mRad); }
Radian operator - ( const Radian& r ) const { return Radian ( mRad - r.mRad ); }
Radian operator - ( const Degree& d ) const;
Radian& operator -= ( const Radian& r ) { mRad -= r.mRad; return *this; }
Radian& operator -= ( const Degree& d );
Radian operator * ( Real f ) const { return Radian ( mRad * f ); }
Radian operator * ( const Radian& f ) const { return Radian ( mRad * f.mRad ); }
Radian& operator *= ( Real f ) { mRad *= f; return *this; }
Radian operator / ( Real f ) const { return Radian ( mRad / f ); }
Radian& operator /= ( Real f ) { mRad /= f; return *this; }
bool operator < ( const Radian& r ) const { return mRad < r.mRad; }
bool operator <= ( const Radian& r ) const { return mRad <= r.mRad; }
bool operator == ( const Radian& r ) const { return mRad == r.mRad; }
bool operator != ( const Radian& r ) const { return mRad != r.mRad; }
bool operator >= ( const Radian& r ) const { return mRad >= r.mRad; }
bool operator > ( const Radian& r ) const { return mRad > r.mRad; }
inline _OgreExport friend std::ostream& operator <<
( std::ostream& o, const Radian& v )
{
o << "Radian(" << v.valueRadians() << ")";
return o;
}
};
/** Wrapper class which indicates a given angle value is in Degrees.
@remarks
Degree values are interchangeable with Radian values, and conversions
will be done automatically between them.
*/
class Degree
{
Real mDeg; // if you get an error here - make sure to define/typedef 'Real' first
public:
explicit Degree ( Real d=0 ) : mDeg(d) {}
Degree ( const Radian& r ) : mDeg(r.valueDegrees()) {}
Degree& operator = ( const Real& f ) { mDeg = f; return *this; }
Degree& operator = ( const Degree& d ) { mDeg = d.mDeg; return *this; }
Degree& operator = ( const Radian& r ) { mDeg = r.valueDegrees(); return *this; }
Real valueDegrees() const { return mDeg; }
Real valueRadians() const; // see bottom of this file
Real valueAngleUnits() const;
const Degree& operator + () const { return *this; }
Degree operator + ( const Degree& d ) const { return Degree ( mDeg + d.mDeg ); }
Degree operator + ( const Radian& r ) const { return Degree ( mDeg + r.valueDegrees() ); }
Degree& operator += ( const Degree& d ) { mDeg += d.mDeg; return *this; }
Degree& operator += ( const Radian& r ) { mDeg += r.valueDegrees(); return *this; }
Degree operator - () const { return Degree(-mDeg); }
Degree operator - ( const Degree& d ) const { return Degree ( mDeg - d.mDeg ); }
Degree operator - ( const Radian& r ) const { return Degree ( mDeg - r.valueDegrees() ); }
Degree& operator -= ( const Degree& d ) { mDeg -= d.mDeg; return *this; }
Degree& operator -= ( const Radian& r ) { mDeg -= r.valueDegrees(); return *this; }
Degree operator * ( Real f ) const { return Degree ( mDeg * f ); }
Degree operator * ( const Degree& f ) const { return Degree ( mDeg * f.mDeg ); }
Degree& operator *= ( Real f ) { mDeg *= f; return *this; }
Degree operator / ( Real f ) const { return Degree ( mDeg / f ); }
Degree& operator /= ( Real f ) { mDeg /= f; return *this; }
bool operator < ( const Degree& d ) const { return mDeg < d.mDeg; }
bool operator <= ( const Degree& d ) const { return mDeg <= d.mDeg; }
bool operator == ( const Degree& d ) const { return mDeg == d.mDeg; }
bool operator != ( const Degree& d ) const { return mDeg != d.mDeg; }
bool operator >= ( const Degree& d ) const { return mDeg >= d.mDeg; }
bool operator > ( const Degree& d ) const { return mDeg > d.mDeg; }
inline _OgreExport friend std::ostream& operator <<
( std::ostream& o, const Degree& v )
{
o << "Degree(" << v.valueDegrees() << ")";
return o;
}
};
/** Wrapper class which identifies a value as the currently default angle
type, as defined by Math::setAngleUnit.
@remarks
Angle values will be automatically converted between radians and degrees,
as appropriate.
*/
class Angle
{
Real mAngle;
public:
explicit Angle ( Real angle ) : mAngle(angle) {}
operator Radian() const;
operator Degree() const;
};
// these functions could not be defined within the class definition of class
// Radian because they required class Degree to be defined
inline Radian::Radian ( const Degree& d ) : mRad(d.valueRadians()) {
}
inline Radian& Radian::operator = ( const Degree& d ) {
mRad = d.valueRadians(); return *this;
}
inline Radian Radian::operator + ( const Degree& d ) const {
return Radian ( mRad + d.valueRadians() );
}
inline Radian& Radian::operator += ( const Degree& d ) {
mRad += d.valueRadians();
return *this;
}
inline Radian Radian::operator - ( const Degree& d ) const {
return Radian ( mRad - d.valueRadians() );
}
inline Radian& Radian::operator -= ( const Degree& d ) {
mRad -= d.valueRadians();
return *this;
}
/** Class to provide access to common mathematical functions.
@remarks
Most of the maths functions are aliased versions of the C runtime
library functions. They are aliased here to provide future
optimisation opportunities, either from faster RTLs or custom
math approximations.
@note
<br>This is based on MgcMath.h from
<a href="http://www.geometrictools.com/">Wild Magic</a>.
*/
class _OgreExport Math
{
public:
/** The angular units used by the API. This functionality is now deprecated in favor
of discreet angular unit types ( see Degree and Radian above ). The only place
this functionality is actually still used is when parsing files. Search for
usage of the Angle class for those instances
*/
enum AngleUnit
{
AU_DEGREE,
AU_RADIAN
};
/** This class is used to provide an external random value provider.
*/
class RandomValueProvider
{
public:
virtual ~RandomValueProvider() {}
/** When called should return a random values in the range of [0,1] */
virtual Real getRandomUnit() = 0;
};
protected:
/// Angle units used by the api
static AngleUnit msAngleUnit;
/// Size of the trig tables as determined by constructor.
static int mTrigTableSize;
/// Radian -> index factor value ( mTrigTableSize / 2 * PI )
static Real mTrigTableFactor;
static Real* mSinTable;
static Real* mTanTable;
/// A random value provider. overriding the default random number generator.
static RandomValueProvider* mRandProvider;
/** Private function to build trig tables.
*/
void buildTrigTables();
static Real SinTable (Real fValue);
static Real TanTable (Real fValue);
public:
/** Default constructor.
@param
trigTableSize Optional parameter to set the size of the
tables used to implement Sin, Cos, Tan
*/
Math(unsigned int trigTableSize = 4096);
/** Default destructor.
*/
~Math();
static inline int IAbs (int iValue) { return ( iValue >= 0 ? iValue : -iValue ); }
static inline int ICeil (float fValue) { return int(ceil(fValue)); }
static inline int IFloor (float fValue) { return int(floor(fValue)); }
static int ISign (int iValue);
/** Absolute value function
@param
fValue The value whose absolute value will be returned.
*/
static inline Real Abs (Real fValue) { return Real(fabs(fValue)); }
/** Absolute value function
@param dValue
The value, in degrees, whose absolute value will be returned.
*/
static inline Degree Abs (const Degree& dValue) { return Degree(fabs(dValue.valueDegrees())); }
/** Absolute value function
@param rValue
The value, in radians, whose absolute value will be returned.
*/
static inline Radian Abs (const Radian& rValue) { return Radian(fabs(rValue.valueRadians())); }
/** Arc cosine function
@param fValue
The value whose arc cosine will be returned.
*/
static Radian ACos (Real fValue);
/** Arc sine function
@param fValue
The value whose arc sine will be returned.
*/
static Radian ASin (Real fValue);
/** Arc tangent function
@param fValue
The value whose arc tangent will be returned.
*/
static inline Radian ATan (Real fValue) { return Radian(atan(fValue)); }
/** Arc tangent between two values function
@param fY
The first value to calculate the arc tangent with.
@param fX
The second value to calculate the arc tangent with.
*/
static inline Radian ATan2 (Real fY, Real fX) { return Radian(atan2(fY,fX)); }
/** Ceiling function
Returns the smallest following integer. (example: Ceil(1.1) = 2)
@param fValue
The value to round up to the nearest integer.
*/
static inline Real Ceil (Real fValue) { return Real(ceil(fValue)); }
static inline bool isNaN(Real f)
{
// std::isnan() is C99, not supported by all compilers
// However NaN always fails this next test, no other number does.
return f != f;
}
/** Cosine function.
@param fValue
Angle in radians
@param useTables
If true, uses lookup tables rather than
calculation - faster but less accurate.
*/
static inline Real Cos (const Radian& fValue, bool useTables = false) {
return (!useTables) ? Real(cos(fValue.valueRadians())) : SinTable(fValue.valueRadians() + HALF_PI);
}
/** Cosine function.
@param fValue
Angle in radians
@param useTables
If true, uses lookup tables rather than
calculation - faster but less accurate.
*/
static inline Real Cos (Real fValue, bool useTables = false) {
return (!useTables) ? Real(cos(fValue)) : SinTable(fValue + HALF_PI);
}
static inline Real Exp (Real fValue) { return Real(exp(fValue)); }
/** Floor function
Returns the largest previous integer. (example: Floor(1.9) = 1)
@param fValue
The value to round down to the nearest integer.
*/
static inline Real Floor (Real fValue) { return Real(floor(fValue)); }
static inline Real Log (Real fValue) { return Real(log(fValue)); }
/// Stored value of log(2) for frequent use
static const Real LOG2;
static inline Real Log2 (Real fValue) { return Real(log(fValue)/LOG2); }
static inline Real LogN (Real base, Real fValue) { return Real(log(fValue)/log(base)); }
static inline Real Pow (Real fBase, Real fExponent) { return Real(pow(fBase,fExponent)); }
static Real Sign (Real fValue);
static inline Radian Sign ( const Radian& rValue )
{
return Radian(Sign(rValue.valueRadians()));
}
static inline Degree Sign ( const Degree& dValue )
{
return Degree(Sign(dValue.valueDegrees()));
}
//Simulate the shader function saturate that clamps a parameter value between 0 and 1
static inline float saturate(float t) { return (t < 0) ? 0 : ((t > 1) ? 1 : t); }
static inline double saturate(double t) { return (t < 0) ? 0 : ((t > 1) ? 1 : t); }
//Simulate the shader function lerp which performers linear interpolation
//given 3 parameters v0, v1 and t the function returns the value of (1 � t)* v0 + t * v1.
//where v0 and v1 are matching vector or scalar types and t can be either a scalar or a vector of the same type as a and b.
template<typename V, typename T> static V lerp(const V& v0, const V& v1, const T& t) {
return v0 * (1 - t) + v1 * t; }
/** Sine function.
@param fValue
Angle in radians
@param useTables
If true, uses lookup tables rather than
calculation - faster but less accurate.
*/
static inline Real Sin (const Radian& fValue, bool useTables = false) {
return (!useTables) ? Real(sin(fValue.valueRadians())) : SinTable(fValue.valueRadians());
}
/** Sine function.
@param fValue
Angle in radians
@param useTables
If true, uses lookup tables rather than
calculation - faster but less accurate.
*/
static inline Real Sin (Real fValue, bool useTables = false) {
return (!useTables) ? Real(sin(fValue)) : SinTable(fValue);
}
/** Squared function.
@param fValue
The value to be squared (fValue^2)
*/
static inline Real Sqr (Real fValue) { return fValue*fValue; }
/** Square root function.
@param fValue
The value whose square root will be calculated.
*/
static inline Real Sqrt (Real fValue) { return Real(sqrt(fValue)); }
/** Square root function.
@param fValue
The value, in radians, whose square root will be calculated.
@return
The square root of the angle in radians.
*/
static inline Radian Sqrt (const Radian& fValue) { return Radian(sqrt(fValue.valueRadians())); }
/** Square root function.
@param fValue
The value, in degrees, whose square root will be calculated.
@return
The square root of the angle in degrees.
*/
static inline Degree Sqrt (const Degree& fValue) { return Degree(sqrt(fValue.valueDegrees())); }
/** Inverse square root i.e. 1 / Sqrt(x), good for vector
normalisation.
@param fValue
The value whose inverse square root will be calculated.
*/
static Real InvSqrt (Real fValue);
/** Generate a random number of unit length.
@return
A random number in the range from [0,1].
*/
static Real UnitRandom ();
/** Generate a random number within the range provided.
@param fLow
The lower bound of the range.
@param fHigh
The upper bound of the range.
@return
A random number in the range from [fLow,fHigh].
*/
static Real RangeRandom (Real fLow, Real fHigh);
/** Generate a random number in the range [-1,1].
@return
A random number in the range from [-1,1].
*/
static Real SymmetricRandom ();
static void SetRandomValueProvider(RandomValueProvider* provider);
/** Tangent function.
@param fValue
Angle in radians
@param useTables
If true, uses lookup tables rather than
calculation - faster but less accurate.
*/
static inline Real Tan (const Radian& fValue, bool useTables = false) {
return (!useTables) ? Real(tan(fValue.valueRadians())) : TanTable(fValue.valueRadians());
}
/** Tangent function.
@param fValue
Angle in radians
@param useTables
If true, uses lookup tables rather than
calculation - faster but less accurate.
*/
static inline Real Tan (Real fValue, bool useTables = false) {
return (!useTables) ? Real(tan(fValue)) : TanTable(fValue);
}
static inline Real DegreesToRadians(Real degrees) { return degrees * fDeg2Rad; }
static inline Real RadiansToDegrees(Real radians) { return radians * fRad2Deg; }
/** These functions used to set the assumed angle units (radians or degrees)
expected when using the Angle type.
@par
You can set this directly after creating a new Root, and also before/after resource creation,
depending on whether you want the change to affect resource files.
*/
static void setAngleUnit(AngleUnit unit);
/** Get the unit being used for angles. */
static AngleUnit getAngleUnit(void);
/** Convert from the current AngleUnit to radians. */
static Real AngleUnitsToRadians(Real units);
/** Convert from radians to the current AngleUnit . */
static Real RadiansToAngleUnits(Real radians);
/** Convert from the current AngleUnit to degrees. */
static Real AngleUnitsToDegrees(Real units);
/** Convert from degrees to the current AngleUnit. */
static Real DegreesToAngleUnits(Real degrees);
/** Checks whether a given point is inside a triangle, in a
2-dimensional (Cartesian) space.
@remarks
The vertices of the triangle must be given in either
trigonometrical (anticlockwise) or inverse trigonometrical
(clockwise) order.
@param p
The point.
@param a
The triangle's first vertex.
@param b
The triangle's second vertex.
@param c
The triangle's third vertex.
@return
If the point resides in the triangle, <b>true</b> is
returned.
@par
If the point is outside the triangle, <b>false</b> is
returned.
*/
static bool pointInTri2D(const Vector2& p, const Vector2& a,
const Vector2& b, const Vector2& c);
/** Checks whether a given 3D point is inside a triangle.
@remarks
The vertices of the triangle must be given in either
trigonometrical (anticlockwise) or inverse trigonometrical
(clockwise) order, and the point must be guaranteed to be in the
same plane as the triangle
@param p
p The point.
@param a
The triangle's first vertex.
@param b
The triangle's second vertex.
@param c
The triangle's third vertex.
@param normal
The triangle plane's normal (passed in rather than calculated
on demand since the caller may already have it)
@return
If the point resides in the triangle, <b>true</b> is
returned.
@par
If the point is outside the triangle, <b>false</b> is
returned.
*/
static bool pointInTri3D(const Vector3& p, const Vector3& a,
const Vector3& b, const Vector3& c, const Vector3& normal);
/** Ray / plane intersection, returns boolean result and distance. */
static std::pair<bool, Real> intersects(const Ray& ray, const Plane& plane);
/** Ray / sphere intersection, returns boolean result and distance. */
static std::pair<bool, Real> intersects(const Ray& ray, const Sphere& sphere,
bool discardInside = true);
/** Ray / box intersection, returns boolean result and distance. */
static std::pair<bool, Real> intersects(const Ray& ray, const AxisAlignedBox& box);
/** Ray / box intersection, returns boolean result and two intersection distance.
@param ray
The ray.
@param box
The box.
@param d1
A real pointer to retrieve the near intersection distance
from the ray origin, maybe <b>null</b> which means don't care
about the near intersection distance.
@param d2
A real pointer to retrieve the far intersection distance
from the ray origin, maybe <b>null</b> which means don't care
about the far intersection distance.
@return
If the ray is intersects the box, <b>true</b> is returned, and
the near intersection distance is return by <i>d1</i>, the
far intersection distance is return by <i>d2</i>. Guarantee
<b>0</b> <= <i>d1</i> <= <i>d2</i>.
@par
If the ray isn't intersects the box, <b>false</b> is returned, and
<i>d1</i> and <i>d2</i> is unmodified.
*/
static bool intersects(const Ray& ray, const AxisAlignedBox& box,
Real* d1, Real* d2);
/** Ray / triangle intersection, returns boolean result and distance.
@param ray
The ray.
@param a
The triangle's first vertex.
@param b
The triangle's second vertex.
@param c
The triangle's third vertex.
@param normal
The triangle plane's normal (passed in rather than calculated
on demand since the caller may already have it), doesn't need
normalised since we don't care.
@param positiveSide
Intersect with "positive side" of the triangle
@param negativeSide
Intersect with "negative side" of the triangle
@return
If the ray is intersects the triangle, a pair of <b>true</b> and the
distance between intersection point and ray origin returned.
@par
If the ray isn't intersects the triangle, a pair of <b>false</b> and
<b>0</b> returned.
*/
static std::pair<bool, Real> intersects(const Ray& ray, const Vector3& a,
const Vector3& b, const Vector3& c, const Vector3& normal,
bool positiveSide = true, bool negativeSide = true);
/** Ray / triangle intersection, returns boolean result and distance.
@param ray
The ray.
@param a
The triangle's first vertex.
@param b
The triangle's second vertex.
@param c
The triangle's third vertex.
@param positiveSide
Intersect with "positive side" of the triangle
@param negativeSide
Intersect with "negative side" of the triangle
@return
If the ray is intersects the triangle, a pair of <b>true</b> and the
distance between intersection point and ray origin returned.
@par
If the ray isn't intersects the triangle, a pair of <b>false</b> and
<b>0</b> returned.
*/
static std::pair<bool, Real> intersects(const Ray& ray, const Vector3& a,
const Vector3& b, const Vector3& c,
bool positiveSide = true, bool negativeSide = true);
/** Sphere / box intersection test. */
static bool intersects(const Sphere& sphere, const AxisAlignedBox& box);
/** Plane / box intersection test. */
static bool intersects(const Plane& plane, const AxisAlignedBox& box);
/** Ray / convex plane list intersection test.
@param ray The ray to test with
@param planeList List of planes which form a convex volume
@param normalIsOutside Does the normal point outside the volume
*/
static std::pair<bool, Real> intersects(
const Ray& ray, const vector<Plane>::type& planeList,
bool normalIsOutside);
/** Ray / convex plane list intersection test.
@param ray The ray to test with
@param planeList List of planes which form a convex volume
@param normalIsOutside Does the normal point outside the volume
*/
static std::pair<bool, Real> intersects(
const Ray& ray, const list<Plane>::type& planeList,
bool normalIsOutside);
/** Sphere / plane intersection test.
@remarks NB just do a plane.getDistance(sphere.getCenter()) for more detail!
*/
static bool intersects(const Sphere& sphere, const Plane& plane);
/** Compare 2 reals, using tolerance for inaccuracies.
*/
static bool RealEqual(Real a, Real b,
Real tolerance = std::numeric_limits<Real>::epsilon());
/** Calculates the tangent space vector for a given set of positions / texture coords. */
static Vector3 calculateTangentSpaceVector(
const Vector3& position1, const Vector3& position2, const Vector3& position3,
Real u1, Real v1, Real u2, Real v2, Real u3, Real v3);
/** Build a reflection matrix for the passed in plane. */
static Matrix4 buildReflectionMatrix(const Plane& p);
/** Calculate a face normal, including the w component which is the offset from the origin. */
static Vector4 calculateFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3);
/** Calculate a face normal, no w-information. */
static Vector3 calculateBasicFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3);
/** Calculate a face normal without normalize, including the w component which is the offset from the origin. */
static Vector4 calculateFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3);
/** Calculate a face normal without normalize, no w-information. */
static Vector3 calculateBasicFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3);
/** Generates a value based on the Gaussian (normal) distribution function
with the given offset and scale parameters.
*/
static Real gaussianDistribution(Real x, Real offset = 0.0f, Real scale = 1.0f);
/** Clamp a value within an inclusive range. */
template <typename T>
static T Clamp(T val, T minval, T maxval)
{
assert (minval <= maxval && "Invalid clamp range");
return std::max(std::min(val, maxval), minval);
}
static Matrix4 makeViewMatrix(const Vector3& position, const Quaternion& orientation,
const Matrix4* reflectMatrix = 0);
/** Get a bounding radius value from a bounding box. */
static Real boundingRadiusFromAABB(const AxisAlignedBox& aabb);
static const Real POS_INFINITY;
static const Real NEG_INFINITY;
static const Real PI;
static const Real TWO_PI;
static const Real HALF_PI;
static const Real fDeg2Rad;
static const Real fRad2Deg;
};
// these functions must be defined down here, because they rely on the
// angle unit conversion functions in class Math:
inline Real Radian::valueDegrees() const
{
return Math::RadiansToDegrees ( mRad );
}
inline Real Radian::valueAngleUnits() const
{
return Math::RadiansToAngleUnits ( mRad );
}
inline Real Degree::valueRadians() const
{
return Math::DegreesToRadians ( mDeg );
}
inline Real Degree::valueAngleUnits() const
{
return Math::DegreesToAngleUnits ( mDeg );
}
inline Angle::operator Radian() const
{
return Radian(Math::AngleUnitsToRadians(mAngle));
}
inline Angle::operator Degree() const
{
return Degree(Math::AngleUnitsToDegrees(mAngle));
}
inline Radian operator * ( Real a, const Radian& b )
{
return Radian ( a * b.valueRadians() );
}
inline Radian operator / ( Real a, const Radian& b )
{
return Radian ( a / b.valueRadians() );
}
inline Degree operator * ( Real a, const Degree& b )
{
return Degree ( a * b.valueDegrees() );
}
inline Degree operator / ( Real a, const Degree& b )
{
return Degree ( a / b.valueDegrees() );
}
/** @} */
/** @} */
}
#include "OgreHeaderSuffix.h"
#endif
|