This file is indexed.

/usr/include/OGRE/OgreSceneManager.h is in libogre-1.9-dev 1.9.0+dfsg1-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
/*-------------------------------------------------------------------------
This source file is a part of OGRE
(Object-oriented Graphics Rendering Engine)

For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2013 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE

You may alternatively use this source under the terms of a specific version of
the OGRE Unrestricted License provided you have obtained such a license from
Torus Knot Software Ltd.
-------------------------------------------------------------------------*/
#ifndef __SceneManager_H__
#define __SceneManager_H__

// Precompiler options
#include "OgrePrerequisites.h"

#include "OgreString.h"
#include "OgreSceneNode.h"
#include "OgrePlane.h"
#include "OgreQuaternion.h"
#include "OgreColourValue.h"
#include "OgreCommon.h"
#include "OgreSceneQuery.h"
#include "OgreAutoParamDataSource.h"
#include "OgreAnimationState.h"
#include "OgreRenderQueue.h"
#include "OgreRenderQueueSortingGrouping.h"
#include "OgreRectangle2D.h"
#include "OgrePixelFormat.h"
#include "OgreResourceGroupManager.h"
#include "OgreTexture.h"
#include "OgreShadowCameraSetup.h"
#include "OgreShadowTextureManager.h"
#include "OgreCamera.h"
#include "OgreInstancedGeometry.h"
#include "OgreLodListener.h"
#include "OgreInstanceManager.h"
#include "OgreRenderSystem.h"
#include "OgreHeaderPrefix.h"
#include "OgreNameGenerator.h"

namespace Ogre {
	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Scene
	*  @{
	*/

    /** Structure for holding a position & orientation pair. */
    struct ViewPoint
    {
        Vector3 position;
        Quaternion orientation;
    };

	// Forward declarations
	class DefaultIntersectionSceneQuery;
	class DefaultRaySceneQuery;
	class DefaultSphereSceneQuery;
	class DefaultAxisAlignedBoxSceneQuery;
	class CompositorChain;

	/** Structure collecting together information about the visible objects
	that have been discovered in a scene.
	*/
	struct _OgreExport VisibleObjectsBoundsInfo
	{
		/// The axis-aligned bounds of the visible objects
		AxisAlignedBox aabb;
		/// The axis-aligned bounds of the visible shadow receiver objects
		AxisAlignedBox receiverAabb;
		/// The closest a visible object is to the camera
		Real minDistance;
		/// The farthest a visible objects is from the camera
		Real maxDistance;
		/// The closest a object in the frustum regardless of visibility / shadow caster flags
		Real minDistanceInFrustum;
		/// The farthest object in the frustum regardless of visibility / shadow caster flags
		Real maxDistanceInFrustum;

		VisibleObjectsBoundsInfo();
		void reset();
		void merge(const AxisAlignedBox& boxBounds, const Sphere& sphereBounds, 
			const Camera* cam, bool receiver=true);
		/** Merge an object that is not being rendered because it's not a shadow caster, 
			but is a shadow receiver so should be included in the range.
		*/
		void mergeNonRenderedButInFrustum(const AxisAlignedBox& boxBounds, 
			const Sphere& sphereBounds, const Camera* cam);


	};

    /** Manages the organisation and rendering of a 'scene' i.e. a collection 
		of objects and potentially world geometry.
    @remarks
		This class defines the interface and the basic behaviour of a 
		'Scene Manager'. A SceneManager organises the culling and rendering of
		the scene, in conjunction with the RenderQueue. This class is designed 
		to be extended through subclassing in order to provide more specialised
		scene organisation structures for particular needs. The default 
		SceneManager culls based on a hierarchy of node bounding boxes, other
		implementations can use an octree (@see OctreeSceneManager), a BSP
		tree (@see BspSceneManager), and many other options. New SceneManager
		implementations can be added at runtime by plugins, see 
		SceneManagerEnumerator for the interfaces for adding new SceneManager
		types.
	@par
		There is a distinction between 'objects' (which subclass MovableObject, 
		and are movable, discrete objects in the world), and 'world geometry',
		which is large, generally static geometry. World geometry tends to 
		influence the SceneManager organisational structure (e.g. lots of indoor
		static geometry might result in a spatial tree structure) and as such
		world geometry is generally tied to a given SceneManager implementation,
		whilst MovableObject instances can be used with any SceneManager.
		Subclasses are free to define world geometry however they please.
	@par
		Multiple SceneManager instances can exist at one time, each one with 
		a distinct scene. Which SceneManager is used to render a scene is
		dependent on the Camera, which will always call back the SceneManager
		which created it to render the scene. 
     */
	class _OgreExport SceneManager : public SceneMgtAlloc
    {
    public:
        /// Query type mask which will be used for world geometry @see SceneQuery
        static uint32 WORLD_GEOMETRY_TYPE_MASK;
		/// Query type mask which will be used for entities @see SceneQuery
		static uint32 ENTITY_TYPE_MASK;
		/// Query type mask which will be used for effects like billboardsets / particle systems @see SceneQuery
		static uint32 FX_TYPE_MASK;
		/// Query type mask which will be used for StaticGeometry  @see SceneQuery
		static uint32 STATICGEOMETRY_TYPE_MASK;
		/// Query type mask which will be used for lights  @see SceneQuery
		static uint32 LIGHT_TYPE_MASK;
		/// Query type mask which will be used for frusta and cameras @see SceneQuery
		static uint32 FRUSTUM_TYPE_MASK;
		/// User type mask limit
		static uint32 USER_TYPE_MASK_LIMIT;
        /** Comparator for material map, for sorting materials into render order (e.g. transparent last).
        */
        struct materialLess
        {
            _OgreExport bool operator()(const Material* x, const Material* y) const;
        };
        /// Comparator for sorting lights relative to a point
        struct lightLess
        {
            _OgreExport bool operator()(const Light* a, const Light* b) const;
        };

        /// Describes the stage of rendering when performing complex illumination
        enum IlluminationRenderStage
        {
            /// No special illumination stage
            IRS_NONE,
            /// Render to texture stage, used for texture based shadows
            IRS_RENDER_TO_TEXTURE,
            /// Render from shadow texture to receivers stage
            IRS_RENDER_RECEIVER_PASS
        };

		/** Enumeration of the possible modes allowed for processing the special case
		render queue list.
		@see SceneManager::setSpecialCaseRenderQueueMode
		*/
		enum SpecialCaseRenderQueueMode
		{
			/// Render only the queues in the special case list
			SCRQM_INCLUDE,
			/// Render all except the queues in the special case list
			SCRQM_EXCLUDE
		};

		struct SkyDomeGenParameters
		{
			Real skyDomeCurvature;
			Real skyDomeTiling;
			Real skyDomeDistance;
			int skyDomeXSegments; 
			int skyDomeYSegments;
			int skyDomeYSegments_keep;
		};

		struct SkyPlaneGenParameters
		{
			Real skyPlaneScale;
			Real skyPlaneTiling; 
			Real skyPlaneBow; 
			int skyPlaneXSegments; 
			int skyPlaneYSegments; 
		};

		struct SkyBoxGenParameters
		{
			Real skyBoxDistance;
		};

		/** Class that allows listening in on the various stages of SceneManager
			processing, so that custom behaviour can be implemented from outside.
		*/
		class Listener
		{
		public:
			Listener() {}
			virtual ~Listener() {}

			/** Called prior to updating the scene graph in this SceneManager.
			@remarks
				This is called before updating the scene graph for a camera.
			@param source The SceneManager instance raising this event.
			@param camera The camera being updated.
			*/
			virtual void preUpdateSceneGraph(SceneManager* source, Camera* camera)
                        { (void)source; (void)camera; }

			/** Called after updating the scene graph in this SceneManager.
			@remarks
				This is called after updating the scene graph for a camera.
			@param source The SceneManager instance raising this event.
			@param camera The camera being updated.
			*/
			virtual void postUpdateSceneGraph(SceneManager* source, Camera* camera)
                        { (void)source; (void)camera; }

			/** Called prior to searching for visible objects in this SceneManager.
			@remarks
				Note that the render queue at this stage will be full of the last
				render's contents and will be cleared after this method is called.
			@param source The SceneManager instance raising this event.
			@param irs The stage of illumination being dealt with. IRS_NONE for 
				a regular render, IRS_RENDER_TO_TEXTURE for a shadow caster render.
			@param v The viewport being updated. You can get the camera from here.
			*/
			virtual void preFindVisibleObjects(SceneManager* source, 
				IlluminationRenderStage irs, Viewport* v)
                        { (void)source; (void)irs; (void)v; }

			/** Called after searching for visible objects in this SceneManager.
			@remarks
				Note that the render queue at this stage will be full of the current
				scenes contents, ready for rendering. You may manually add renderables
				to this queue if you wish.
			@param source The SceneManager instance raising this event.
			@param irs The stage of illumination being dealt with. IRS_NONE for 
				a regular render, IRS_RENDER_TO_TEXTURE for a shadow caster render.
			@param v The viewport being updated. You can get the camera from here.
			*/
			virtual void postFindVisibleObjects(SceneManager* source, 
				IlluminationRenderStage irs, Viewport* v)
                        { (void)source; (void)irs; (void)v; }

			/** Event raised after all shadow textures have been rendered into for 
				all queues / targets but before any other geometry has been rendered
				(including main scene geometry and any additional shadow receiver 
				passes). 
			@remarks
				This callback is useful for those that wish to perform some 
				additional processing on shadow textures before they are used to 
				render shadows. For example you could perform some filtering by 
				rendering the existing shadow textures into another alternative 
				shadow texture with a shader.]
			@note
				This event will only be fired when texture shadows are in use.
			@param numberOfShadowTextures The number of shadow textures in use
			*/
			virtual void shadowTexturesUpdated(size_t numberOfShadowTextures)
                        { (void)numberOfShadowTextures; }

			/** This event occurs just before the view & projection matrices are
		 		set for rendering into a shadow texture.
			@remarks
				You can use this event hook to perform some custom processing,
				such as altering the camera being used for rendering the light's
				view, including setting custom view & projection matrices if you
				want to perform an advanced shadow technique.
			@note
				This event will only be fired when texture shadows are in use.
			@param light Pointer to the light for which shadows are being rendered
			@param camera Pointer to the camera being used to render
			@param iteration For lights that use multiple shadow textures, the iteration number
			*/
			virtual void shadowTextureCasterPreViewProj(Light* light, 
				Camera* camera, size_t iteration)
                        { (void)light; (void)camera; (void)iteration; }

			/** This event occurs just before the view & projection matrices are
		 		set for re-rendering a shadow receiver.
			@remarks
				You can use this event hook to perform some custom processing,
				such as altering the projection frustum being used for rendering 
				the shadow onto the receiver to perform an advanced shadow 
				technique.
			@note
				This event will only be fired when texture shadows are in use.
			@param light Pointer to the light for which shadows are being rendered
			@param frustum Pointer to the projection frustum being used to project
				the shadow texture
			*/
			virtual void shadowTextureReceiverPreViewProj(Light* light, 
				Frustum* frustum)
                        { (void)light; (void)frustum; }

			/** Hook to allow the listener to override the ordering of lights for
				the entire frustum.
			@remarks
				Whilst ordinarily lights are sorted per rendered object 
				(@see MovableObject::queryLights), texture shadows adds another issue
				in that, given there is a finite number of shadow textures, we must
				choose which lights to render texture shadows from based on the entire
				frustum. These lights should always be listed first in every objects
				own list, followed by any other lights which will not cast texture 
				shadows (either because they have shadow casting off, or there aren't
				enough shadow textures to service them).
			@par
				This hook allows you to override the detailed ordering of the lights
				per frustum. The default ordering is shadow casters first (which you 
				must also respect if you override this method), and ordered
				by distance from the camera within those 2 groups. Obviously the closest
				lights with shadow casting enabled will be listed first. Only lights 
				within the range of the frustum will be in the list.
			@param lightList The list of lights within range of the frustum which you
				may sort.
			@return true if you sorted the list, false otherwise.
			*/
			virtual bool sortLightsAffectingFrustum(LightList& lightList)
                        { (void)lightList; return false; }

			/** Event notifying the listener of the SceneManager's destruction. */
			virtual void sceneManagerDestroyed(SceneManager* source)
                        { (void)source; }
		};

		/** Inner helper class to implement the visitor pattern for rendering objects
			in a queue. 
		*/
		class _OgreExport SceneMgrQueuedRenderableVisitor : public QueuedRenderableVisitor
		{
		protected:
			/// Pass that was actually used at the grouping level
			const Pass* mUsedPass;
		public:
			SceneMgrQueuedRenderableVisitor() 
				:transparentShadowCastersMode(false) {}
			~SceneMgrQueuedRenderableVisitor() {}
			void visit(Renderable* r);
			bool visit(const Pass* p);
			void visit(RenderablePass* rp);

			/// Target SM to send renderables to
			SceneManager* targetSceneMgr;
			/// Are we in transparent shadow caster mode?
			bool transparentShadowCastersMode;
			/// Automatic light handling?
			bool autoLights;
			/// Manual light list
			const LightList* manualLightList;
			/// Scissoring if requested?
			bool scissoring;

		};
		/// Allow visitor helper to access protected methods
		friend class SceneMgrQueuedRenderableVisitor;

    protected:

        /// Subclasses can override this to ensure their specialised SceneNode is used.
        virtual SceneNode* createSceneNodeImpl(void);
        /// Subclasses can override this to ensure their specialised SceneNode is used.
        virtual SceneNode* createSceneNodeImpl(const String& name);

		/// Instance name
		String mName;

        /// Queue of objects for rendering
        RenderQueue* mRenderQueue;
		bool mLastRenderQueueInvocationCustom;

        /// Current ambient light, cached for RenderSystem
        ColourValue mAmbientLight;

        /// The rendering system to send the scene to
        RenderSystem *mDestRenderSystem;

        typedef map<String, Camera* >::type CameraList;

        /** Central list of cameras - for easy memory management and lookup.
        */
        CameraList mCameras;

		typedef map<String, StaticGeometry* >::type StaticGeometryList;
		StaticGeometryList mStaticGeometryList;
		typedef map<String, InstancedGeometry* >::type InstancedGeometryList;
		InstancedGeometryList mInstancedGeometryList;

		typedef map<String, InstanceManager*>::type InstanceManagerMap;
		InstanceManagerMap	mInstanceManagerMap;

        typedef map<String, SceneNode*>::type SceneNodeList;

        /** Central list of SceneNodes - for easy memory management.
            @note
                Note that this list is used only for memory management; the structure of the scene
                is held using the hierarchy of SceneNodes starting with the root node. However you
                can look up nodes this way.
        */
        SceneNodeList mSceneNodes;

        /// Camera in progress
        Camera* mCameraInProgress;
        /// Current Viewport
        Viewport* mCurrentViewport;

        /// Root scene node
        SceneNode* mSceneRoot;

        /// Autotracking scene nodes
        typedef set<SceneNode*>::type AutoTrackingSceneNodes;
        AutoTrackingSceneNodes mAutoTrackingSceneNodes;

        // Sky params
        // Sky plane
        Entity* mSkyPlaneEntity;
        Entity* mSkyDomeEntity[5];
        ManualObject* mSkyBoxObj;

        SceneNode* mSkyPlaneNode;
        SceneNode* mSkyDomeNode;
        SceneNode* mSkyBoxNode;

        // Sky plane
        bool mSkyPlaneEnabled;
        uint8 mSkyPlaneRenderQueue;
        Plane mSkyPlane;
        SkyPlaneGenParameters mSkyPlaneGenParameters;
        // Sky box
        bool mSkyBoxEnabled;
        uint8 mSkyBoxRenderQueue;
        Quaternion mSkyBoxOrientation;
        SkyBoxGenParameters mSkyBoxGenParameters;
        // Sky dome
        bool mSkyDomeEnabled;
        uint8 mSkyDomeRenderQueue;
        Quaternion mSkyDomeOrientation;
        SkyDomeGenParameters mSkyDomeGenParameters;

        // Fog
        FogMode mFogMode;
        ColourValue mFogColour;
        Real mFogStart;
        Real mFogEnd;
        Real mFogDensity;

		typedef set<uint8>::type SpecialCaseRenderQueueList;
		SpecialCaseRenderQueueList mSpecialCaseQueueList;
		SpecialCaseRenderQueueMode mSpecialCaseQueueMode;
		uint8 mWorldGeometryRenderQueue;
		
		unsigned long mLastFrameNumber;
		Matrix4 mTempXform[256];
		bool mResetIdentityView;
		bool mResetIdentityProj;

		bool mNormaliseNormalsOnScale;
		bool mFlipCullingOnNegativeScale;
		CullingMode mPassCullingMode;

	protected:

		/** Visible objects bounding box list.
			@remarks
				Holds an ABB for each camera that contains the physical extends of the visible
				scene elements by each camera. The map is crucial for shadow algorithms which
				have a focus step to limit the shadow sample distribution to only valid visible
				scene elements.
		*/
		typedef map< const Camera*, VisibleObjectsBoundsInfo>::type CamVisibleObjectsMap;
		CamVisibleObjectsMap mCamVisibleObjectsMap; 

		/** ShadowCamera to light mapping */
		typedef map< const Camera*, const Light* >::type ShadowCamLightMapping;
		ShadowCamLightMapping mShadowCamLightMapping;

		/// Array defining shadow count per light type.
		size_t mShadowTextureCountPerType[3];

		/// Array defining shadow texture index in light list.
		vector<size_t>::type mShadowTextureIndexLightList;

        /// Cached light information, used to tracking light's changes
        struct _OgreExport LightInfo
        {
            Light* light;       /// Just a pointer for comparison, the light might destroyed for some reason
            int type;           /// Use int instead of Light::LightTypes to avoid header file dependence
            Real range;         /// Sets to zero if directional light
            Vector3 position;   /// Sets to zero if directional light
			uint32 lightMask;   /// Light mask

            bool operator== (const LightInfo& rhs) const
            {
                return light == rhs.light && type == rhs.type &&
                    range == rhs.range && position == rhs.position && lightMask == rhs.lightMask;
            }

            bool operator!= (const LightInfo& rhs) const
            {
                return !(*this == rhs);
            }
        };

        typedef vector<LightInfo>::type LightInfoList;

        LightList mLightsAffectingFrustum;
        LightInfoList mCachedLightInfos;
		LightInfoList mTestLightInfos; // potentially new list
        ulong mLightsDirtyCounter;
		LightList mShadowTextureCurrentCasterLightList;

		typedef map<String, MovableObject*>::type MovableObjectMap;
		/// Simple structure to hold MovableObject map and a mutex to go with it.
		struct MovableObjectCollection
		{
                    MovableObjectMap map;
                    OGRE_MUTEX(mutex);
		};
		typedef map<String, MovableObjectCollection*>::type MovableObjectCollectionMap;
		MovableObjectCollectionMap mMovableObjectCollectionMap;
		NameGenerator mMovableNameGenerator;
		/** Gets the movable object collection for the given type name.
		@remarks
			This method create new collection if the collection does not exist.
		*/
		MovableObjectCollection* getMovableObjectCollection(const String& typeName);
		/** Gets the movable object collection for the given type name.
		@remarks
			This method throw exception if the collection does not exist.
		*/
		const MovableObjectCollection* getMovableObjectCollection(const String& typeName) const;
		/// Mutex over the collection of MovableObject types
		OGRE_MUTEX(mMovableObjectCollectionMapMutex);

        /** Internal method for initialising the render queue.
        @remarks
            Subclasses can use this to install their own RenderQueue implementation.
        */
        virtual void initRenderQueue(void);
        /// A pass designed to let us render shadow colour on white for texture shadows
        Pass* mShadowCasterPlainBlackPass;
        /// A pass designed to let us render shadow receivers for texture shadows
        Pass* mShadowReceiverPass;
        /** Internal method for turning a regular pass into a shadow caster pass.
        @remarks
            This is only used for texture shadows, basically we're trying to
            ensure that objects are rendered solid black.
            This method will usually return the standard solid black pass for
            all fixed function passes, but will merge in a vertex program
            and fudge the AutoParamDataSource to set black lighting for
            passes with vertex programs. 
        */
        virtual const Pass* deriveShadowCasterPass(const Pass* pass);
        /** Internal method for turning a regular pass into a shadow receiver pass.
        @remarks
        This is only used for texture shadows, basically we're trying to
        ensure that objects are rendered with a projective texture.
        This method will usually return a standard single-texture pass for
        all fixed function passes, but will merge in a vertex program
        for passes with vertex programs. 
        */
        virtual const Pass* deriveShadowReceiverPass(const Pass* pass);
    
        /** Internal method to validate whether a Pass should be allowed to render.
        @remarks
            Called just before a pass is about to be used for rendering a group to
            allow the SceneManager to omit it if required. A return value of false
            skips this pass. 
        */
        virtual bool validatePassForRendering(const Pass* pass);

        /** Internal method to validate whether a Renderable should be allowed to render.
        @remarks
        Called just before a pass is about to be used for rendering a Renderable to
        allow the SceneManager to omit it if required. A return value of false
        skips it. 
        */
        virtual bool validateRenderableForRendering(const Pass* pass, const Renderable* rend);

        enum BoxPlane
        {
            BP_FRONT = 0,
            BP_BACK = 1,
            BP_LEFT = 2,
            BP_RIGHT = 3,
            BP_UP = 4,
            BP_DOWN = 5
        };

        /* Internal utility method for creating the planes of a skybox.
        */
        virtual MeshPtr createSkyboxPlane(
            BoxPlane bp,
            Real distance,
            const Quaternion& orientation,
            const String& groupName);

        /* Internal utility method for creating the planes of a skydome.
        */
        virtual MeshPtr createSkydomePlane(
            BoxPlane bp,
            Real curvature, Real tiling, Real distance,
            const Quaternion& orientation,
            int xsegments, int ysegments, int ySegmentsToKeep, 
            const String& groupName);

        /// Flag indicating whether SceneNodes will be rendered as a set of 3 axes
        bool mDisplayNodes;

        /// Storage of animations, lookup by name
        typedef map<String, Animation*>::type AnimationList;
        AnimationList mAnimationsList;
        OGRE_MUTEX(mAnimationsListMutex);
        AnimationStateSet mAnimationStates;


        /** Internal method used by _renderSingleObject to deal with renderables
            which override the camera's own view / projection materices. */
        virtual void useRenderableViewProjMode(const Renderable* pRend, bool fixedFunction);
        
        /** Internal method used by _renderSingleObject to deal with renderables
            which override the camera's own view / projection matrices. */
        virtual void resetViewProjMode(bool fixedFunction);

        typedef vector<RenderQueueListener*>::type RenderQueueListenerList;
        RenderQueueListenerList mRenderQueueListeners;

		typedef vector<RenderObjectListener*>::type RenderObjectListenerList;
		RenderObjectListenerList mRenderObjectListeners;
        typedef vector<Listener*>::type ListenerList;
        ListenerList mListeners;
		/// Internal method for firing the queue start event
		virtual void firePreRenderQueues();
		/// Internal method for firing the queue end event
		virtual void firePostRenderQueues();
        /// Internal method for firing the queue start event, returns true if queue is to be skipped
        virtual bool fireRenderQueueStarted(uint8 id, const String& invocation);
        /// Internal method for firing the queue end event, returns true if queue is to be repeated
        virtual bool fireRenderQueueEnded(uint8 id, const String& invocation);
		/// Internal method for firing when rendering a single object.
		virtual void fireRenderSingleObject(Renderable* rend, const Pass* pass, const AutoParamDataSource* source, 
			const LightList* pLightList, bool suppressRenderStateChanges);

		/// Internal method for firing the texture shadows updated event
        virtual void fireShadowTexturesUpdated(size_t numberOfShadowTextures);
		/// Internal method for firing the pre caster texture shadows event
        virtual void fireShadowTexturesPreCaster(Light* light, Camera* camera, size_t iteration);
		/// Internal method for firing the pre receiver texture shadows event
        virtual void fireShadowTexturesPreReceiver(Light* light, Frustum* f);
		/// Internal method for firing pre update scene graph event
		virtual void firePreUpdateSceneGraph(Camera* camera);
		/// Internal method for firing post update scene graph event
		virtual void firePostUpdateSceneGraph(Camera* camera);
		/// Internal method for firing find visible objects event
		virtual void firePreFindVisibleObjects(Viewport* v);
		/// Internal method for firing find visible objects event
		virtual void firePostFindVisibleObjects(Viewport* v);
		/// Internal method for firing destruction event
		virtual void fireSceneManagerDestroyed();
        /** Internal method for setting the destination viewport for the next render. */
        virtual void setViewport(Viewport *vp);

		/** Flag that indicates if all of the scene node's bounding boxes should be shown as a wireframe. */
		bool mShowBoundingBoxes;      

		/** Internal method for rendering all objects using the default queue sequence. */
		virtual void renderVisibleObjectsDefaultSequence(void);
		/** Internal method for rendering all objects using a custom queue sequence. */
		virtual void renderVisibleObjectsCustomSequence(RenderQueueInvocationSequence* s);
		/** Internal method for preparing the render queue for use with each render. */
		virtual void prepareRenderQueue(void);


        /** Internal utility method for rendering a single object. 
        @remarks
            Assumes that the pass has already been set up.
        @param rend The renderable to issue to the pipeline
        @param pass The pass which is being used
		@param lightScissoringClipping If true, passes that have the getLightScissorEnabled
			and/or getLightClipPlanesEnabled flags will cause calculation and setting of 
			scissor rectangle and user clip planes. 
        @param doLightIteration If true, this method will issue the renderable to
            the pipeline possibly multiple times, if the pass indicates it should be
            done once per light
        @param manualLightList Only applicable if doLightIteration is false, this
            method allows you to pass in a previously determined set of lights
            which will be used for a single render of this object.
        */
        virtual void renderSingleObject(Renderable* rend, const Pass* pass, 
			bool lightScissoringClipping, bool doLightIteration, const LightList* manualLightList = 0);

		/** Internal method for creating the AutoParamDataSource instance. */
		virtual AutoParamDataSource* createAutoParamDataSource(void) const
		{
			return OGRE_NEW AutoParamDataSource();
		}

        /// Utility class for calculating automatic parameters for gpu programs
        AutoParamDataSource* mAutoParamDataSource;

		CompositorChain* mActiveCompositorChain;
		bool mLateMaterialResolving;

        ShadowTechnique mShadowTechnique;
        bool mDebugShadows;
        ColourValue mShadowColour;
        Pass* mShadowDebugPass;
        Pass* mShadowStencilPass;
        Pass* mShadowModulativePass;
		bool mShadowMaterialInitDone;
        HardwareIndexBufferSharedPtr mShadowIndexBuffer;
		size_t mShadowIndexBufferSize;
		size_t mShadowIndexBufferUsedSize;
        Rectangle2D* mFullScreenQuad;
        Real mShadowDirLightExtrudeDist;
        IlluminationRenderStage mIlluminationStage;
		ShadowTextureConfigList mShadowTextureConfigList;
		bool mShadowTextureConfigDirty;
        ShadowTextureList mShadowTextures;
		TexturePtr mNullShadowTexture;
		typedef vector<Camera*>::type ShadowTextureCameraList;
		ShadowTextureCameraList mShadowTextureCameras;
        Texture* mCurrentShadowTexture;
		bool mShadowUseInfiniteFarPlane;
		bool mShadowCasterRenderBackFaces;
		bool mShadowAdditiveLightClip;
		/// Struct for caching light clipping information for re-use in a frame
		struct LightClippingInfo
		{
			RealRect scissorRect;
			PlaneList clipPlanes;
			bool scissorValid;
			unsigned long clipPlanesValid;
			LightClippingInfo() : scissorValid(false), clipPlanesValid(false) {}

		};
		typedef map<Light*, LightClippingInfo>::type LightClippingInfoMap;
		LightClippingInfoMap mLightClippingInfoMap;
		unsigned long mLightClippingInfoMapFrameNumber;

		/// default shadow camera setup
		ShadowCameraSetupPtr mDefaultShadowCameraSetup;

		/** Default sorting routine which sorts lights which cast shadows
			to the front of a list, sub-sorting by distance.
		@remarks
			Since shadow textures are generated from lights based on the
			frustum rather than individual objects, a shadow and camera-wise sort is
			required to pick the best lights near the start of the list. Up to 
			the number of shadow textures will be generated from this.
		*/
		struct lightsForShadowTextureLess
		{
			_OgreExport bool operator()(const Light* l1, const Light* l2) const;
		};


        /** Internal method for locating a list of lights which could be affecting the frustum. 
        @remarks
            Custom scene managers are encouraged to override this method to make use of their
            scene partitioning scheme to more efficiently locate lights, and to eliminate lights
            which may be occluded by word geometry.
        */
        virtual void findLightsAffectingFrustum(const Camera* camera);
        /// Internal method for setting up materials for shadows
        virtual void initShadowVolumeMaterials(void);
        /// Internal method for creating shadow textures (texture-based shadows)
        virtual void ensureShadowTexturesCreated();
        /// Internal method for destroying shadow textures (texture-based shadows)
        virtual void destroyShadowTextures(void);

		typedef vector<InstanceManager*>::type		InstanceManagerVec;
		InstanceManagerVec mDirtyInstanceManagers;
		InstanceManagerVec mDirtyInstanceMgrsTmp;

		/** Updates all instance managaers with dirty instance batches. @see _addDirtyInstanceManager */
		void updateDirtyInstanceManagers(void);
        
	public:
		/// Method for preparing shadow textures ready for use in a regular render
		/// Do not call manually unless before frame start or rendering is paused
		/// If lightList is not supplied, will render all lights in frustum
        virtual void prepareShadowTextures(Camera* cam, Viewport* vp, const LightList* lightList = 0);

		//A render context, used to store internal data for pausing/resuming rendering
		struct RenderContext
		{
			RenderQueue* renderQueue;	
			Viewport* viewport;
			Camera* camera;
			CompositorChain* activeChain;
			RenderSystem::RenderSystemContext* rsContext;
		};

		/** Pause rendering of the frame. This has to be called when inside a renderScene call
			(Usually using a listener of some sort)
		*/
		virtual RenderContext* _pauseRendering();
		/** Resume rendering of the frame. This has to be called after a _pauseRendering call
		@param context The rendring context, as returned by the _pauseRendering call
		*/
		virtual void _resumeRendering(RenderContext* context);

	protected:
        /** Internal method for rendering all the objects for a given light into the 
            stencil buffer.
        @param light The light source
        @param cam The camera being viewed from
		@param calcScissor Whether the method should set up any scissor state, or
			false if that's already been done
        */
        virtual void renderShadowVolumesToStencil(const Light* light, const Camera* cam, 
			bool calcScissor);
        /** Internal utility method for setting stencil state for rendering shadow volumes. 
        @param secondpass Is this the second pass?
        @param zfail Should we be using the zfail method?
        @param twosided Should we use a 2-sided stencil?
        */
        virtual void setShadowVolumeStencilState(bool secondpass, bool zfail, bool twosided);
        /** Render a set of shadow renderables. */
        void renderShadowVolumeObjects(ShadowCaster::ShadowRenderableListIterator iShadowRenderables,
            Pass* pass, const LightList *manualLightList, unsigned long flags,
            bool secondpass, bool zfail, bool twosided);
        typedef vector<ShadowCaster*>::type ShadowCasterList;
        ShadowCasterList mShadowCasterList;
        SphereSceneQuery* mShadowCasterSphereQuery;
        AxisAlignedBoxSceneQuery* mShadowCasterAABBQuery;
        Real mDefaultShadowFarDist;
        Real mDefaultShadowFarDistSquared;
        Real mShadowTextureOffset; /// Proportion of texture offset in view direction e.g. 0.4
        Real mShadowTextureFadeStart; /// As a proportion e.g. 0.6
        Real mShadowTextureFadeEnd; /// As a proportion e.g. 0.9
		bool mShadowTextureSelfShadow;
		Pass* mShadowTextureCustomCasterPass;
		Pass* mShadowTextureCustomReceiverPass;
		String mShadowTextureCustomCasterVertexProgram;
		String mShadowTextureCustomCasterFragmentProgram;
		String mShadowTextureCustomReceiverVertexProgram;
		String mShadowTextureCustomReceiverFragmentProgram;
		GpuProgramParametersSharedPtr mShadowTextureCustomCasterVPParams;
		GpuProgramParametersSharedPtr mShadowTextureCustomCasterFPParams;
		GpuProgramParametersSharedPtr mShadowTextureCustomReceiverVPParams;
		GpuProgramParametersSharedPtr mShadowTextureCustomReceiverFPParams;

		/// Visibility mask used to show / hide objects
		uint32 mVisibilityMask;
		bool mFindVisibleObjects;

		/// Suppress render state changes?
		bool mSuppressRenderStateChanges;
		/// Suppress shadows?
		bool mSuppressShadows;


        GpuProgramParametersSharedPtr mInfiniteExtrusionParams;
        GpuProgramParametersSharedPtr mFiniteExtrusionParams;

        /// Inner class to use as callback for shadow caster scene query
        class _OgreExport ShadowCasterSceneQueryListener : public SceneQueryListener, public SceneMgtAlloc
        {
        protected:
			SceneManager* mSceneMgr;
            ShadowCasterList* mCasterList;
            bool mIsLightInFrustum;
            const PlaneBoundedVolumeList* mLightClipVolumeList;
            const Camera* mCamera;
            const Light* mLight;
            Real mFarDistSquared;
        public:
            ShadowCasterSceneQueryListener(SceneManager* sm) : mSceneMgr(sm),
				mCasterList(0), mIsLightInFrustum(false), mLightClipVolumeList(0), 
                mCamera(0) {}
            // Prepare the listener for use with a set of parameters  
            void prepare(bool lightInFrustum, 
                const PlaneBoundedVolumeList* lightClipVolumes, 
                const Light* light, const Camera* cam, ShadowCasterList* casterList, 
                Real farDistSquared) 
            {
                mCasterList = casterList;
                mIsLightInFrustum = lightInFrustum;
                mLightClipVolumeList = lightClipVolumes;
                mCamera = cam;
                mLight = light;
                mFarDistSquared = farDistSquared;
            }
            bool queryResult(MovableObject* object);
            bool queryResult(SceneQuery::WorldFragment* fragment);
        };

        ShadowCasterSceneQueryListener* mShadowCasterQueryListener;

        /** Internal method for locating a list of shadow casters which 
            could be affecting the frustum for a given light. 
        @remarks
            Custom scene managers are encouraged to override this method to add optimisations, 
            and to add their own custom shadow casters (perhaps for world geometry)
        */
        virtual const ShadowCasterList& findShadowCastersForLight(const Light* light, 
            const Camera* camera);
        /** Render a group in the ordinary way */
		virtual void renderBasicQueueGroupObjects(RenderQueueGroup* pGroup, 
			QueuedRenderableCollection::OrganisationMode om);
		/** Render a group with the added complexity of additive stencil shadows. */
		virtual void renderAdditiveStencilShadowedQueueGroupObjects(RenderQueueGroup* group, 
			QueuedRenderableCollection::OrganisationMode om);
		/** Render a group with the added complexity of modulative stencil shadows. */
		virtual void renderModulativeStencilShadowedQueueGroupObjects(RenderQueueGroup* group, 
			QueuedRenderableCollection::OrganisationMode om);
        /** Render a group rendering only shadow casters. */
		virtual void renderTextureShadowCasterQueueGroupObjects(RenderQueueGroup* group, 
			QueuedRenderableCollection::OrganisationMode om);
        /** Render a group rendering only shadow receivers. */
		virtual void renderTextureShadowReceiverQueueGroupObjects(RenderQueueGroup* group, 
			QueuedRenderableCollection::OrganisationMode om);
        /** Render a group with the added complexity of modulative texture shadows. */
		virtual void renderModulativeTextureShadowedQueueGroupObjects(RenderQueueGroup* group, 
			QueuedRenderableCollection::OrganisationMode om);

		/** Render a group with additive texture shadows. */
		virtual void renderAdditiveTextureShadowedQueueGroupObjects(RenderQueueGroup* group, 
			QueuedRenderableCollection::OrganisationMode om);
		/** Render a set of objects, see renderSingleObject for param definitions */
		virtual void renderObjects(const QueuedRenderableCollection& objs, 
			QueuedRenderableCollection::OrganisationMode om, bool lightScissoringClipping,
            bool doLightIteration, const LightList* manualLightList = 0);
		/** Render those objects in the transparent pass list which have shadow casting forced on
		@remarks
			This function is intended to be used to render the shadows of transparent objects which have
			transparency_casts_shadows set to 'on' in their material
		*/
		virtual void renderTransparentShadowCasterObjects(const QueuedRenderableCollection& objs, 
			QueuedRenderableCollection::OrganisationMode om, bool lightScissoringClipping,
			bool doLightIteration, const LightList* manualLightList = 0);

		/** Update the state of the global render queue splitting based on a shadow
		option change. */
		virtual void updateRenderQueueSplitOptions(void);
		/** Update the state of the render queue group splitting based on a shadow
		option change. */
		virtual void updateRenderQueueGroupSplitOptions(RenderQueueGroup* group, 
			bool suppressShadows, bool suppressRenderState);

		/// Set up a scissor rectangle from a group of lights
		virtual ClipResult buildAndSetScissor(const LightList& ll, const Camera* cam);
		/// Update a scissor rectangle from a single light
		virtual void buildScissor(const Light* l, const Camera* cam, RealRect& rect);
		virtual void resetScissor();
		/// Build a set of user clip planes from a single non-directional light
		virtual ClipResult buildAndSetLightClip(const LightList& ll);
		virtual void buildLightClip(const Light* l, PlaneList& planes);
		virtual void resetLightClip();
		virtual void checkCachedLightClippingInfo();

		/// The active renderable visitor class - subclasses could override this
		SceneMgrQueuedRenderableVisitor* mActiveQueuedRenderableVisitor;
		/// Storage for default renderable visitor
		SceneMgrQueuedRenderableVisitor mDefaultQueuedRenderableVisitor;

		/// Whether to use camera-relative rendering
		bool mCameraRelativeRendering;
		Matrix4 mCachedViewMatrix;
		Vector3 mCameraRelativePosition;

		/// Last light sets
		uint32 mLastLightHash;
		unsigned short mLastLightLimit;
		uint32 mLastLightHashGpuProgram;
		/// Gpu params that need rebinding (mask of GpuParamVariability)
		uint16 mGpuParamsDirty;

		virtual void useLights(const LightList& lights, unsigned short limit);
		virtual void setViewMatrix(const Matrix4& m);
		virtual void useLightsGpuProgram(const Pass* pass, const LightList* lights);
		virtual void bindGpuProgram(GpuProgram* prog);
		virtual void updateGpuProgramParameters(const Pass* p);








        /// Set of registered LOD listeners
        typedef set<LodListener*>::type LodListenerSet;
        LodListenerSet mLodListeners;

        /// List of movable object LOD changed events
		typedef vector<MovableObjectLodChangedEvent>::type MovableObjectLodChangedEventList;
        MovableObjectLodChangedEventList mMovableObjectLodChangedEvents;

        /// List of entity mesh LOD changed events
        typedef vector<EntityMeshLodChangedEvent>::type EntityMeshLodChangedEventList;
        EntityMeshLodChangedEventList mEntityMeshLodChangedEvents;

        /// List of entity material LOD changed events
        typedef vector<EntityMaterialLodChangedEvent>::type EntityMaterialLodChangedEventList;
        EntityMaterialLodChangedEventList mEntityMaterialLodChangedEvents;

    public:
        /** Constructor.
        */
        SceneManager(const String& instanceName);

        /** Default destructor.
        */
        virtual ~SceneManager();


		/** Mutex to protect the scene graph from simultaneous access from
			multiple threads.
		@remarks
			If you are updating the scene in a separate thread from the rendering
			thread, then you should lock this mutex before making any changes to 
			the scene graph - that means creating, modifying or deleting a
			scene node, or attaching / detaching objects. It is <b>your</b> 
			responsibility to take out this lock, the detail methods on the nodes
			will not do it for you (for the reasons discussed below).
		@par
			Note that locking this mutex will prevent the scene being rendered until 
			it is unlocked again. Therefore you should do this sparingly. Try
			to create any objects you need separately and fully prepare them
			before doing all your scene graph work in one go, thus keeping this
			lock for the shortest time possible.
		@note
			A single global lock is used rather than a per-node lock since 
			it keeps the number of locks required during rendering down to a 
			minimum. Obtaining a lock, even if there is no contention, is not free
			so for performance it is good to do it as little as possible. 
			Since modifying the scene in a separate thread is a fairly
			rare occurrence (relative to rendering), it is better to keep the 
			locking required during rendering lower than to make update locks
			more granular.
		*/
        OGRE_MUTEX(sceneGraphMutex);

		/** Return the instance name of this SceneManager. */
		const String& getName(void) const { return mName; }

		/** Retrieve the type name of this scene manager.
		@remarks
			This method has to be implemented by subclasses. It should
			return the type name of this SceneManager which agrees with 
			the type name of the SceneManagerFactory which created it.
		*/
		virtual const String& getTypeName(void) const = 0;

        /** Creates a camera to be managed by this scene manager.
            @remarks
                This camera must be added to the scene at a later time using
                the attachObject method of the SceneNode class.
            @param
                name Name to give the new camera.
        */
        virtual Camera* createCamera(const String& name);

        /** Retrieves a pointer to the named camera.
		@note Throws an exception if the named instance does not exist
        */
        virtual Camera* getCamera(const String& name) const;

		/** Returns whether a camera with the given name exists.
		*/
		virtual bool hasCamera(const String& name) const;

        /** Removes a camera from the scene.
            @remarks
                This method removes a previously added camera from the scene.
                The camera is deleted so the caller must ensure no references
                to it's previous instance (e.g. in a SceneNode) are used.
            @param
                cam Pointer to the camera to remove
        */
        virtual void destroyCamera(Camera *cam);

        /** Removes a camera from the scene.
            @remarks
                This method removes an camera from the scene based on the
                camera's name rather than a pointer.
        */
        virtual void destroyCamera(const String& name);

        /** Removes (and destroys) all cameras from the scene.
            @remarks
                Some cameras are internal created to dealing with texture shadow,
                their aren't supposed to destroy outside. So, while you are using
                texture shadow, don't call this method, or you can set the shadow
                technique other than texture-based, which will destroy all internal
                created shadow cameras and textures.
        */
        virtual void destroyAllCameras(void);

        /** Creates a light for use in the scene.
            @remarks
                Lights can either be in a fixed position and independent of the
                scene graph, or they can be attached to SceneNodes so they derive
                their position from the parent node. Either way, they are created
                using this method so that the SceneManager manages their
                existence.
            @param
                name The name of the new light, to identify it later.
        */
        virtual Light* createLight(const String& name);

		/** Creates a light with a generated name. */
		virtual Light* createLight();

        /** Returns a pointer to the named Light which has previously been added to the scene.
		@note Throws an exception if the named instance does not exist
        */
        virtual Light* getLight(const String& name) const;

		/** Returns whether a light with the given name exists.
		*/
		virtual bool hasLight(const String& name) const;

		/** Retrieve a set of clipping planes for a given light. 
		*/
		virtual const PlaneList& getLightClippingPlanes(Light* l);

		/** Retrieve a scissor rectangle for a given light and camera. 
		*/
		virtual const RealRect& getLightScissorRect(Light* l, const Camera* cam);

		/** Removes the named light from the scene and destroys it.
            @remarks
                Any pointers held to this light after calling this method will be invalid.
        */
        virtual void destroyLight(const String& name);

        /** Removes the light from the scene and destroys it based on a pointer.
            @remarks
                Any pointers held to this light after calling this method will be invalid.
        */
        virtual void destroyLight(Light* light);
        /** Removes and destroys all lights in the scene.
        */
        virtual void destroyAllLights(void);

        /** Advance method to increase the lights dirty counter due lights changed.
        @remarks
            Scene manager tracking lights that affecting the frustum, if changes
            detected (the changes includes light list itself and the light's position
            and attenuation range), then increase the lights dirty counter.
        @par
            For some reason, you can call this method to force whole scene objects
            re-populate their light list. But near in mind, call to this method
            will harm performance, so should avoid if possible.
        */
        virtual void _notifyLightsDirty(void);

        /** Advance method to gets the lights dirty counter.
        @remarks
            Scene manager tracking lights that affecting the frustum, if changes
            detected (the changes includes light list itself and the light's position
            and attenuation range), then increase the lights dirty counter.
        @par
            When implementing customise lights finding algorithm relied on either
            SceneManager::_getLightsAffectingFrustum or SceneManager::_populateLightList,
            might check this value for sure that the light list are really need to
            re-populate, otherwise, returns cached light list (if exists) for better
            performance.
        */
        ulong _getLightsDirtyCounter(void) const { return mLightsDirtyCounter; }

        /** Get the list of lights which could be affecting the frustum.
        @remarks
            Note that default implementation of this method returns a cached light list,
            which is populated when rendering the scene. So by default the list of lights 
			is only available during scene rendering.
        */
        virtual const LightList& _getLightsAffectingFrustum(void) const;

        /** Populate a light list with an ordered set of the lights which are closest
        to the position specified.
        @remarks
            Note that since directional lights have no position, they are always considered
            closer than any point lights and as such will always take precedence. 
        @par
            Subclasses of the default SceneManager may wish to take into account other issues
            such as possible visibility of the light if that information is included in their
            data structures. This basic scenemanager simply orders by distance, eliminating 
            those lights which are out of range or could not be affecting the frustum (i.e.
            only the lights returned by SceneManager::_getLightsAffectingFrustum are take into
            account).
        @par
            The number of items in the list max exceed the maximum number of lights supported
            by the renderer, but the extraneous ones will never be used. In fact the limit will
            be imposed by Pass::getMaxSimultaneousLights.
        @param position The position at which to evaluate the list of lights
        @param radius The bounding radius to test
        @param destList List to be populated with ordered set of lights; will be cleared by 
            this method before population.
		@param lightMask The mask with which to include / exclude lights
        */
        virtual void _populateLightList(const Vector3& position, Real radius, LightList& destList, uint32 lightMask = 0xFFFFFFFF);

		/** Populates a light list with an ordered set of the lights which are closest
        to the position of the SceneNode given.
        @remarks
            Note that since directional lights have no position, they are always considered
            closer than any point lights and as such will always take precedence. 
			This overloaded version will take the SceneNode's position and use the second method
			to populate the list.
        @par
            Subclasses of the default SceneManager may wish to take into account other issues
            such as possible visibility of the light if that information is included in their
            data structures. This basic scenemanager simply orders by distance, eliminating 
            those lights which are out of range or could not be affecting the frustum (i.e.
            only the lights returned by SceneManager::_getLightsAffectingFrustum are take into
            account). 
		@par   
			Also note that subclasses of the SceneNode might be used here to provide cached
			scene related data, accelerating the list population (for example light lists for
			SceneNodes could be cached inside subclassed SceneNode objects).
        @par
            The number of items in the list may exceed the maximum number of lights supported
            by the renderer, but the extraneous ones will never be used. In fact the limit will
            be imposed by Pass::getMaxSimultaneousLights.
        @param sn The SceneNode for which to evaluate the list of lights
        @param radius The bounding radius to test
        @param destList List to be populated with ordered set of lights; will be cleared by 
            this method before population.
		@param lightMask The mask with which to include / exclude lights
        */
        virtual void _populateLightList(const SceneNode* sn, Real radius, LightList& destList, uint32 lightMask = 0xFFFFFFFF);

        /** Creates an instance of a SceneNode.
            @remarks
                Note that this does not add the SceneNode to the scene hierarchy.
                This method is for convenience, since it allows an instance to
                be created for which the SceneManager is responsible for
                allocating and releasing memory, which is convenient in complex
                scenes.
            @par
                To include the returned SceneNode in the scene, use the addChild
                method of the SceneNode which is to be it's parent.
            @par
                Note that this method takes no parameters, and the node created is unnamed (it is
                actually given a generated name, which you can retrieve if you want).
                If you wish to create a node with a specific name, call the alternative method
                which takes a name parameter.
        */
        virtual SceneNode* createSceneNode(void);

        /** Creates an instance of a SceneNode with a given name.
            @remarks
                Note that this does not add the SceneNode to the scene hierarchy.
                This method is for convenience, since it allows an instance to
                be created for which the SceneManager is responsible for
                allocating and releasing memory, which is convenient in complex
                scenes.
            @par
                To include the returned SceneNode in the scene, use the addChild
                method of the SceneNode which is to be it's parent.
            @par
                Note that this method takes a name parameter, which makes the node easier to
                retrieve directly again later.
        */
        virtual SceneNode* createSceneNode(const String& name);

        /** Destroys a SceneNode with a given name.
        @remarks
            This allows you to physically delete an individual SceneNode if you want to.
            Note that this is not normally recommended, it's better to allow SceneManager
            to delete the nodes when the scene is cleared.
        */
        virtual void destroySceneNode(const String& name);

        /** Destroys a SceneNode.
        @remarks
            This allows you to physically delete an individual SceneNode if you want to.
            Note that this is not normally recommended, it's better to allow SceneManager
            to delete the nodes when the scene is cleared.
        */
        virtual void destroySceneNode(SceneNode* sn);
        /** Gets the SceneNode at the root of the scene hierarchy.
            @remarks
                The entire scene is held as a hierarchy of nodes, which
                allows things like relative transforms, general changes in
                rendering state etc (See the SceneNode class for more info).
                In this basic SceneManager class, the application using
                Ogre is free to structure this hierarchy however it likes,
                since it has no real significance apart from making transforms
                relative to each node (more specialised subclasses will
                provide utility methods for building specific node structures
                e.g. loading a BSP tree).
            @par
                However, in all cases there is only ever one root node of
                the hierarchy, and this method returns a pointer to it.
        */
        virtual SceneNode* getRootSceneNode(void);

        /** Retrieves a named SceneNode from the scene graph.
        @remarks
            If you chose to name a SceneNode as you created it, or if you
            happened to make a note of the generated name, you can look it
            up wherever it is in the scene graph using this method.
			@note Throws an exception if the named instance does not exist
        */
        virtual SceneNode* getSceneNode(const String& name) const;

		/** Returns whether a scene node with the given name exists.
		*/
		virtual bool hasSceneNode(const String& name) const;


        /** Create an Entity (instance of a discrete mesh).
            @param
                entityName The name to be given to the entity (must be unique).
            @param
                meshName The name of the Mesh it is to be based on (e.g. 'knot.oof'). The
                mesh will be loaded if it is not already.
        */
        virtual Entity* createEntity(const String& entityName, const String& meshName, const String& groupName = ResourceGroupManager::AUTODETECT_RESOURCE_GROUP_NAME );

        /** Create an Entity (instance of a discrete mesh).
            @param
                entityName The name to be given to the entity (must be unique).
            @param
                pMesh The pointer to the Mesh it is to be based on.
        */
        virtual Entity* createEntity(const String& entityName, const MeshPtr& pMesh );

        /** Create an Entity (instance of a discrete mesh) with an autogenerated name.
            @param
                meshName The name of the Mesh it is to be based on (e.g. 'knot.oof'). The
                mesh will be loaded if it is not already.
        */
        virtual Entity* createEntity(const String& meshName);

        /** Create an Entity (instance of a discrete mesh) with an autogenerated name.
            @param
                pMesh The pointer to the Mesh it is to be based on.
        */
        virtual Entity* createEntity(const MeshPtr& pMesh);

        /** Prefab shapes available without loading a model.
            @note
                Minimal implementation at present.
            @todo
                Add more prefabs (teapots, teapots!!!)
        */
        enum PrefabType {
            PT_PLANE,
			PT_CUBE,
			PT_SPHERE
        };

        /** Create an Entity (instance of a discrete mesh) from a range of prefab shapes.
            @param
                entityName The name to be given to the entity (must be unique).
            @param
                ptype The prefab type.
        */
        virtual Entity* createEntity(const String& entityName, PrefabType ptype);

        /** Create an Entity (instance of a discrete mesh) from a range of prefab shapes, generating the name.
            @param ptype The prefab type.
        */
        virtual Entity* createEntity(PrefabType ptype);
        /** Retrieves a pointer to the named Entity. 
		@note Throws an exception if the named instance does not exist
		*/
        virtual Entity* getEntity(const String& name) const;
		/** Returns whether an entity with the given name exists.
		*/
		virtual bool hasEntity(const String& name) const;

        /** Removes & destroys an Entity from the SceneManager.
            @warning
                Must only be done if the Entity is not attached
                to a SceneNode. It may be safer to wait to clear the whole
                scene if you are unsure use clearScene.
            @see
                SceneManager::clearScene
        */
        virtual void destroyEntity(Entity* ent);

        /** Removes & destroys an Entity from the SceneManager by name.
            @warning
                Must only be done if the Entity is not attached
                to a SceneNode. It may be safer to wait to clear the whole
                scene if you are unsure use clearScene.
            @see
                SceneManager::clearScene
        */
        virtual void destroyEntity(const String& name);

        /** Removes & destroys all Entities.
            @warning
                Again, use caution since no Entity must be referred to
                elsewhere e.g. attached to a SceneNode otherwise a crash
                is likely. Use clearScene if you are unsure (it clears SceneNode
                entries too.)
            @see
                SceneManager::clearScene
        */
        virtual void destroyAllEntities(void);

        /** Create a ManualObject, an object which you populate with geometry
			manually through a GL immediate-mode style interface.
        @param
            name The name to be given to the object (must be unique).
        */
        virtual ManualObject* createManualObject(const String& name);
		/** Create a ManualObject, an object which you populate with geometry
		manually through a GL immediate-mode style interface, generating the name.
		*/
		virtual ManualObject* createManualObject();
        /** Retrieves a pointer to the named ManualObject. 
		@note Throws an exception if the named instance does not exist
		*/
        virtual ManualObject* getManualObject(const String& name) const;
		/** Returns whether a manual object with the given name exists.
		*/
		virtual bool hasManualObject(const String& name) const;

        /** Removes & destroys a ManualObject from the SceneManager.
        */
        virtual void destroyManualObject(ManualObject* obj);
		/** Removes & destroys a ManualObject from the SceneManager.
		*/
		virtual void destroyManualObject(const String& name);
		/** Removes & destroys all ManualObjects from the SceneManager.
		*/
		virtual void destroyAllManualObjects(void);
        /** Create a BillboardChain, an object which you can use to render
            a linked chain of billboards.
        @param
            name The name to be given to the object (must be unique).
        */
        virtual BillboardChain* createBillboardChain(const String& name);
		/** Create a BillboardChain, an object which you can use to render
		a linked chain of billboards, with a generated name.
		*/
		virtual BillboardChain* createBillboardChain();
        /** Retrieves a pointer to the named BillboardChain. 
		@note Throws an exception if the named instance does not exist
		*/
        virtual BillboardChain* getBillboardChain(const String& name) const;
		/** Returns whether a billboard chain with the given name exists.
		*/
		virtual bool hasBillboardChain(const String& name) const;

        /** Removes & destroys a BillboardChain from the SceneManager.
        */
        virtual void destroyBillboardChain(BillboardChain* obj);
		/** Removes & destroys a BillboardChain from the SceneManager.
		*/
		virtual void destroyBillboardChain(const String& name);
		/** Removes & destroys all BillboardChains from the SceneManager.
		*/
		virtual void destroyAllBillboardChains(void);		
        /** Create a RibbonTrail, an object which you can use to render
            a linked chain of billboards which follows one or more nodes.
        @param
            name The name to be given to the object (must be unique).
        */
        virtual RibbonTrail* createRibbonTrail(const String& name);
		/** Create a RibbonTrail, an object which you can use to render
		a linked chain of billboards which follows one or more nodes, generating the name.
		*/
		virtual RibbonTrail* createRibbonTrail();
        /** Retrieves a pointer to the named RibbonTrail. 
		@note Throws an exception if the named instance does not exist
		*/
        virtual RibbonTrail* getRibbonTrail(const String& name) const;
		/** Returns whether a ribbon trail with the given name exists.
		*/
		virtual bool hasRibbonTrail(const String& name) const;

        /** Removes & destroys a RibbonTrail from the SceneManager.
        */
        virtual void destroyRibbonTrail(RibbonTrail* obj);
		/** Removes & destroys a RibbonTrail from the SceneManager.
		*/
		virtual void destroyRibbonTrail(const String& name);
		/** Removes & destroys all RibbonTrails from the SceneManager.
		*/
		virtual void destroyAllRibbonTrails(void);		

        /** Creates a particle system based on a template.
        @remarks
            This method creates a new ParticleSystem instance based on the named template
			(defined through ParticleSystemManager::createTemplate) and returns a 
            pointer to the caller. The caller should not delete this object, it will be freed at system shutdown, 
            or can be released earlier using the destroyParticleSystem method.
        @par
            Each system created from a template takes the template's settings at the time of creation, 
            but is completely separate from the template from there on. 
        @par
            Creating a particle system does not make it a part of the scene. As with other MovableObject
            subclasses, a ParticleSystem is not rendered until it is attached to a SceneNode. 
        @par
            This is probably the more useful particle system creation method since it does not require manual
            setup of the system. Note that the initial quota is based on the template but may be changed later.
        @param 
            name The name to give the new particle system instance.
        @param 
            templateName The name of the template to base the new instance on.
        */
        virtual ParticleSystem* createParticleSystem(const String& name,
			const String& templateName);
        /** Create a blank particle system.
        @remarks
            This method creates a new, blank ParticleSystem instance and returns a pointer to it.
            The caller should not delete this object, it will be freed at system shutdown, or can
            be released earlier using the destroyParticleSystem method.
        @par
            The instance returned from this method won't actually do anything because on creation a
            particle system has no emitters. The caller should manipulate the instance through it's 
            ParticleSystem methods to actually create a real particle effect. 
        @par
            Creating a particle system does not make it a part of the scene. As with other MovableObject
            subclasses, a ParticleSystem is not rendered until it is attached to a SceneNode. 
        @param
            name The name to give the ParticleSystem.
        @param 
            quota The maximum number of particles to allow in this system. 
        @param
            resourceGroup The resource group which will be used to load dependent resources
        */
        virtual ParticleSystem* createParticleSystem(const String& name,
			size_t quota = 500, 
            const String& resourceGroup = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

        /** Create a blank particle system with a generated name.
        @remarks
            This method creates a new, blank ParticleSystem instance and returns a pointer to it.
            The caller should not delete this object, it will be freed at system shutdown, or can
            be released earlier using the destroyParticleSystem method.
        @par
            The instance returned from this method won't actually do anything because on creation a
            particle system has no emitters. The caller should manipulate the instance through it's 
            ParticleSystem methods to actually create a real particle effect. 
        @par
            Creating a particle system does not make it a part of the scene. As with other MovableObject
            subclasses, a ParticleSystem is not rendered until it is attached to a SceneNode. 
        @param 
            quota The maximum number of particles to allow in this system. 
        @param
            resourceGroup The resource group which will be used to load dependent resources
        */
		virtual ParticleSystem* createParticleSystem(size_t quota = 500, 
			const String& resourceGroup = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
        /** Retrieves a pointer to the named ParticleSystem. 
		@note Throws an exception if the named instance does not exist
		*/
        virtual ParticleSystem* getParticleSystem(const String& name) const;
		/** Returns whether a particle system with the given name exists.
		*/
		virtual bool hasParticleSystem(const String& name) const;

        /** Removes & destroys a ParticleSystem from the SceneManager.
        */
        virtual void destroyParticleSystem(ParticleSystem* obj);
		/** Removes & destroys a ParticleSystem from the SceneManager.
		*/
		virtual void destroyParticleSystem(const String& name);
		/** Removes & destroys all ParticleSystems from the SceneManager.
		*/
		virtual void destroyAllParticleSystems(void);		

		/** Empties the entire scene, inluding all SceneNodes, Entities, Lights, 
            BillboardSets etc. Cameras are not deleted at this stage since
            they are still referenced by viewports, which are not destroyed during
            this process.
        */
        virtual void clearScene(void);

        /** Sets the ambient light level to be used for the scene.
            @remarks
                This sets the colour and intensity of the ambient light in the scene, i.e. the
                light which is 'sourceless' and illuminates all objects equally.
                The colour of an object is affected by a combination of the light in the scene,
                and the amount of light that object reflects (in this case based on the Material::ambient
                property).
            @remarks
                By default the ambient light in the scene is ColourValue::Black, i.e. no ambient light. This
                means that any objects rendered with a Material which has lighting enabled (see Material::setLightingEnabled)
                will not be visible unless you have some dynamic lights in your scene.
        */
        void setAmbientLight(const ColourValue& colour);

        /** Returns the ambient light level to be used for the scene.
        */
        const ColourValue& getAmbientLight(void) const;

        /** Sets the source of the 'world' geometry, i.e. the large, mainly static geometry
            making up the world e.g. rooms, landscape etc.
            This function can be called before setWorldGeometry in a background thread, do to
            some slow tasks (e.g. IO) that do not involve the backend render system.
            @remarks
                Depending on the type of SceneManager (subclasses will be specialised
                for particular world geometry types) you have requested via the Root or
                SceneManagerEnumerator classes, you can pass a filename to this method and it
                will attempt to load the world-level geometry for use. If you try to load
                an inappropriate type of world data an exception will be thrown. The default
                SceneManager cannot handle any sort of world geometry and so will always
                throw an exception. However subclasses like BspSceneManager can load
                particular types of world geometry e.g. "q3dm1.bsp".

        */
        virtual void prepareWorldGeometry(const String& filename);

        /** Sets the source of the 'world' geometry, i.e. the large, mainly 
			static geometry making up the world e.g. rooms, landscape etc.
            This function can be called before setWorldGeometry in a background thread, do to
            some slow tasks (e.g. IO) that do not involve the backend render system.
            @remarks
                Depending on the type of SceneManager (subclasses will be 
				specialised for particular world geometry types) you have 
				requested via the Root or SceneManagerEnumerator classes, you 
				can pass a stream to this method and it will attempt to load 
				the world-level geometry for use. If the manager can only 
				handle one input format the typeName parameter is not required.
				The stream passed will be read (and it's state updated). 
			@param stream Data stream containing data to load
			@param typeName String identifying the type of world geometry
				contained in the stream - not required if this manager only 
				supports one type of world geometry.
        */
		virtual void prepareWorldGeometry(DataStreamPtr& stream, 
			const String& typeName = StringUtil::BLANK);

        /** Sets the source of the 'world' geometry, i.e. the large, mainly static geometry
            making up the world e.g. rooms, landscape etc.
            @remarks
                Depending on the type of SceneManager (subclasses will be specialised
                for particular world geometry types) you have requested via the Root or
                SceneManagerEnumerator classes, you can pass a filename to this method and it
                will attempt to load the world-level geometry for use. If you try to load
                an inappropriate type of world data an exception will be thrown. The default
                SceneManager cannot handle any sort of world geometry and so will always
                throw an exception. However subclasses like BspSceneManager can load
                particular types of world geometry e.g. "q3dm1.bsp".
        */
        virtual void setWorldGeometry(const String& filename);

        /** Sets the source of the 'world' geometry, i.e. the large, mainly 
			static geometry making up the world e.g. rooms, landscape etc.
            @remarks
                Depending on the type of SceneManager (subclasses will be 
				specialised for particular world geometry types) you have 
				requested via the Root or SceneManagerEnumerator classes, you 
				can pass a stream to this method and it will attempt to load 
				the world-level geometry for use. If the manager can only 
				handle one input format the typeName parameter is not required.
				The stream passed will be read (and it's state updated). 
			@param stream Data stream containing data to load
			@param typeName String identifying the type of world geometry
				contained in the stream - not required if this manager only 
				supports one type of world geometry.
        */
		virtual void setWorldGeometry(DataStreamPtr& stream, 
			const String& typeName = StringUtil::BLANK);

        /** Estimate the number of loading stages required to load the named
            world geometry. 
        @remarks
            This method should be overridden by SceneManagers that provide
            custom world geometry that can take some time to load. They should
            return from this method a count of the number of stages of progress
            they can report on whilst loading. During real loading (setWorldGeometry),
            they should call ResourceGroupManager::_notifyWorldGeometryProgress exactly
            that number of times when loading the geometry for real.
        @note 
            The default is to return 0, ie to not report progress. 
        */
        virtual size_t estimateWorldGeometry(const String& filename)
        { (void)filename; return 0; }

        /** Estimate the number of loading stages required to load the named
            world geometry. 
        @remarks
			Operates just like the version of this method which takes a
			filename, but operates on a stream instead. Note that since the
			stream is updated, you'll need to reset the stream or reopen it
			when it comes to loading it for real.
		@param stream Data stream containing data to load
		@param typeName String identifying the type of world geometry
			contained in the stream - not required if this manager only 
			supports one type of world geometry.
		*/		
        virtual size_t estimateWorldGeometry(DataStreamPtr& stream, 
			const String& typeName = StringUtil::BLANK)
        { (void)stream; (void)typeName; return 0; }

        /** Asks the SceneManager to provide a suggested viewpoint from which the scene should be viewed.
            @remarks
                Typically this method returns the origin unless a) world geometry has been loaded using
                SceneManager::setWorldGeometry and b) that world geometry has suggested 'start' points.
                If there is more than one viewpoint which the scene manager can suggest, it will always suggest
                the first one unless the random parameter is true.
            @param
                random If true, and there is more than one possible suggestion, a random one will be used. If false
                the same one will always be suggested.
            @return
                On success, true is returned.
            @par
                On failure, false is returned.
        */
        virtual ViewPoint getSuggestedViewpoint(bool random = false);

        /** Method for setting a specific option of the Scene Manager. These options are usually
            specific for a certain implemntation of the Scene Manager class, and may (and probably
            will) not exist across different implementations.
            @param
                strKey The name of the option to set
            @param
                pValue A pointer to the value - the size should be calculated by the scene manager
                based on the key
            @return
                On success, true is returned.
            @par
                On failure, false is returned.
        */
        virtual bool setOption( const String& strKey, const void* pValue )
        { (void)strKey; (void)pValue; return false; }

        /** Method for getting the value of an implementation-specific Scene Manager option.
            @param
                strKey The name of the option
            @param
                pDestValue A pointer to a memory location where the value will
                be copied. Currently, the memory will be allocated by the
                scene manager, but this may change
            @return
                On success, true is returned and pDestValue points to the value of the given
                option.
            @par
                On failure, false is returned and pDestValue is set to NULL.
        */
        virtual bool getOption( const String& strKey, void* pDestValue )
        { (void)strKey; (void)pDestValue; return false; }

        /** Method for verifying whether the scene manager has an implementation-specific
            option.
            @param
                strKey The name of the option to check for.
            @return
                If the scene manager contains the given option, true is returned.
            @remarks
                If it does not, false is returned.
        */
        virtual bool hasOption( const String& strKey ) const
        { (void)strKey; return false; }

        /** Method for getting all possible values for a specific option. When this list is too large
            (i.e. the option expects, for example, a float), the return value will be true, but the
            list will contain just one element whose size will be set to 0.
            Otherwise, the list will be filled with all the possible values the option can
            accept.
            @param
                strKey The name of the option to get the values for.
            @param
                refValueList A reference to a list that will be filled with the available values.
            @return
                On success (the option exists), true is returned.
            @par
                On failure, false is returned.
        */
        virtual bool getOptionValues( const String& strKey, StringVector& refValueList )
        { (void)strKey; (void)refValueList; return false; }

        /** Method for getting all the implementation-specific options of the scene manager.
            @param
                refKeys A reference to a list that will be filled with all the available options.
            @return
                On success, true is returned. On failure, false is returned.
        */
        virtual bool getOptionKeys( StringVector& refKeys )
        { (void)refKeys; return false; }

        /** Internal method for updating the scene graph ie the tree of SceneNode instances managed by this class.
            @remarks
                This must be done before issuing objects to the rendering pipeline, since derived transformations from
                parent nodes are not updated until required. This SceneManager is a basic implementation which simply
                updates all nodes from the root. This ensures the scene is up to date but requires all the nodes
                to be updated even if they are not visible. Subclasses could trim this such that only potentially visible
                nodes are updated.
        */
        virtual void _updateSceneGraph(Camera* cam);

        /** Internal method which parses the scene to find visible objects to render.
            @remarks
                If you're implementing a custom scene manager, this is the most important method to
                override since it's here you can apply your custom world partitioning scheme. Once you
                have added the appropriate objects to the render queue, you can let the default
                SceneManager objects _renderVisibleObjects handle the actual rendering of the objects
                you pick.
            @par
                Any visible objects will be added to a rendering queue, which is indexed by material in order
                to ensure objects with the same material are rendered together to minimise render state changes.
        */
        virtual void _findVisibleObjects(Camera* cam, VisibleObjectsBoundsInfo* visibleBounds, bool onlyShadowCasters);

        /** Internal method for applying animations to scene nodes.
        @remarks
            Uses the internally stored AnimationState objects to apply animation to SceneNodes.
        */
        virtual void _applySceneAnimations(void);

        /** Sends visible objects found in _findVisibleObjects to the rendering engine.
        */
        virtual void _renderVisibleObjects(void);

        /** Prompts the class to send its contents to the renderer.
            @remarks
                This method prompts the scene manager to send the
                contents of the scene it manages to the rendering
                pipeline, possibly preceded by some sorting, culling
                or other scene management tasks. Note that this method is not normally called
                directly by the user application; it is called automatically
                by the Ogre rendering loop.
            @param camera Pointer to a camera from whose viewpoint the scene is to
                be rendered.
            @param vp The target viewport
            @param includeOverlays Whether or not overlay objects should be rendered
        */
        virtual void _renderScene(Camera* camera, Viewport* vp, bool includeOverlays);

        /** Internal method for queueing the sky objects with the params as 
            previously set through setSkyBox, setSkyPlane and setSkyDome.
        */
        virtual void _queueSkiesForRendering(Camera* cam);



        /** Notifies the scene manager of its destination render system
            @remarks
                Called automatically by RenderSystem::addSceneManager
                this method simply notifies the manager of the render
                system to which its output must be directed.
            @param
                sys Pointer to the RenderSystem subclass to be used as a render target.
        */
        virtual void _setDestinationRenderSystem(RenderSystem* sys);

        /** Enables / disables a 'sky plane' i.e. a plane at constant
            distance from the camera representing the sky.
            @remarks
                You can create sky planes yourself using the standard mesh and
                entity methods, but this creates a plane which the camera can
                never get closer or further away from - it moves with the camera.
                (NB you could create this effect by creating a world plane which
                was attached to the same SceneNode as the Camera too, but this
                would only apply to a single camera whereas this plane applies to
                any camera using this scene manager).
            @note
                To apply scaling, scrolls etc to the sky texture(s) you
                should use the TextureUnitState class methods.
            @param
                enable True to enable the plane, false to disable it
            @param
                plane Details of the plane, i.e. it's normal and it's
                distance from the camera.
            @param
                materialName The name of the material the plane will use
            @param
                scale The scaling applied to the sky plane - higher values
                mean a bigger sky plane - you may want to tweak this
                depending on the size of plane.d and the other
                characteristics of your scene
            @param
                tiling How many times to tile the texture across the sky.
                Applies to all texture layers. If you need finer control use
                the TextureUnitState texture coordinate transformation methods.
            @param
                drawFirst If true, the plane is drawn before all other
                geometry in the scene, without updating the depth buffer.
                This is the safest rendering method since all other objects
                will always appear in front of the sky. However this is not
                the most efficient way if most of the sky is often occluded
                by other objects. If this is the case, you can set this
                parameter to false meaning it draws <em>after</em> all other
                geometry which can be an optimisation - however you must
                ensure that the plane.d value is large enough that no objects
                will 'poke through' the sky plane when it is rendered.
			@param
				bow If zero, the plane will be completely flat (like previous
				versions.  If above zero, the plane will be curved, allowing
				the sky to appear below camera level.  Curved sky planes are 
				simular to skydomes, but are more compatible with fog.
            @param xsegments, ysegments
                Determines the number of segments the plane will have to it. This
                is most important when you are bowing the plane, but may also be useful
                if you need tesselation on the plane to perform per-vertex effects.
            @param groupName
                The name of the resource group to which to assign the plane mesh.
        */

        virtual void setSkyPlane(
            bool enable,
            const Plane& plane, const String& materialName, Real scale = 1000,
            Real tiling = 10, bool drawFirst = true, Real bow = 0, 
            int xsegments = 1, int ysegments = 1, 
            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
        /** Enables / disables a 'sky plane' i.e. a plane at constant
            distance from the camera representing the sky.
            @remarks
                You can create sky planes yourself using the standard mesh and
                entity methods, but this creates a plane which the camera can
                never get closer or further away from - it moves with the camera.
                (NB you could create this effect by creating a world plane which
                was attached to the same SceneNode as the Camera too, but this
                would only apply to a single camera whereas this plane applies to
                any camera using this scene manager).
            @note
                To apply scaling, scrolls etc to the sky texture(s) you
                should use the TextureUnitState class methods.
            @param
                enable True to enable the plane, false to disable it
            @param
                plane Details of the plane, i.e. it's normal and it's
                distance from the camera.
            @param
                materialName The name of the material the plane will use
            @param
                scale The scaling applied to the sky plane - higher values
                mean a bigger sky plane - you may want to tweak this
                depending on the size of plane.d and the other
                characteristics of your scene
            @param
                tiling How many times to tile the texture across the sky.
                Applies to all texture layers. If you need finer control use
                the TextureUnitState texture coordinate transformation methods.
            @param
                renderQueue The render queue to use when rendering this object
			@param
				bow If zero, the plane will be completely flat (like previous
				versions.  If above zero, the plane will be curved, allowing
				the sky to appear below camera level.  Curved sky planes are 
				simular to skydomes, but are more compatible with fog.
            @param xsegments, ysegments
                Determines the number of segments the plane will have to it. This
                is most important when you are bowing the plane, but may also be useful
                if you need tesselation on the plane to perform per-vertex effects.
            @param groupName
                The name of the resource group to which to assign the plane mesh.
        */        
        virtual void _setSkyPlane(
            bool enable,
            const Plane& plane, const String& materialName, Real scale = 1000,
            Real tiling = 10, uint8 renderQueue = RENDER_QUEUE_SKIES_EARLY, Real bow = 0, 
            int xsegments = 1, int ysegments = 1, 
            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

		/** Enables / disables a 'sky plane' */
		virtual void setSkyPlaneEnabled(bool enable) { mSkyPlaneEnabled = enable; }

		/** Return whether a key plane is enabled */
		virtual bool isSkyPlaneEnabled(void) const { return mSkyPlaneEnabled; }

		/** Get the sky plane node, if enabled. */
		virtual SceneNode* getSkyPlaneNode(void) const { return mSkyPlaneNode; }

		/** Get the parameters used to construct the SkyPlane, if any **/
		virtual const SkyPlaneGenParameters& getSkyPlaneGenParameters(void) const { return mSkyPlaneGenParameters; }

        /** Enables / disables a 'sky box' i.e. a 6-sided box at constant
            distance from the camera representing the sky.
            @remarks
                You could create a sky box yourself using the standard mesh and
                entity methods, but this creates a plane which the camera can
                never get closer or further away from - it moves with the camera.
                (NB you could create this effect by creating a world box which
                was attached to the same SceneNode as the Camera too, but this
                would only apply to a single camera whereas this skybox applies
                to any camera using this scene manager).
            @par
                The material you use for the skybox can either contain layers
                which are single textures, or they can be cubic textures, i.e.
                made up of 6 images, one for each plane of the cube. See the
                TextureUnitState class for more information.
            @param
                enable True to enable the skybox, false to disable it
            @param
                materialName The name of the material the box will use
            @param
                distance Distance in world coorinates from the camera to
                each plane of the box. The default is normally OK.
            @param
                drawFirst If true, the box is drawn before all other
                geometry in the scene, without updating the depth buffer.
                This is the safest rendering method since all other objects
                will always appear in front of the sky. However this is not
                the most efficient way if most of the sky is often occluded
                by other objects. If this is the case, you can set this
                parameter to false meaning it draws <em>after</em> all other
                geometry which can be an optimisation - however you must
                ensure that the distance value is large enough that no
                objects will 'poke through' the sky box when it is rendered.
            @param
                orientation Optional parameter to specify the orientation
                of the box. By default the 'top' of the box is deemed to be
                in the +y direction, and the 'front' at the -z direction.
                You can use this parameter to rotate the sky if you want.
            @param groupName
                The name of the resource group to which to assign the plane mesh.
        */
        virtual void setSkyBox(
            bool enable, const String& materialName, Real distance = 5000,
            bool drawFirst = true, const Quaternion& orientation = Quaternion::IDENTITY,
            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

        /** Enables / disables a 'sky box' i.e. a 6-sided box at constant
            distance from the camera representing the sky.
            @remarks
                You could create a sky box yourself using the standard mesh and
                entity methods, but this creates a plane which the camera can
                never get closer or further away from - it moves with the camera.
                (NB you could create this effect by creating a world box which
                was attached to the same SceneNode as the Camera too, but this
                would only apply to a single camera whereas this skybox applies
                to any camera using this scene manager).
            @par
                The material you use for the skybox can either contain layers
                which are single textures, or they can be cubic textures, i.e.
                made up of 6 images, one for each plane of the cube. See the
                TextureUnitState class for more information.
            @param
                enable True to enable the skybox, false to disable it
            @param
                materialName The name of the material the box will use
            @param
                distance Distance in world coorinates from the camera to
                each plane of the box. The default is normally OK.
            @param
                renderQueue The render queue to use when rendering this object
            @param
                orientation Optional parameter to specify the orientation
                of the box. By default the 'top' of the box is deemed to be
                in the +y direction, and the 'front' at the -z direction.
                You can use this parameter to rotate the sky if you want.
            @param groupName
                The name of the resource group to which to assign the plane mesh.
        */
        virtual void _setSkyBox(
            bool enable, const String& materialName, Real distance = 5000,
            uint8 renderQueue = RENDER_QUEUE_SKIES_EARLY, const Quaternion& orientation = Quaternion::IDENTITY,
            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

		/** Enables / disables a 'sky box' */
		virtual void setSkyBoxEnabled(bool enable) { mSkyBoxEnabled = enable; }

		/** Return whether a skybox is enabled */
		virtual bool isSkyBoxEnabled(void) const { return mSkyBoxEnabled; }

		/** Get the skybox node, if enabled. */
		virtual SceneNode* getSkyBoxNode(void) const { return mSkyBoxNode; }

		/** Get the parameters used to generate the current SkyBox, if any */
		virtual const SkyBoxGenParameters& getSkyBoxGenParameters(void) const { return mSkyBoxGenParameters; }

		/** Enables / disables a 'sky dome' i.e. an illusion of a curved sky.
            @remarks
                A sky dome is actually formed by 5 sides of a cube, but with
                texture coordinates generated such that the surface appears
                curved like a dome. Sky domes are appropriate where you need a
                realistic looking sky where the scene is not going to be
                'fogged', and there is always a 'floor' of some sort to prevent
                the viewer looking below the horizon (the distortion effect below
                the horizon can be pretty horrible, and there is never anyhting
                directly below the viewer). If you need a complete wrap-around
                background, use the setSkyBox method instead. You can actually
                combine a sky box and a sky dome if you want, to give a positional
                backdrop with an overlayed curved cloud layer.
            @par
                Sky domes work well with 2D repeating textures like clouds. You
                can change the apparent 'curvature' of the sky depending on how
                your scene is viewed - lower curvatures are better for 'open'
                scenes like landscapes, whilst higher curvatures are better for
                say FPS levels where you don't see a lot of the sky at once and
                the exaggerated curve looks good.
            @param
                enable True to enable the skydome, false to disable it
            @param
                materialName The name of the material the dome will use
            @param
                curvature The curvature of the dome. Good values are
                between 2 and 65. Higher values are more curved leading to
                a smoother effect, lower values are less curved meaning
                more distortion at the horizons but a better distance effect.
            @param
                tiling How many times to tile the texture(s) across the
                dome.
            @param
                distance Distance in world coorinates from the camera to
                each plane of the box the dome is rendered on. The default
                is normally OK.
            @param
                drawFirst If true, the dome is drawn before all other
                geometry in the scene, without updating the depth buffer.
                This is the safest rendering method since all other objects
                will always appear in front of the sky. However this is not
                the most efficient way if most of the sky is often occluded
                by other objects. If this is the case, you can set this
                parameter to false meaning it draws <em>after</em> all other
                geometry which can be an optimisation - however you must
                ensure that the distance value is large enough that no
                objects will 'poke through' the sky when it is rendered.
            @param
                orientation Optional parameter to specify the orientation
                of the dome. By default the 'top' of the dome is deemed to
                be in the +y direction, and the 'front' at the -z direction.
                You can use this parameter to rotate the sky if you want.
            @param groupName
                The name of the resource group to which to assign the plane mesh.
                */
        virtual void setSkyDome(
            bool enable, const String& materialName, Real curvature = 10,
            Real tiling = 8, Real distance = 4000, bool drawFirst = true,
            const Quaternion& orientation = Quaternion::IDENTITY,
            int xsegments = 16, int ysegments = 16, int ysegments_keep = -1,
            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

		/** Enables / disables a 'sky dome' i.e. an illusion of a curved sky.
            @remarks
                A sky dome is actually formed by 5 sides of a cube, but with
                texture coordinates generated such that the surface appears
                curved like a dome. Sky domes are appropriate where you need a
                realistic looking sky where the scene is not going to be
                'fogged', and there is always a 'floor' of some sort to prevent
                the viewer looking below the horizon (the distortion effect below
                the horizon can be pretty horrible, and there is never anyhting
                directly below the viewer). If you need a complete wrap-around
                background, use the setSkyBox method instead. You can actually
                combine a sky box and a sky dome if you want, to give a positional
                backdrop with an overlayed curved cloud layer.
            @par
                Sky domes work well with 2D repeating textures like clouds. You
                can change the apparent 'curvature' of the sky depending on how
                your scene is viewed - lower curvatures are better for 'open'
                scenes like landscapes, whilst higher curvatures are better for
                say FPS levels where you don't see a lot of the sky at once and
                the exaggerated curve looks good.
            @param
                enable True to enable the skydome, false to disable it
            @param
                materialName The name of the material the dome will use
            @param
                curvature The curvature of the dome. Good values are
                between 2 and 65. Higher values are more curved leading to
                a smoother effect, lower values are less curved meaning
                more distortion at the horizons but a better distance effect.
            @param
                tiling How many times to tile the texture(s) across the
                dome.
            @param
                distance Distance in world coorinates from the camera to
                each plane of the box the dome is rendered on. The default
                is normally OK.
            @param
                renderQueue The render queue to use when rendering this object
            @param
                orientation Optional parameter to specify the orientation
                of the dome. By default the 'top' of the dome is deemed to
                be in the +y direction, and the 'front' at the -z direction.
                You can use this parameter to rotate the sky if you want.
            @param groupName
                The name of the resource group to which to assign the plane mesh.
                */        
        virtual void _setSkyDome(
            bool enable, const String& materialName, Real curvature = 10,
            Real tiling = 8, Real distance = 4000, uint8 renderQueue = RENDER_QUEUE_SKIES_EARLY,
            const Quaternion& orientation = Quaternion::IDENTITY,
            int xsegments = 16, int ysegments = 16, int ysegments_keep = -1,
            const String& groupName = ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

		/** Enables / disables a 'sky dome' */
		virtual void setSkyDomeEnabled(bool enable) { mSkyDomeEnabled = enable; }

		/** Return whether a skydome is enabled */
		virtual bool isSkyDomeEnabled(void) const { return mSkyDomeEnabled; }

		/** Get the sky dome node, if enabled. */
		virtual SceneNode* getSkyDomeNode(void) const { return mSkyDomeNode; }

		/** Get the parameters used to generate the current SkyDome, if any */
		virtual const SkyDomeGenParameters& getSkyDomeGenParameters(void) const { return mSkyDomeGenParameters; }

		/** Sets the fogging mode applied to the scene.
            @remarks
                This method sets up the scene-wide fogging effect. These settings
                apply to all geometry rendered, UNLESS the material with which it
                is rendered has it's own fog settings (see Material::setFog).
            @param
                mode Set up the mode of fog as described in the FogMode
                enum, or set to FOG_NONE to turn off.
            @param
                colour The colour of the fog. Either set this to the same
                as your viewport background colour, or to blend in with a
                skydome or skybox.
            @param
                expDensity The density of the fog in FOG_EXP or FOG_EXP2
                mode, as a value between 0 and 1. The default is 0.001. 
            @param
                linearStart Distance in world units at which linear fog starts to
                encroach. Only applicable if mode is
                FOG_LINEAR.
            @param
                linearEnd Distance in world units at which linear fog becomes completely
                opaque. Only applicable if mode is
                FOG_LINEAR.
        */
        void setFog(
            FogMode mode = FOG_NONE, const ColourValue& colour = ColourValue::White,
            Real expDensity = 0.001, Real linearStart = 0.0, Real linearEnd = 1.0);

        /** Returns the fog mode for the scene.
        */
        virtual FogMode getFogMode(void) const;

        /** Returns the fog colour for the scene.
        */
        virtual const ColourValue& getFogColour(void) const;

        /** Returns the fog start distance for the scene.
        */
        virtual Real getFogStart(void) const;

        /** Returns the fog end distance for the scene.
        */
        virtual Real getFogEnd(void) const;

        /** Returns the fog density for the scene.
        */
        virtual Real getFogDensity(void) const;


        /** Creates a new BillboardSet for use with this scene manager.
            @remarks
                This method creates a new BillboardSet which is registered with
                the SceneManager. The SceneManager will destroy this object when
                it shuts down or when the SceneManager::clearScene method is
                called, so the caller does not have to worry about destroying
                this object (in fact, it definitely should not do this).
            @par
                See the BillboardSet documentations for full details of the
                returned class.
            @param
                name The name to give to this billboard set. Must be unique.
            @param
                poolSize The initial size of the pool of billboards (see BillboardSet for more information)
            @see
                BillboardSet
        */
        virtual BillboardSet* createBillboardSet(const String& name, unsigned int poolSize = 20);

        /** Creates a new BillboardSet for use with this scene manager, with a generated name.
            @param
                poolSize The initial size of the pool of billboards (see BillboardSet for more information)
            @see
                BillboardSet
        */
        virtual BillboardSet* createBillboardSet(unsigned int poolSize = 20);
        /** Retrieves a pointer to the named BillboardSet.
		@note Throws an exception if the named instance does not exist
        */
        virtual BillboardSet* getBillboardSet(const String& name) const;
		/** Returns whether a billboardset with the given name exists.
		*/
		virtual bool hasBillboardSet(const String& name) const;

        /** Removes & destroys an BillboardSet from the SceneManager.
            @warning
                Must only be done if the BillboardSet is not attached
                to a SceneNode. It may be safer to wait to clear the whole
                scene. If you are unsure, use clearScene.
        */
        virtual void destroyBillboardSet(BillboardSet* set);

        /** Removes & destroys an BillboardSet from the SceneManager by name.
            @warning
                Must only be done if the BillboardSet is not attached
                to a SceneNode. It may be safer to wait to clear the whole
                scene. If you are unsure, use clearScene.
        */
        virtual void destroyBillboardSet(const String& name);

        /** Removes & destroys all BillboardSets.
        @warning
        Again, use caution since no BillboardSet must be referred to
        elsewhere e.g. attached to a SceneNode otherwise a crash
        is likely. Use clearScene if you are unsure (it clears SceneNode
        entries too.)
        @see
        SceneManager::clearScene
        */
        virtual void destroyAllBillboardSets(void);

        /** Tells the SceneManager whether it should render the SceneNodes which 
            make up the scene as well as the objects in the scene.
        @remarks
            This method is mainly for debugging purposes. If you set this to 'true',
            each node will be rendered as a set of 3 axes to allow you to easily see
            the orientation of the nodes.
        */
        virtual void setDisplaySceneNodes(bool display);
        /** Returns true if all scene nodes axis are to be displayed */
        virtual bool getDisplaySceneNodes(void) const {return mDisplayNodes;}

        /** Creates an animation which can be used to animate scene nodes.
        @remarks
            An animation is a collection of 'tracks' which over time change the position / orientation
            of Node objects. In this case, the animation will likely have tracks to modify the position
            / orientation of SceneNode objects, e.g. to make objects move along a path.
        @par
            You don't need to use an Animation object to move objects around - you can do it yourself
            using the methods of the Node in your FrameListener class. However, when you need relatively
            complex scripted animation, this is the class to use since it will interpolate between
            keyframes for you and generally make the whole process easier to manage.
        @par
            A single animation can affect multiple Node objects (each AnimationTrack affects a single Node).
            In addition, through animation blending a single Node can be affected by multiple animations,
            athough this is more useful when performing skeletal animation (see Skeleton::createAnimation).
        @par
            Note that whilst it uses the same classes, the animations created here are kept separate from the
            skeletal animations of meshes (each Skeleton owns those animations).
        @param name The name of the animation, must be unique within this SceneManager.
        @param length The total length of the animation.
        */
        virtual Animation* createAnimation(const String& name, Real length);

        /** Looks up an Animation object previously created with createAnimation. 
		@note Throws an exception if the named instance does not exist
		*/
        virtual Animation* getAnimation(const String& name) const;
		/** Returns whether an animation with the given name exists.
		*/
		virtual bool hasAnimation(const String& name) const;

        /** Destroys an Animation. 
        @remarks
            You should ensure that none of your code is referencing this animation objects since the 
            memory will be freed.
        */
        virtual void destroyAnimation(const String& name);

        /** Removes all animations created using this SceneManager. */
        virtual void destroyAllAnimations(void);

        /** Create an AnimationState object for managing application of animations.
        @remarks
            You can create Animation objects for animating SceneNode obejcts using the
            createAnimation method. However, in order to actually apply those animations
            you have to call methods on Node and Animation in a particular order (namely
            Node::resetToInitialState and Animation::apply). To make this easier and to
            help track the current time position of animations, the AnimationState object
            is provided.
            So if you don't want to control animation application manually, call this method,
            update the returned object as you like every frame and let SceneManager apply 
            the animation state for you.
        @par
            Remember, AnimationState objects are disabled by default at creation time. 
            Turn them on when you want them using their setEnabled method.
        @par
            Note that any SceneNode affected by this automatic animation will have it's state
            reset to it's initial position before application of the animation. Unless specifically
            modified using Node::setInitialState the Node assumes it's initial state is at the
            origin. If you want the base state of the SceneNode to be elsewhere, make your changes
            to the node using the standard transform methods, then call setInitialState to 
            'bake' this reference position into the node.
		@par
			If the target of your animation is to be a generic AnimableValue, you
			should ensure that it has a base value set (unlike nodes this has no
			default). @see AnimableValue::setAsBaseValue.
        @param animName The name of an animation created already with createAnimation.
        */
        virtual AnimationState* createAnimationState(const String& animName);

        /** Retrieves animation state as previously created using createAnimationState. 
		@note Throws an exception if the named instance does not exist
		*/
        virtual AnimationState* getAnimationState(const String& animName) const;
		/** Returns whether an animation state with the given name exists.
		*/
		virtual bool hasAnimationState(const String& name) const;

        /** Destroys an AnimationState. 
        @remarks
            You should ensure that none of your code is referencing this animation 
            state object since the memory will be freed.
        */
        virtual void destroyAnimationState(const String& name);

        /** Removes all animation states created using this SceneManager. */
        virtual void destroyAllAnimationStates(void);

        /** Manual rendering method, for advanced users only.
        @remarks
            This method allows you to send rendering commands through the pipeline on
            demand, bypassing OGRE's normal world processing. You should only use this if you
            really know what you're doing; OGRE does lots of things for you that you really should
            let it do. However, there are times where it may be useful to have this manual interface,
            for example overlaying something on top of the scene rendered by OGRE.
        @par
            Because this is an instant rendering method, timing is important. The best 
            time to call it is from a RenderTargetListener event handler.
        @par
            Don't call this method a lot, it's designed for rare (1 or 2 times per frame) use. 
            Calling it regularly per frame will cause frame rate drops!
        @param rend A RenderOperation object describing the rendering op
        @param pass The Pass to use for this render
        @param vp Pointer to the viewport to render to, or 0 to use the current viewport
        @param worldMatrix The transform to apply from object to world space
        @param viewMatrix The transform to apply from world to view space
        @param projMatrix The transform to apply from view to screen space
        @param doBeginEndFrame If true, beginFrame() and endFrame() are called, 
            otherwise not. You should leave this as false if you are calling
            this within the main render loop.
        */
        virtual void manualRender(RenderOperation* rend, Pass* pass, Viewport* vp, 
            const Matrix4& worldMatrix, const Matrix4& viewMatrix, const Matrix4& projMatrix, 
            bool doBeginEndFrame = false) ;

		/** Manual rendering method for rendering a single object. 
		@param rend The renderable to issue to the pipeline
		@param pass The pass to use
		@param vp Pointer to the viewport to render to, or 0 to use the existing viewport
		@param doBeginEndFrame If true, beginFrame() and endFrame() are called, 
		otherwise not. You should leave this as false if you are calling
		this within the main render loop.
        @param viewMatrix The transform to apply from world to view space
        @param projMatrix The transform to apply from view to screen space
		@param lightScissoringClipping If true, passes that have the getLightScissorEnabled
		and/or getLightClipPlanesEnabled flags will cause calculation and setting of 
		scissor rectangle and user clip planes. 
		@param doLightIteration If true, this method will issue the renderable to
		the pipeline possibly multiple times, if the pass indicates it should be
		done once per light
		@param manualLightList Only applicable if doLightIteration is false, this
		method allows you to pass in a previously determined set of lights
		which will be used for a single render of this object.
		*/
		virtual void manualRender(Renderable* rend, const Pass* pass, Viewport* vp, 
			const Matrix4& viewMatrix, const Matrix4& projMatrix, bool doBeginEndFrame = false, bool lightScissoringClipping = true, 
			bool doLightIteration = true, const LightList* manualLightList = 0);

		/** Retrieves the internal render queue, for advanced users only.
        @remarks
            The render queue is mainly used internally to manage the scene object 
			rendering queue, it also exports some methods to allow advanced users 
			to configure the behavior of rendering process.
            Most methods provided by RenderQueue are supposed to be used 
			internally only, you should reference to the RenderQueue API for 
			more information. Do not access this directly unless you know what 
			you are doing.
        */
        virtual RenderQueue* getRenderQueue(void);

        /** Registers a new RenderQueueListener which will be notified when render queues
            are processed.
        */
        virtual void addRenderQueueListener(RenderQueueListener* newListener);

        /** Removes a listener previously added with addRenderQueueListener. */
        virtual void removeRenderQueueListener(RenderQueueListener* delListener);
		
		/** Registers a new Render Object Listener which will be notified when rendering an object.		
		*/
		virtual void addRenderObjectListener(RenderObjectListener* newListener);
		/** Removes a listener previously added with addRenderObjectListener. */
		virtual void removeRenderObjectListener(RenderObjectListener* delListener);

		/** Adds an item to the 'special case' render queue list.
		@remarks
			Normally all render queues are rendered, in their usual sequence, 
			only varying if a RenderQueueListener nominates for the queue to be 
			repeated or skipped. This method allows you to add a render queue to 
			a 'special case' list, which varies the behaviour. The effect of this
			list depends on the 'mode' in which this list is in, which might be
			to exclude these render queues, or to include them alone (excluding
			all other queues). This allows you to perform broad selective
			rendering without requiring a RenderQueueListener.
		@param qid The identifier of the queue which should be added to the
			special case list. Nothing happens if the queue is already in the list.
		*/
		virtual void addSpecialCaseRenderQueue(uint8 qid);
		/** Removes an item to the 'special case' render queue list.
		@see SceneManager::addSpecialCaseRenderQueue
		@param qid The identifier of the queue which should be removed from the
			special case list. Nothing happens if the queue is not in the list.
		*/
		virtual void removeSpecialCaseRenderQueue(uint8 qid);
		/** Clears the 'special case' render queue list.
		@see SceneManager::addSpecialCaseRenderQueue
		*/
		virtual void clearSpecialCaseRenderQueues(void);
		/** Sets the way the special case render queue list is processed.
		@see SceneManager::addSpecialCaseRenderQueue
		@param mode The mode of processing
		*/
		virtual void setSpecialCaseRenderQueueMode(SpecialCaseRenderQueueMode mode);
		/** Gets the way the special case render queue list is processed. */
		virtual SpecialCaseRenderQueueMode getSpecialCaseRenderQueueMode(void);
		/** Returns whether or not the named queue will be rendered based on the
			current 'special case' render queue list and mode.
		@see SceneManager::addSpecialCaseRenderQueue
		@param qid The identifier of the queue which should be tested
		@return true if the queue will be rendered, false otherwise
		*/
		virtual bool isRenderQueueToBeProcessed(uint8 qid);

		/** Sets the render queue that the world geometry (if any) this SceneManager
			renders will be associated with.
		@remarks
			SceneManagers which provide 'world geometry' should place it in a 
			specialised render queue in order to make it possible to enable / 
			disable it easily using the addSpecialCaseRenderQueue method. Even 
			if the SceneManager does not use the render queues to render the 
			world geometry, it should still pick a queue to represent it's manual
			rendering, and check isRenderQueueToBeProcessed before rendering.
		@note
			Setting this may not affect the actual ordering of rendering the
			world geometry, if the world geometry is being rendered manually
			by the SceneManager. If the SceneManager feeds world geometry into
			the queues, however, the ordering will be affected. 
		*/
		virtual void setWorldGeometryRenderQueue(uint8 qid);
		/** Gets the render queue that the world geometry (if any) this SceneManager
			renders will be associated with.
		@remarks
			SceneManagers which provide 'world geometry' should place it in a 
			specialised render queue in order to make it possible to enable / 
			disable it easily using the addSpecialCaseRenderQueue method. Even 
			if the SceneManager does not use the render queues to render the 
			world geometry, it should still pick a queue to represent it's manual
			rendering, and check isRenderQueueToBeProcessed before rendering.
		*/
		virtual uint8 getWorldGeometryRenderQueue(void);

		/** Allows all bounding boxes of scene nodes to be displayed. */
		virtual void showBoundingBoxes(bool bShow);

		/** Returns if all bounding boxes of scene nodes are to be displayed */
		virtual bool getShowBoundingBoxes() const;

        /** Internal method for notifying the manager that a SceneNode is autotracking. */
        virtual void _notifyAutotrackingSceneNode(SceneNode* node, bool autoTrack);

        
        /** Creates an AxisAlignedBoxSceneQuery for this scene manager. 
        @remarks
            This method creates a new instance of a query object for this scene manager, 
            for an axis aligned box region. See SceneQuery and AxisAlignedBoxSceneQuery 
            for full details.
        @par
            The instance returned from this method must be destroyed by calling
            SceneManager::destroyQuery when it is no longer required.
        @param box Details of the box which describes the region for this query.
        @param mask The query mask to apply to this query; can be used to filter out
            certain objects; see SceneQuery for details.
        */
        virtual AxisAlignedBoxSceneQuery* 
            createAABBQuery(const AxisAlignedBox& box, uint32 mask = 0xFFFFFFFF);
        /** Creates a SphereSceneQuery for this scene manager. 
        @remarks
            This method creates a new instance of a query object for this scene manager, 
            for a spherical region. See SceneQuery and SphereSceneQuery 
            for full details.
        @par
            The instance returned from this method must be destroyed by calling
            SceneManager::destroyQuery when it is no longer required.
        @param sphere Details of the sphere which describes the region for this query.
        @param mask The query mask to apply to this query; can be used to filter out
            certain objects; see SceneQuery for details.
        */
        virtual SphereSceneQuery* 
            createSphereQuery(const Sphere& sphere, uint32 mask = 0xFFFFFFFF);
        /** Creates a PlaneBoundedVolumeListSceneQuery for this scene manager. 
        @remarks
        This method creates a new instance of a query object for this scene manager, 
        for a region enclosed by a set of planes (normals pointing inwards). 
        See SceneQuery and PlaneBoundedVolumeListSceneQuery for full details.
        @par
        The instance returned from this method must be destroyed by calling
        SceneManager::destroyQuery when it is no longer required.
        @param volumes Details of the volumes which describe the region for this query.
        @param mask The query mask to apply to this query; can be used to filter out
        certain objects; see SceneQuery for details.
        */
        virtual PlaneBoundedVolumeListSceneQuery* 
            createPlaneBoundedVolumeQuery(const PlaneBoundedVolumeList& volumes, uint32 mask = 0xFFFFFFFF);


        /** Creates a RaySceneQuery for this scene manager. 
        @remarks
            This method creates a new instance of a query object for this scene manager, 
            looking for objects which fall along a ray. See SceneQuery and RaySceneQuery 
            for full details.
        @par
            The instance returned from this method must be destroyed by calling
            SceneManager::destroyQuery when it is no longer required.
        @param ray Details of the ray which describes the region for this query.
        @param mask The query mask to apply to this query; can be used to filter out
            certain objects; see SceneQuery for details.
        */
        virtual RaySceneQuery* 
            createRayQuery(const Ray& ray, uint32 mask = 0xFFFFFFFF);
        //PyramidSceneQuery* createPyramidQuery(const Pyramid& p, unsigned long mask = 0xFFFFFFFF);
        /** Creates an IntersectionSceneQuery for this scene manager. 
        @remarks
            This method creates a new instance of a query object for locating
            intersecting objects. See SceneQuery and IntersectionSceneQuery
            for full details.
        @par
            The instance returned from this method must be destroyed by calling
            SceneManager::destroyQuery when it is no longer required.
        @param mask The query mask to apply to this query; can be used to filter out
            certain objects; see SceneQuery for details.
        */
        virtual IntersectionSceneQuery* 
            createIntersectionQuery(uint32 mask = 0xFFFFFFFF);

        /** Destroys a scene query of any type. */
        virtual void destroyQuery(SceneQuery* query);

        typedef MapIterator<CameraList> CameraIterator;
        typedef MapIterator<AnimationList> AnimationIterator;

        /** Returns a specialised MapIterator over all cameras in the scene. 
		*/
        CameraIterator getCameraIterator(void) {
            return CameraIterator(mCameras.begin(), mCameras.end());
        }
		/** Returns a const version of the camera list. 
		*/
		const CameraList& getCameras() const { return mCameras; }
        /** Returns a specialised MapIterator over all animations in the scene. */
        AnimationIterator getAnimationIterator(void) {
            return AnimationIterator(mAnimationsList.begin(), mAnimationsList.end());
        }
		/** Returns a const version of the animation list. 
		*/
		const AnimationList& getAnimations() const { return mAnimationsList; }
        /** Returns a specialised MapIterator over all animation states in the scene. */
        AnimationStateIterator getAnimationStateIterator(void) {
            return mAnimationStates.getAnimationStateIterator();
        }

        /** Sets the general shadow technique to be used in this scene.
        @remarks   
            There are multiple ways to generate shadows in a scene, and each has 
            strengths and weaknesses. 
            <ul><li>Stencil-based approaches can be used to 
            draw very long, extreme shadows without loss of precision and the 'additive'
            version can correctly show the shadowing of complex effects like bump mapping
            because they physically exclude the light from those areas. However, the edges
            are very sharp and stencils cannot handle transparency, and they involve a 
            fair amount of CPU work in order to calculate the shadow volumes, especially
            when animated objects are involved.</li>
            <li>Texture-based approaches are good for handling transparency (they can, for
            example, correctly shadow a mesh which uses alpha to represent holes), and they
            require little CPU overhead, and can happily shadow geometry which is deformed
            by a vertex program, unlike stencil shadows. However, they have a fixed precision 
            which can introduce 'jaggies' at long range and have fillrate issues of their own.</li>
            </ul>
        @par
            We support 2 kinds of stencil shadows, and 2 kinds of texture-based shadows, and one
            simple decal approach. The 2 stencil approaches differ in the amount of multipass work 
            that is required - the modulative approach simply 'darkens' areas in shadow after the 
            main render, which is the least expensive, whilst the additive approach has to perform 
            a render per light and adds the cumulative effect, which is more expensive but more 
            accurate. The texture based shadows both work in roughly the same way, the only difference is
            that the shadowmap approach is slightly more accurate, but requires a more recent
            graphics card.
        @par
            Note that because mixing many shadow techniques can cause problems, only one technique
            is supported at once. Also, you should call this method at the start of the 
            scene setup. 
        @param technique The shadowing technique to use for the scene.
        */
        virtual void setShadowTechnique(ShadowTechnique technique);
        
        /** Gets the current shadow technique. */
        virtual ShadowTechnique getShadowTechnique(void) const { return mShadowTechnique; }

        /** Enables / disables the rendering of debug information for shadows. */
        virtual void setShowDebugShadows(bool debug) { mDebugShadows = debug; }
        /** Are debug shadows shown? */
        virtual bool getShowDebugShadows(void ) const { return mDebugShadows; }

        /** Set the colour used to modulate areas in shadow. 
        @remarks This is only applicable for shadow techniques which involve 
            darkening the area in shadow, as opposed to masking out the light. 
            This colour provided is used as a modulative value to darken the
            areas.
        */
        virtual void setShadowColour(const ColourValue& colour);
        /** Get the colour used to modulate areas in shadow. 
        @remarks This is only applicable for shadow techniques which involve 
        darkening the area in shadow, as opposed to masking out the light. 
        This colour provided is used as a modulative value to darken the
        areas.
        */
        virtual const ColourValue& getShadowColour(void) const;
        /** Sets the distance a shadow volume is extruded for a directional light.
        @remarks
            Although directional lights are essentially infinite, there are many
            reasons to limit the shadow extrusion distance to a finite number, 
            not least of which is compatibility with older cards (which do not
            support infinite positions), and shadow caster elimination.
        @par
            The default value is 10,000 world units. This does not apply to
            point lights or spotlights, since they extrude up to their 
            attenuation range.
        */
        virtual void setShadowDirectionalLightExtrusionDistance(Real dist); 
        /** Gets the distance a shadow volume is extruded for a directional light.
        */
        virtual Real getShadowDirectionalLightExtrusionDistance(void) const;
        /** Sets the default maximum distance away from the camera that shadows
        will be visible. You have to call this function before you create lights
        or the default distance of zero will be used.
        @remarks
        Shadow techniques can be expensive, therefore it is a good idea
        to limit them to being rendered close to the camera if possible,
        and to skip the expense of rendering shadows for distance objects.
        This method allows you to set the distance at which shadows will no
        longer be rendered.
        @note
        Each shadow technique can interpret this subtely differently.
        For example, one technique may use this to eliminate casters,
        another might use it to attenuate the shadows themselves.
        You should tweak this value to suit your chosen shadow technique
        and scene setup.
        */
        virtual void setShadowFarDistance(Real distance);
        /** Gets the default maximum distance away from the camera that shadows
        will be visible.
        */
        virtual Real getShadowFarDistance(void) const
        { return mDefaultShadowFarDist; }
        virtual Real getShadowFarDistanceSquared(void) const
        { return mDefaultShadowFarDistSquared; }

		/** Sets the maximum size of the index buffer used to render shadow
		 	primitives.
		@remarks
			This method allows you to tweak the size of the index buffer used
			to render shadow primitives (including stencil shadow volumes). The
			default size is 51,200 entries, which is 100k of GPU memory, or
			enough to render approximately 17,000 triangles. You can reduce this
			as long as you do not have any models / world geometry chunks which 
			could require more than the amount you set.
		@par
			The maximum number of triangles required to render a single shadow 
			volume (including light and dark caps when needed) will be 3x the 
			number of edges on the light silhouette, plus the number of 
			light-facing triangles.	On average, half the 
			triangles will be facing toward the light, but the number of 
			triangles in the silhouette entirely depends on the mesh - 
			angular meshes will have a higher silhouette tris/mesh tris
			ratio than a smooth mesh. You can estimate the requirements for
			your particular mesh by rendering it alone in a scene with shadows
			enabled and a single light - rotate it or the light and make a note
			of how high the triangle count goes (remembering to subtract the 
			mesh triangle count)
		@param size The number of indexes; divide this by 3 to determine the
			number of triangles.
		*/
		virtual void setShadowIndexBufferSize(size_t size);
        /// Get the size of the shadow index buffer
		virtual size_t getShadowIndexBufferSize(void) const
		{ return mShadowIndexBufferSize; }
        /** Set the size of the texture used for all texture-based shadows.
        @remarks
            The larger the shadow texture, the better the detail on 
            texture based shadows, but obviously this takes more memory.
            The default size is 512. Sizes must be a power of 2.
		@note This is the simple form, see setShadowTextureConfig for the more 
			complex form.
        */
        virtual void setShadowTextureSize(unsigned short size);

		/** Set the detailed configuration for a shadow texture.
		@param shadowIndex The index of the texture to configure, must be < the
			number of shadow textures setting
		@param width The width of the texture
        @param height The height of the texture
		@param format The pixel format of the texture
        @param fsaa The level of multisampling to use. Ignored if the device does not support it.
		@param depthBufferPoolId The pool # it should query the depth buffers from
		*/
		virtual void setShadowTextureConfig(size_t shadowIndex, unsigned short width, 
			unsigned short height, PixelFormat format, unsigned short fsaa = 0, uint16 depthBufferPoolId=1);
		/** Set the detailed configuration for a shadow texture.
		@param shadowIndex The index of the texture to configure, must be < the
			number of shadow textures setting
		@param config Configuration structure
		*/
		virtual void setShadowTextureConfig(size_t shadowIndex, 
			const ShadowTextureConfig& config);

		/** Get an iterator over the current shadow texture settings. */
		ConstShadowTextureConfigIterator getShadowTextureConfigIterator() const;

        /** Set the pixel format of the textures used for texture-based shadows.
        @remarks
			By default, a colour texture is used (PF_X8R8G8B8) for texture shadows,
			but if you want to use more advanced texture shadow types you can 
			alter this. If you do, you will have to also call
			setShadowTextureCasterMaterial and setShadowTextureReceiverMaterial
			to provide shader-based materials to use these customised shadow
			texture formats.
		@note This is the simple form, see setShadowTextureConfig for the more 
			complex form.
        */
        virtual void setShadowTexturePixelFormat(PixelFormat fmt);
        /** Set the level of multisample AA of the textures used for texture-based shadows.
        @remarks
            By default, the level of multisample AA is zero.
        @note This is the simple form, see setShadowTextureConfig for the more 
            complex form.
        */
        virtual void setShadowTextureFSAA(unsigned short fsaa);

        /** Set the number of textures allocated for texture-based shadows.
        @remarks
            The default number of textures assigned to deal with texture based
            shadows is 1; however this means you can only have one light casting
            shadows at the same time. You can increase this number in order to 
            make this more flexible, but be aware of the texture memory it will use.
        */
        virtual void setShadowTextureCount(size_t count);
        /// Get the number of the textures allocated for texture based shadows
        size_t getShadowTextureCount(void) const {return mShadowTextureConfigList.size(); }

		/** Set the number of shadow textures a light type uses.
		@remarks
			The default for all light types is 1. This means that each light uses only 1 shadow
			texture. Call this if you need more than 1 shadow texture per light, E.G. PSSM. 
		@note
			This feature only works with the Integrated shadow technique.
			Also remember to increase the total number of shadow textures you request
			appropriately (e.g. via setShadowTextureCount)!!
		*/
		void setShadowTextureCountPerLightType(Light::LightTypes type, size_t count)
		{ mShadowTextureCountPerType[type] = count; }
		/// Get the number of shadow textures is assigned for the given light type.
		size_t getShadowTextureCountPerLightType(Light::LightTypes type) const
		{return mShadowTextureCountPerType[type]; }

        /** Sets the size and count of textures used in texture-based shadows. 
        @see setShadowTextureSize and setShadowTextureCount for details, this
            method just allows you to change both at once, which can save on
            reallocation if the textures have already been created.
		@note This is the simple form, see setShadowTextureConfig for the more 
			complex form.
        */
        virtual void setShadowTextureSettings(unsigned short size, unsigned short count, 
			PixelFormat fmt = PF_X8R8G8B8, unsigned short fsaa = 0, uint16 depthBufferPoolId=1);

		/** Get a reference to the shadow texture currently in use at the given index.
		@note
			If you change shadow settings, this reference may no longer
			be correct, so be sure not to hold the returned reference over 
			texture shadow configuration changes.
		*/
		virtual const TexturePtr& getShadowTexture(size_t shadowIndex);

        /** Sets the proportional distance which a texture shadow which is generated from a
            directional light will be offset into the camera view to make best use of texture space.
        @remarks
            When generating a shadow texture from a directional light, an approximation is used
            since it is not possible to render the entire scene to one texture. 
            The texture is projected onto an area centred on the camera, and is
            the shadow far distance * 2 in length (it is square). This wastes
            a lot of texture space outside the frustum though, so this offset allows
            you to move the texture in front of the camera more. However, be aware
            that this can cause a little shadow 'jittering' during rotation, and
            that if you move it too far then you'll start to get artefacts close 
            to the camera. The value is represented as a proportion of the shadow
            far distance, and the default is 0.6.
        */
        virtual void setShadowDirLightTextureOffset(Real offset) { mShadowTextureOffset = offset;}
		/** Gets the proportional distance which a texture shadow which is generated from a
		directional light will be offset into the camera view to make best use of texture space.
		*/
		virtual Real getShadowDirLightTextureOffset(void)  const { return mShadowTextureOffset; }
        /** Sets the proportional distance at which texture shadows begin to fade out.
        @remarks
            To hide the edges where texture shadows end (in directional lights)
            Ogre will fade out the shadow in the distance. This value is a proportional
            distance of the entire shadow visibility distance at which the shadow
            begins to fade out. The default is 0.7
        */
        virtual void setShadowTextureFadeStart(Real fadeStart) 
        { mShadowTextureFadeStart = fadeStart; }
        /** Sets the proportional distance at which texture shadows finish to fading out.
        @remarks
        To hide the edges where texture shadows end (in directional lights)
        Ogre will fade out the shadow in the distance. This value is a proportional
        distance of the entire shadow visibility distance at which the shadow
        is completely invisible. The default is 0.9.
        */
        virtual void setShadowTextureFadeEnd(Real fadeEnd) 
        { mShadowTextureFadeEnd = fadeEnd; }

		/** Sets whether or not texture shadows should attempt to self-shadow.
		@remarks
			The default implementation of texture shadows uses a fixed-function 
			colour texture projection approach for maximum compatibility, and 
			as such cannot support self-shadowing. However, if you decide to 
			implement a more complex shadowing technique using the 
			setShadowTextureCasterMaterial and setShadowTextureReceiverMaterial 
			there is a possibility you may be able to support 
			self-shadowing (e.g by implementing a shader-based shadow map). In 
			this case you might want to enable this option.
		@param selfShadow Whether to attempt self-shadowing with texture shadows
		*/
		virtual void setShadowTextureSelfShadow(bool selfShadow); 

		/// Gets whether or not texture shadows attempt to self-shadow.
		virtual bool getShadowTextureSelfShadow(void) const 
		{ return mShadowTextureSelfShadow; }
		/** Sets the default material to use for rendering shadow casters.
		@remarks
			By default shadow casters are rendered into the shadow texture using
			an automatically generated fixed-function pass. This allows basic
			projective texture shadows, but it's possible to use more advanced
			shadow techniques by overriding the caster and receiver materials, for
			example providing vertex and fragment programs to implement shadow
			maps.
		@par
			You can rely on the ambient light in the scene being set to the 
			requested texture shadow colour, if that's useful. 
		@note
			Individual objects may also override the vertex program in
			your default material if their materials include 
			shadow_caster_vertex_program_ref, shadow_receiver_vertex_program_ref
			shadow_caster_material entries, so if you use both make sure they are compatible.			
		@note
			Only a single pass is allowed in your material, although multiple
			techniques may be used for hardware fallback.
		*/
		virtual void setShadowTextureCasterMaterial(const String& name);
		/** Sets the default material to use for rendering shadow receivers.
		@remarks
			By default shadow receivers are rendered as a post-pass using basic
			modulation. This allows basic projective texture shadows, but it's 
			possible to use more advanced shadow techniques by overriding the 
			caster and receiver materials, for example providing vertex and 
			fragment programs to implement shadow maps.
		@par
			You can rely on texture unit 0 containing the shadow texture, and 
			for the unit to be set to use projective texturing from the light 
			(only useful if you're using fixed-function, which is unlikely; 
			otherwise you should rely on the texture_viewproj_matrix auto binding)
		@note
			Individual objects may also override the vertex program in
			your default material if their materials include 
			shadow_caster_vertex_program_ref shadow_receiver_vertex_program_ref
			shadow_receiver_material entries, so if you use both make sure they are compatible.
		@note
			Only a single pass is allowed in your material, although multiple
			techniques may be used for hardware fallback.
		*/
		virtual void setShadowTextureReceiverMaterial(const String& name);

		/** Sets whether or not shadow casters should be rendered into shadow
			textures using their back faces rather than their front faces. 
		@remarks
			Rendering back faces rather than front faces into a shadow texture
			can help minimise depth comparison issues, if you're using depth
			shadowmapping. You will probably still need some biasing but you
			won't need as much. For solid objects the result is the same anyway,
			if you have objects with holes you may want to turn this option off.
			The default is to enable this option.
		*/
		virtual void setShadowCasterRenderBackFaces(bool bf) { mShadowCasterRenderBackFaces = bf; }

		/** Gets whether or not shadow casters should be rendered into shadow
			textures using their back faces rather than their front faces. 
		*/
		virtual bool getShadowCasterRenderBackFaces() const { return mShadowCasterRenderBackFaces; }

		/** Set the shadow camera setup to use for all lights which don't have
			their own shadow camera setup.
		@see ShadowCameraSetup
		*/
		virtual void setShadowCameraSetup(const ShadowCameraSetupPtr& shadowSetup);

		/** Get the shadow camera setup in use for all lights which don't have
			their own shadow camera setup.
		@see ShadowCameraSetup
		*/
		virtual const ShadowCameraSetupPtr& getShadowCameraSetup() const;

		/** Sets whether we should use an inifinite camera far plane
			when rendering stencil shadows.
		@remarks
			Stencil shadow coherency is very reliant on the shadow volume
			not being clipped by the far plane. If this clipping happens, you
			get a kind of 'negative' shadow effect. The best way to achieve
			coherency is to move the far plane of the camera out to infinity,
			thus preventing the far plane from clipping the shadow volumes.
			When combined with vertex program extrusion of the volume to 
			infinity, which	Ogre does when available, this results in very
			robust shadow volumes. For this reason, when you enable stencil 
			shadows, Ogre automatically changes your camera settings to 
			project to infinity if the card supports it. You can disable this
			behaviour if you like by calling this method; although you can 
			never enable infinite projection if the card does not support it.
		@par	
			If you disable infinite projection, or it is not available, 
			you need to be far more careful with your light attenuation /
			directional light extrusion distances to avoid clipping artefacts
			at the far plane.
		@note
			Recent cards will generally support infinite far plane projection.
			However, we have found some cases where they do not, especially
			on Direct3D. There is no standard capability we can check to 
			validate this, so we use some heuristics based on experience:
			<UL>
			<LI>OpenGL always seems to support it no matter what the card</LI>
			<LI>Direct3D on non-vertex program capable systems (including 
			vertex program capable cards on Direct3D7) does not
			support it</LI>
			<LI>Direct3D on GeForce3 and GeForce4 Ti does not seem to support
			infinite projection<LI>
			</UL>
			Therefore in the RenderSystem implementation, we may veto the use
			of an infinite far plane based on these heuristics. 
		*/
        virtual void setShadowUseInfiniteFarPlane(bool enable) {
            mShadowUseInfiniteFarPlane = enable; }

		/** Is there a stencil shadow based shadowing technique in use? */
		virtual bool isShadowTechniqueStencilBased(void) const 
		{ return (mShadowTechnique & SHADOWDETAILTYPE_STENCIL) != 0; }
		/** Is there a texture shadow based shadowing technique in use? */
		virtual bool isShadowTechniqueTextureBased(void) const 
		{ return (mShadowTechnique & SHADOWDETAILTYPE_TEXTURE) != 0; }
		/** Is there a modulative shadowing technique in use? */
		virtual bool isShadowTechniqueModulative(void) const 
		{ return (mShadowTechnique & SHADOWDETAILTYPE_MODULATIVE) != 0; }
		/** Is there an additive shadowing technique in use? */
		virtual bool isShadowTechniqueAdditive(void) const 
		{ return (mShadowTechnique & SHADOWDETAILTYPE_ADDITIVE) != 0; }
		/** Is the shadow technique integrated into primary materials? */
		virtual bool isShadowTechniqueIntegrated(void) const 
		{ return (mShadowTechnique & SHADOWDETAILTYPE_INTEGRATED) != 0; }
		/** Is there any shadowing technique in use? */
		virtual bool isShadowTechniqueInUse(void) const 
		{ return mShadowTechnique != SHADOWTYPE_NONE; }
		/** Sets whether when using a built-in additive shadow mode, user clip
			planes should be used to restrict light rendering.
		*/
		virtual void setShadowUseLightClipPlanes(bool enabled) { mShadowAdditiveLightClip = enabled; }
		/** Gets whether when using a built-in additive shadow mode, user clip
		planes should be used to restrict light rendering.
		*/
		virtual bool getShadowUseLightClipPlanes() const { return mShadowAdditiveLightClip; }

		/** Sets the active compositor chain of the current scene being rendered.
			@note CompositorChain does this automatically, no need to call manually.
		*/
		virtual void _setActiveCompositorChain(CompositorChain* chain) { mActiveCompositorChain = chain; }

		/** Sets whether to use late material resolving or not. If set, materials will be resolved
			from the materials at the pass-setting stage and not at the render queue building stage.
			This is useful when the active material scheme during the render queue building stage
			is different from the one during the rendering stage.
		*/
		virtual void setLateMaterialResolving(bool isLate) { mLateMaterialResolving = isLate; }
		
		/** Gets whether using late material resolving or not.
			@see setLateMaterialResolving */
		virtual bool isLateMaterialResolving() const { return mLateMaterialResolving; }

		/** Gets the active compositor chain of the current scene being rendered */
		virtual CompositorChain* _getActiveCompositorChain() const { return mActiveCompositorChain; }

		/** Add a listener which will get called back on scene manager events.
		*/
		virtual void addListener(Listener* s);
		/** Remove a listener
		*/
		virtual void removeListener(Listener* s);

		/** Creates a StaticGeometry instance suitable for use with this
			SceneManager.
		@remarks
			StaticGeometry is a way of batching up geometry into a more 
			efficient form at the expense of being able to move it. Please 
			read the StaticGeometry class documentation for full information.
		@param name The name to give the new object
		@return The new StaticGeometry instance
		*/
		virtual StaticGeometry* createStaticGeometry(const String& name);
		/** Retrieve a previously created StaticGeometry instance. 
		@note Throws an exception if the named instance does not exist
		*/
		virtual StaticGeometry* getStaticGeometry(const String& name) const;
		/** Returns whether a static geometry instance with the given name exists. */
		virtual bool hasStaticGeometry(const String& name) const;
		/** Remove & destroy a StaticGeometry instance. */
		virtual void destroyStaticGeometry(StaticGeometry* geom);
		/** Remove & destroy a StaticGeometry instance. */
		virtual void destroyStaticGeometry(const String& name);
		/** Remove & destroy all StaticGeometry instances. */
		virtual void destroyAllStaticGeometry(void);

		/** Creates a InstancedGeometry instance suitable for use with this
			SceneManager.
		@remarks
			InstancedGeometry is a way of batching up geometry into a more 
			efficient form, and still be able to move it. Please 
			read the InstancedGeometry class documentation for full information.
		@param name The name to give the new object
		@return The new InstancedGeometry instance
		*/
		virtual InstancedGeometry* createInstancedGeometry(const String& name);
		/** Retrieve a previously created InstancedGeometry instance. */
		virtual InstancedGeometry* getInstancedGeometry(const String& name) const;
		/** Remove & destroy a InstancedGeometry instance. */
		virtual void destroyInstancedGeometry(InstancedGeometry* geom);
		/** Remove & destroy a InstancedGeometry instance. */
		virtual void destroyInstancedGeometry(const String& name);
		/** Remove & destroy all InstancedGeometry instances. */
		virtual void destroyAllInstancedGeometry(void);

		/** Creates an InstanceManager interface to create & manipulate instanced entities
			You need to call this function at least once before start calling createInstancedEntity
			to build up an instance based on the given mesh.
		@remarks
			Instancing is a way of batching up geometry into a much more 
			efficient form, but with some limitations, and still be able to move & animate it.
			Please @see InstanceManager class documentation for full information.
		@param customName Custom name for referencing. Must be unique
		@param meshName The mesh name the instances will be based upon
		@param groupName The resource name where the mesh lives
		@param technique Technique to use, which may be shader based, or hardware based.
		@param numInstancesPerBatch Suggested number of instances per batch. The actual number
		may end up being lower if the technique doesn't support having so many. It can't be zero
		@param flags Flags to pass to the InstanceManager @see InstanceManagerFlags
		@param subMeshIdx InstanceManager only supports using one submesh from the base mesh. This parameter
		says which submesh to pick (must be <= Mesh::getNumSubMeshes())
		@return The new InstanceManager instance
		*/
		virtual InstanceManager* createInstanceManager( const String &customName, const String &meshName,
														const String &groupName,
														InstanceManager::InstancingTechnique technique,
														size_t numInstancesPerBatch, uint16 flags=0,
														unsigned short subMeshIdx=0 );

		/** Retrieves an existing InstanceManager by it's name.
		@note Throws an exception if the named InstanceManager does not exist
		*/
		virtual InstanceManager* getInstanceManager( const String &managerName ) const;

    /** Returns whether an InstanceManager with the given name exists. */
    virtual bool hasInstanceManager( const String &managerName ) const;

		/** Destroys an InstanceManager <b>if</b> it was created with createInstanceManager()
		@remarks
			Be sure you don't have any InstancedEntity referenced somewhere which was created with
			this manager, since it will become a dangling pointer.
		@param name Name of the manager to remove
		*/
		virtual void destroyInstanceManager( const String &name );
		virtual void destroyInstanceManager( InstanceManager *instanceManager );

		virtual void destroyAllInstanceManagers(void);

		/** @see InstanceManager::getMaxOrBestNumInstancesPerBatch
		@remarks
			If you've already created an InstanceManager, you can call it's
			getMaxOrBestNumInstancesPerBatch() function directly.
			Another (not recommended) way to know if the technique is unsupported is by creating
			an InstanceManager and use createInstancedEntity, which will return null pointer.
			The input parameter "numInstancesPerBatch" is a suggested value when using IM_VTFBESTFIT
			flag (in that case it should be non-zero)
		@return
			The ideal (or maximum, depending on flags) number of instances per batch for
			the given technique. Zero if technique is unsupported or errors were spotted
		*/
		virtual size_t getNumInstancesPerBatch( const String &meshName, const String &groupName,
												const String &materialName,
												InstanceManager::InstancingTechnique technique,
												size_t numInstancesPerBatch, uint16 flags=0,
												unsigned short subMeshIdx=0 );

		/** Creates an InstancedEntity based on an existing InstanceManager (@see createInstanceManager)
		@remarks
			* Return value may be null if the InstanceManger technique isn't supported
			* Try to keep the number of entities with different materials <b>to a minimum</b>
			* For more information @see InstancedManager @see InstancedBatch, @see InstancedEntity
			* Alternatively you can call InstancedManager::createInstanceEntity using the returned
			pointer from createInstanceManager
		@param materialName Material name 
		@param managerName Name of the instance manager
		@return An InstancedEntity ready to be attached to a SceneNode
		*/
		virtual InstancedEntity* createInstancedEntity( const String &materialName,
														const String &managerName );

		/** Removes an InstancedEntity, @see SceneManager::createInstancedEntity &
			@see InstanceBatch::removeInstancedEntity
		@param instancedEntity Instance to remove
		*/
		virtual void destroyInstancedEntity( InstancedEntity *instancedEntity );

		/** Called by an InstanceManager when it has at least one InstanceBatch that needs their bounds
			to be updated for proper culling
			@param dirtyManager The manager with dirty batches to update
		*/
		void _addDirtyInstanceManager( InstanceManager *dirtyManager );

		/** Create a movable object of the type specified.
		@remarks
			This is the generalised form of MovableObject creation where you can
			create a MovableObject of any specialised type generically, including
			any new types registered using plugins.
		@param name The name to give the object. Must be unique within type.
		@param typeName The type of object to create
		@param params Optional name/value pair list to give extra parameters to
			the created object.
		*/
		virtual MovableObject* createMovableObject(const String& name, 
			const String& typeName, const NameValuePairList* params = 0);
		/** Create a movable object of the type specified without a name.
		@remarks
		This is the generalised form of MovableObject creation where you can
		create a MovableObject of any specialised type generically, including
		any new types registered using plugins. The name is generated automatically.
		@param typeName The type of object to create
		@param params Optional name/value pair list to give extra parameters to
		the created object.
		*/
		virtual MovableObject* createMovableObject(const String& typeName, const NameValuePairList* params = 0);
		/** Destroys a MovableObject with the name specified, of the type specified.
		@remarks
			The MovableObject will automatically detach itself from any nodes
			on destruction.
		*/
		virtual void destroyMovableObject(const String& name, const String& typeName);
		/** Destroys a MovableObject.
		@remarks
			The MovableObject will automatically detach itself from any nodes
			on destruction.
		*/
		virtual void destroyMovableObject(MovableObject* m);
		/** Destroy all MovableObjects of a given type. */
		virtual void destroyAllMovableObjectsByType(const String& typeName);
		/** Destroy all MovableObjects. */
		virtual void destroyAllMovableObjects(void);
		/** Get a reference to a previously created MovableObject. 
		@note Throws an exception if the named instance does not exist
		*/
		virtual MovableObject* getMovableObject(const String& name, const String& typeName) const;
		/** Returns whether a movable object instance with the given name exists. */
		virtual bool hasMovableObject(const String& name, const String& typeName) const;
		typedef MapIterator<MovableObjectMap> MovableObjectIterator;
		/** Get an iterator over all MovableObect instances of a given type. 
		@note
			The iterator returned from this method is not thread safe, do not use this
			if you are creating or deleting objects of this type in another thread.
		*/
		virtual MovableObjectIterator getMovableObjectIterator(const String& typeName);
		/** Inject a MovableObject instance created externally.
		@remarks
			This method 'injects' a MovableObject instance created externally into
			the MovableObject instance registry held in the SceneManager. You
			might want to use this if you have a MovableObject which you don't
			want to register a factory for; for example a MovableObject which 
			cannot be generally constructed by clients. 
		@note
			It is important that the MovableObject has a unique name for the type,
			and that its getMovableType() method returns a proper type name.
		*/
		virtual void injectMovableObject(MovableObject* m);
		/** Extract a previously injected MovableObject.
		@remarks
			Essentially this does the same as destroyMovableObject, but only
			removes the instance from the internal lists, it does not attempt
			to destroy it.
		*/
		virtual void extractMovableObject(const String& name, const String& typeName);
		/** Extract a previously injected MovableObject.
		@remarks
			Essentially this does the same as destroyMovableObject, but only
			removes the instance from the internal lists, it does not attempt
			to destroy it.
		*/
		virtual void extractMovableObject(MovableObject* m);
		/** Extract all injected MovableObjects of a given type.
		@remarks
			Essentially this does the same as destroyAllMovableObjectsByType, 
			but only removes the instances from the internal lists, it does not 
			attempt to destroy them.
		*/
		virtual void extractAllMovableObjectsByType(const String& typeName);

		/** Sets a mask which is bitwise 'and'ed with objects own visibility masks
			to determine if the object is visible.
		@remarks
			Note that this is combined with any per-viewport visibility mask
			through an 'and' operation. @see Viewport::setVisibilityMask
		*/
		virtual void setVisibilityMask(uint32 vmask) { mVisibilityMask = vmask; }

		/** Gets a mask which is bitwise 'and'ed with objects own visibility masks
			to determine if the object is visible.
		*/
		virtual uint32 getVisibilityMask(void) { return mVisibilityMask; }

		/** Internal method for getting the combination between the global visibility
			mask and the per-viewport visibility mask.
		*/
		uint32 _getCombinedVisibilityMask(void) const;

		/** Sets whether the SceneManager should search for visible objects, or
            whether they are being manually handled.
        @remarks
            This is an advanced function, you should not use this unless you know
            what you are doing.
		*/
		virtual void setFindVisibleObjects(bool find) { mFindVisibleObjects = find; }

		/** Gets whether the SceneManager should search for visible objects, or
            whether they are being manually handled.
 		*/
		virtual bool getFindVisibleObjects(void) { return mFindVisibleObjects; }

		/** Set whether to automatically normalise normals on objects whenever they
			are scaled.
		@remarks
			Scaling can distort normals so the default behaviour is to compensate
			for this, but it has a cost. If you would prefer to manually manage 
			this, set this option to 'false' and use Pass::setNormaliseNormals
			only when needed.
		*/
		virtual void setNormaliseNormalsOnScale(bool n) { mNormaliseNormalsOnScale = n; }

		/** Get whether to automatically normalise normals on objects whenever they
			are scaled.
		*/
		virtual bool getNormaliseNormalsOnScale() const { return mNormaliseNormalsOnScale; }

		/** Set whether to automatically flip the culling mode on objects whenever they
			are negatively scaled.
		@remarks
			Negativelyl scaling an object has the effect of flipping the triangles, 
			so the culling mode should probably be inverted to deal with this. 
			If you would prefer to manually manage this, set this option to 'false' 
			and use different materials with Pass::setCullingMode set manually as needed.
		*/
		virtual void setFlipCullingOnNegativeScale(bool n) { mFlipCullingOnNegativeScale = n; }

		/** Get whether to automatically flip the culling mode on objects whenever they
			are negatively scaled.
		*/
		virtual bool getFlipCullingOnNegativeScale() const { return mFlipCullingOnNegativeScale; }

		/** Render something as if it came from the current queue.
			@param pass		Material pass to use for setting up this quad.
			@param rend		Renderable to render
			@param shadowDerivation Whether passes should be replaced with shadow caster / receiver passes
		 */
		virtual void _injectRenderWithPass(Pass *pass, Renderable *rend, bool shadowDerivation = true,
			bool doLightIteration = false, const LightList* manualLightList = 0);

		/** Indicates to the SceneManager whether it should suppress changing
			the RenderSystem states when rendering objects.
		@remarks
			This method allows you to tell the SceneManager not to change any
			RenderSystem state until you tell it to. This method is only 
			intended for advanced use, don't use it if you're unsure of the 
			effect. The only RenderSystems calls made are to set the world 
			matrix for each object (note - view an projection matrices are NOT
			SET - they are under your control) and to render the object; it is up to 
			the caller to do everything else, including enabling any vertex / 
			fragment programs and updating their parameter state, and binding
			parameters to the RenderSystem.
		@note
			Calling this implicitly disables shadow processing since no shadows
			can be rendered without changing state.
		@param suppress If true, no RenderSystem state changes will be issued
			until this method is called again with a parameter of false.
		*/
		virtual void _suppressRenderStateChanges(bool suppress);
		
		/** Are render state changes suppressed? 
		@see _suppressRenderStateChanges
		*/
		virtual bool _areRenderStateChangesSuppressed(void) const
		{ return mSuppressRenderStateChanges; }

        /** Internal method for setting up the renderstate for a rendering pass.
            @param pass The Pass details to set.
			@param evenIfSuppressed Sets the pass details even if render state
				changes are suppressed; if you are using this to manually set state
				when render state changes are suppressed, you should set this to 
				true.
			@param shadowDerivation If false, disables the derivation of shadow
				passes from original passes
            @return
                A Pass object that was used instead of the one passed in, can
                happen when rendering shadow passes
        */
        virtual const Pass* _setPass(const Pass* pass, 
			bool evenIfSuppressed = false, bool shadowDerivation = true);
		
		/** Method to allow you to mark gpu parameters as dirty, causing them to 
			be updated according to the mask that you set when updateGpuProgramParameters is
			next called. Only really useful if you're controlling parameter state in 
			inner rendering loop callbacks.
			@param mask Some combination of GpuParamVariability which is bitwise OR'ed with the
				current dirty state.
		*/
		virtual void _markGpuParamsDirty(uint16 mask);


		/** Indicates to the SceneManager whether it should suppress the 
			active shadow rendering technique until told otherwise.
		@remarks
			This is a temporary alternative to setShadowTechnique to suppress
			the rendering of shadows and forcing all processing down the 
			standard rendering path. This is intended for internal use only.
		@param suppress If true, no shadow rendering will occur until this
			method is called again with a parameter of false.
		*/
		virtual void _suppressShadows(bool suppress); 

		/** Are shadows suppressed? 
		@see _suppressShadows
		*/
		virtual bool _areShadowsSuppressed(void) const
		{ return mSuppressShadows; }

		/** Render the objects in a given queue group 
		@remarks You should only call this from a RenderQueueInvocation implementation
		*/
		virtual void _renderQueueGroupObjects(RenderQueueGroup* group, 
			QueuedRenderableCollection::OrganisationMode om);

		/** Advanced method for supplying an alternative visitor, used for parsing the
			render queues and sending the results to the renderer.
		@remarks
			You can use this method to insert your own implementation of the 
			QueuedRenderableVisitor interface, which receives calls as the queued
			renderables are parsed in a given order (determined by RenderQueueInvocationSequence)
			and are sent to the renderer. If you provide your own implementation of
			this visitor, you are responsible for either calling the rendersystem, 
			or passing the calls on to the base class implementation.
		@note
			Ownership is not taken of this pointer, you are still required to 
			delete it yourself once you're finished.
		@param visitor Your implementation of SceneMgrQueuedRenderableVisitor. 
			If you pass 0, the default implementation will be used.
		*/
		void setQueuedRenderableVisitor(SceneMgrQueuedRenderableVisitor* visitor);

		/** Gets the current visitor object which processes queued renderables. */
		SceneMgrQueuedRenderableVisitor* getQueuedRenderableVisitor(void) const;


		/** Get the rendersystem subclass to which the output of this Scene Manager
			gets sent
		*/
		RenderSystem *getDestinationRenderSystem();

		/** Gets the current viewport being rendered (advanced use only, only 
			valid during viewport update. */
		Viewport* getCurrentViewport(void) const { return mCurrentViewport; }

		/** Returns a visibility boundary box for a specific camera. */
		const VisibleObjectsBoundsInfo& getVisibleObjectsBoundsInfo(const Camera* cam) const;

		/**  Returns the shadow caster AAB for a specific light-camera combination */
		const VisibleObjectsBoundsInfo& getShadowCasterBoundsInfo(const Light* light, size_t iteration = 0) const;

		/** Set whether to use camera-relative co-ordinates when rendering, ie
			to always place the camera at the origin and move the world around it.
		@remarks
			This is a technique to alleviate some of the precision issues associated with 
			rendering far from the origin, where single-precision floats as used in most
			GPUs begin to lose their precision. Instead of including the camera
			translation in the view matrix, it only includes the rotation, and
			the world matrices of objects must be expressed relative to this.
		@note
			If you need this option, you will probably also need to enable double-precision
			mode in Ogre (OGRE_DOUBLE_PRECISION), since even though this will 
			alleviate the rendering precision, the source camera and object positions will still 
			suffer from precision issues leading to jerky movement. 
		*/
		virtual void setCameraRelativeRendering(bool rel) { mCameraRelativeRendering = rel; }

		/** Get whether to use camera-relative co-ordinates when rendering, ie
			to always place the camera at the origin and move the world around it.
		*/
		virtual bool getCameraRelativeRendering() const { return mCameraRelativeRendering; }


        /** Add a level of detail listener. */
        void addLodListener(LodListener *listener);

        /**
        Remove a level of detail listener.
        @remarks
            Do not call from inside an LodListener callback method.
        */
        void removeLodListener(LodListener *listener);

        /** Notify that a movable object LOD change event has occurred. */
        void _notifyMovableObjectLodChanged(MovableObjectLodChangedEvent& evt);

        /** Notify that an entity mesh LOD change event has occurred. */
        void _notifyEntityMeshLodChanged(EntityMeshLodChangedEvent& evt);

        /** Notify that an entity material LOD change event has occurred. */
        void _notifyEntityMaterialLodChanged(EntityMaterialLodChangedEvent& evt);

        /** Handle LOD events. */
        void _handleLodEvents();

		IlluminationRenderStage _getCurrentRenderStage() {return mIlluminationStage;}
    };

    /** Default implementation of IntersectionSceneQuery. */
    class _OgreExport DefaultIntersectionSceneQuery : 
        public IntersectionSceneQuery
    {
    public:
        DefaultIntersectionSceneQuery(SceneManager* creator);
        ~DefaultIntersectionSceneQuery();

        /** See IntersectionSceneQuery. */
        void execute(IntersectionSceneQueryListener* listener);
    };

    /** Default implementation of RaySceneQuery. */
	class _OgreExport DefaultRaySceneQuery : public RaySceneQuery
    {
    public:
        DefaultRaySceneQuery(SceneManager* creator);
        ~DefaultRaySceneQuery();

        /** See RayScenQuery. */
        void execute(RaySceneQueryListener* listener);
    };
    /** Default implementation of SphereSceneQuery. */
	class _OgreExport DefaultSphereSceneQuery : public SphereSceneQuery
    {
    public:
        DefaultSphereSceneQuery(SceneManager* creator);
        ~DefaultSphereSceneQuery();

        /** See SceneQuery. */
        void execute(SceneQueryListener* listener);
    };
    /** Default implementation of PlaneBoundedVolumeListSceneQuery. */
    class _OgreExport DefaultPlaneBoundedVolumeListSceneQuery : public PlaneBoundedVolumeListSceneQuery
    {
    public:
        DefaultPlaneBoundedVolumeListSceneQuery(SceneManager* creator);
        ~DefaultPlaneBoundedVolumeListSceneQuery();

        /** See SceneQuery. */
        void execute(SceneQueryListener* listener);
    };
    /** Default implementation of AxisAlignedBoxSceneQuery. */
	class _OgreExport DefaultAxisAlignedBoxSceneQuery : public AxisAlignedBoxSceneQuery
    {
    public:
        DefaultAxisAlignedBoxSceneQuery(SceneManager* creator);
        ~DefaultAxisAlignedBoxSceneQuery();

        /** See RayScenQuery. */
        void execute(SceneQueryListener* listener);
    };
    

	/// Bitmask containing scene types
	typedef uint16 SceneTypeMask;

	/** Classification of a scene to allow a decision of what type of
	SceenManager to provide back to the application.
	*/
	enum SceneType
	{
		ST_GENERIC = 1,
		ST_EXTERIOR_CLOSE = 2,
		ST_EXTERIOR_FAR = 4,
		ST_EXTERIOR_REAL_FAR = 8,
		ST_INTERIOR = 16
	};

	/** Structure containing information about a scene manager. */
	struct SceneManagerMetaData
	{
		/// A globally unique string identifying the scene manager type
		String typeName;
		/// A text description of the scene manager
		String description;
		/// A mask describing which sorts of scenes this manager can handle
		SceneTypeMask sceneTypeMask;
		/// Flag indicating whether world geometry is supported
		bool worldGeometrySupported;
	};



	/** Class which will create instances of a given SceneManager. */
	class _OgreExport SceneManagerFactory : public SceneMgtAlloc
	{
	protected:
		mutable SceneManagerMetaData mMetaData;
		mutable bool mMetaDataInit;
		/// Internal method to initialise the metadata, must be implemented
		virtual void initMetaData(void) const = 0;
	public:
		SceneManagerFactory() : mMetaDataInit(true) {}
		virtual ~SceneManagerFactory() {}
		/** Get information about the SceneManager type created by this factory. */
		virtual const SceneManagerMetaData& getMetaData(void) const 
		{
			if (mMetaDataInit)
			{
				initMetaData();
				mMetaDataInit = false;
			}
			return mMetaData; 
		}
		/** Create a new instance of a SceneManager.
		@remarks
		Don't call directly, use SceneManagerEnumerator::createSceneManager.
		*/
		virtual SceneManager* createInstance(const String& instanceName) = 0;
		/** Destroy an instance of a SceneManager. */
		virtual void destroyInstance(SceneManager* instance) = 0;

	};

	/** @} */
	/** @} */


} // Namespace

#include "OgreHeaderSuffix.h"

#endif