This file is indexed.

/usr/include/opencv2/rgbd.hpp is in libopencv-contrib-dev 3.2.0+dfsg-4build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2009, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Willow Garage, Inc. nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 */

#ifndef __OPENCV_RGBD_HPP__
#define __OPENCV_RGBD_HPP__

#ifdef __cplusplus

#include <opencv2/core.hpp>
#include <limits>

/** @defgroup rgbd RGB-Depth Processing
*/

namespace cv
{
namespace rgbd
{

//! @addtogroup rgbd
//! @{

  /** Checks if the value is a valid depth. For CV_16U or CV_16S, the convention is to be invalid if it is
   * a limit. For a float/double, we just check if it is a NaN
   * @param depth the depth to check for validity
   */
  CV_EXPORTS
  inline bool
  isValidDepth(const float & depth)
  {
    return !cvIsNaN(depth);
  }
  CV_EXPORTS
  inline bool
  isValidDepth(const double & depth)
  {
    return !cvIsNaN(depth);
  }
  CV_EXPORTS
  inline bool
  isValidDepth(const short int & depth)
  {
    return (depth != std::numeric_limits<short int>::min()) && (depth != std::numeric_limits<short int>::max());
  }
  CV_EXPORTS
  inline bool
  isValidDepth(const unsigned short int & depth)
  {
    return (depth != std::numeric_limits<unsigned short int>::min())
        && (depth != std::numeric_limits<unsigned short int>::max());
  }
  CV_EXPORTS
  inline bool
  isValidDepth(const int & depth)
  {
    return (depth != std::numeric_limits<int>::min()) && (depth != std::numeric_limits<int>::max());
  }
  CV_EXPORTS
  inline bool
  isValidDepth(const unsigned int & depth)
  {
    return (depth != std::numeric_limits<unsigned int>::min()) && (depth != std::numeric_limits<unsigned int>::max());
  }

  /** Object that can compute the normals in an image.
   * It is an object as it can cache data for speed efficiency
   * The implemented methods are either:
   * - FALS (the fastest) and SRI from
   * ``Fast and Accurate Computation of Surface Normals from Range Images``
   * by H. Badino, D. Huber, Y. Park and T. Kanade
   * - the normals with bilateral filtering on a depth image from
   * ``Gradient Response Maps for Real-Time Detection of Texture-Less Objects``
   * by S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit
   */
  class CV_EXPORTS RgbdNormals: public Algorithm
  {
  public:
    enum RGBD_NORMALS_METHOD
    {
      RGBD_NORMALS_METHOD_FALS, RGBD_NORMALS_METHOD_LINEMOD, RGBD_NORMALS_METHOD_SRI
    };

    RgbdNormals()
        :
          rows_(0),
          cols_(0),
          depth_(0),
          K_(Mat()),
          window_size_(0),
          method_(RGBD_NORMALS_METHOD_FALS),
          rgbd_normals_impl_(0)
    {
    }

    /** Constructor
     * @param rows the number of rows of the depth image normals will be computed on
     * @param cols the number of cols of the depth image normals will be computed on
     * @param depth the depth of the normals (only CV_32F or CV_64F)
     * @param K the calibration matrix to use
     * @param window_size the window size to compute the normals: can only be 1,3,5 or 7
     * @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS
     */
    RgbdNormals(int rows, int cols, int depth, InputArray K, int window_size = 5, int method =
        RGBD_NORMALS_METHOD_FALS);

    ~RgbdNormals();

    /** Given a set of 3d points in a depth image, compute the normals at each point.
     * @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S
     * @param normals a rows x cols x 3 matrix
     */
    void
    operator()(InputArray points, OutputArray normals) const;

    /** Initializes some data that is cached for later computation
     * If that function is not called, it will be called the first time normals are computed
     */
    void
    initialize() const;

    int getRows() const
    {
        return rows_;
    }
    void setRows(int val)
    {
        rows_ = val;
    }
    int getCols() const
    {
        return cols_;
    }
    void setCols(int val)
    {
        cols_ = val;
    }
    int getWindowSize() const
    {
        return window_size_;
    }
    void setWindowSize(int val)
    {
        window_size_ = val;
    }
    int getDepth() const
    {
        return depth_;
    }
    void setDepth(int val)
    {
        depth_ = val;
    }
    cv::Mat getK() const
    {
        return K_;
    }
    void setK(const cv::Mat &val)
    {
        K_ = val;
    }
    int getMethod() const
    {
        return method_;
    }
    void setMethod(int val)
    {
        method_ = val;
    }

  protected:
    void
    initialize_normals_impl(int rows, int cols, int depth, const Mat & K, int window_size, int method) const;

    int rows_, cols_, depth_;
    Mat K_;
    int window_size_;
    int method_;
    mutable void* rgbd_normals_impl_;
  };

  /** Object that can clean a noisy depth image
   */
  class CV_EXPORTS DepthCleaner: public Algorithm
  {
  public:
    /** NIL method is from
     * ``Modeling Kinect Sensor Noise for Improved 3d Reconstruction and Tracking``
     * by C. Nguyen, S. Izadi, D. Lovel
     */
    enum DEPTH_CLEANER_METHOD
    {
      DEPTH_CLEANER_NIL
    };

    DepthCleaner()
        :
          depth_(0),
          window_size_(0),
          method_(DEPTH_CLEANER_NIL),
          depth_cleaner_impl_(0)
    {
    }

    /** Constructor
     * @param depth the depth of the normals (only CV_32F or CV_64F)
     * @param window_size the window size to compute the normals: can only be 1,3,5 or 7
     * @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS
     */
    DepthCleaner(int depth, int window_size = 5, int method = DEPTH_CLEANER_NIL);

    ~DepthCleaner();

    /** Given a set of 3d points in a depth image, compute the normals at each point.
     * @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S
     * @param depth a rows x cols matrix of the cleaned up depth
     */
    void
    operator()(InputArray points, OutputArray depth) const;

    /** Initializes some data that is cached for later computation
     * If that function is not called, it will be called the first time normals are computed
     */
    void
    initialize() const;

    int getWindowSize() const
    {
        return window_size_;
    }
    void setWindowSize(int val)
    {
        window_size_ = val;
    }
    int getDepth() const
    {
        return depth_;
    }
    void setDepth(int val)
    {
        depth_ = val;
    }
    int getMethod() const
    {
        return method_;
    }
    void setMethod(int val)
    {
        method_ = val;
    }

  protected:
    void
    initialize_cleaner_impl() const;

    int depth_;
    int window_size_;
    int method_;
    mutable void* depth_cleaner_impl_;
  };


  /** Registers depth data to an external camera
   * Registration is performed by creating a depth cloud, transforming the cloud by
   * the rigid body transformation between the cameras, and then projecting the
   * transformed points into the RGB camera.
   *
   * uv_rgb = K_rgb * [R | t] * z * inv(K_ir) * uv_ir
   *
   * Currently does not check for negative depth values.
   *
   * @param unregisteredCameraMatrix the camera matrix of the depth camera
   * @param registeredCameraMatrix the camera matrix of the external camera
   * @param registeredDistCoeffs the distortion coefficients of the external camera
   * @param Rt the rigid body transform between the cameras. Transforms points from depth camera frame to external camera frame.
   * @param unregisteredDepth the input depth data
   * @param outputImagePlaneSize the image plane dimensions of the external camera (width, height)
   * @param registeredDepth the result of transforming the depth into the external camera
   * @param depthDilation whether or not the depth is dilated to avoid holes and occlusion errors (optional)
   */
  CV_EXPORTS
  void
  registerDepth(InputArray unregisteredCameraMatrix, InputArray registeredCameraMatrix, InputArray registeredDistCoeffs,
                InputArray Rt, InputArray unregisteredDepth, const Size& outputImagePlaneSize,
                OutputArray registeredDepth, bool depthDilation=false);

  /**
   * @param depth the depth image
   * @param in_K
   * @param in_points the list of xy coordinates
   * @param points3d the resulting 3d points
   */
  CV_EXPORTS
  void
  depthTo3dSparse(InputArray depth, InputArray in_K, InputArray in_points, OutputArray points3d);

  /** Converts a depth image to an organized set of 3d points.
   * The coordinate system is x pointing left, y down and z away from the camera
   * @param depth the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
   *              (as done with the Microsoft Kinect), otherwise, if given as CV_32F or CV_64F, it is assumed in meters)
   * @param K The calibration matrix
   * @param points3d the resulting 3d points. They are of depth the same as `depth` if it is CV_32F or CV_64F, and the
   *        depth of `K` if `depth` is of depth CV_U
   * @param mask the mask of the points to consider (can be empty)
   */
  CV_EXPORTS
  void
  depthTo3d(InputArray depth, InputArray K, OutputArray points3d, InputArray mask = noArray());

  /** If the input image is of type CV_16UC1 (like the Kinect one), the image is converted to floats, divided
   * by 1000 to get a depth in meters, and the values 0 are converted to std::numeric_limits<float>::quiet_NaN()
   * Otherwise, the image is simply converted to floats
   * @param in the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
   *              (as done with the Microsoft Kinect), it is assumed in meters)
   * @param depth the desired output depth (floats or double)
   * @param out The rescaled float depth image
   */
  CV_EXPORTS
  void
  rescaleDepth(InputArray in, int depth, OutputArray out);

  /** Object that can compute planes in an image
   */
  class CV_EXPORTS RgbdPlane: public Algorithm
  {
  public:
    enum RGBD_PLANE_METHOD
    {
      RGBD_PLANE_METHOD_DEFAULT
    };

    RgbdPlane(RGBD_PLANE_METHOD method = RGBD_PLANE_METHOD_DEFAULT)
        :
          method_(method),
          block_size_(40),
          min_size_(block_size_*block_size_),
          threshold_(0.01),
          sensor_error_a_(0),
          sensor_error_b_(0),
          sensor_error_c_(0)
    {
    }

    /** Find The planes in a depth image
     * @param points3d the 3d points organized like the depth image: rows x cols with 3 channels
     * @param normals the normals for every point in the depth image
     * @param mask An image where each pixel is labeled with the plane it belongs to
     *        and 255 if it does not belong to any plane
     * @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0, norm(a,b,c)=1
     *        and c < 0 (so that the normal points towards the camera)
     */
    void
    operator()(InputArray points3d, InputArray normals, OutputArray mask,
               OutputArray plane_coefficients);

    /** Find The planes in a depth image but without doing a normal check, which is faster but less accurate
     * @param points3d the 3d points organized like the depth image: rows x cols with 3 channels
     * @param mask An image where each pixel is labeled with the plane it belongs to
     *        and 255 if it does not belong to any plane
     * @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0
     */
    void
    operator()(InputArray points3d, OutputArray mask, OutputArray plane_coefficients);

    int getBlockSize() const
    {
        return block_size_;
    }
    void setBlockSize(int val)
    {
        block_size_ = val;
    }
    int getMinSize() const
    {
        return min_size_;
    }
    void setMinSize(int val)
    {
        min_size_ = val;
    }
    int getMethod() const
    {
        return method_;
    }
    void setMethod(int val)
    {
        method_ = val;
    }
    double getThreshold() const
    {
        return threshold_;
    }
    void setThreshold(double val)
    {
        threshold_ = val;
    }
    double getSensorErrorA() const
    {
        return sensor_error_a_;
    }
    void setSensorErrorA(double val)
    {
        sensor_error_a_ = val;
    }
    double getSensorErrorB() const
    {
        return sensor_error_b_;
    }
    void setSensorErrorB(double val)
    {
        sensor_error_b_ = val;
    }
    double getSensorErrorC() const
    {
        return sensor_error_c_;
    }
    void setSensorErrorC(double val)
    {
        sensor_error_c_ = val;
    }

  private:
    /** The method to use to compute the planes */
    int method_;
    /** The size of the blocks to look at for a stable MSE */
    int block_size_;
    /** The minimum size of a cluster to be considered a plane */
    int min_size_;
    /** How far a point can be from a plane to belong to it (in meters) */
    double threshold_;
    /** coefficient of the sensor error with respect to the. All 0 by default but you want a=0.0075 for a Kinect */
    double sensor_error_a_, sensor_error_b_, sensor_error_c_;
  };

  /** Object that contains a frame data.
   */
  struct CV_EXPORTS RgbdFrame
  {
      RgbdFrame();
      RgbdFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);
      virtual ~RgbdFrame();

      virtual void
      release();

      int ID;
      Mat image;
      Mat depth;
      Mat mask;
      Mat normals;
  };

  /** Object that contains a frame data that is possibly needed for the Odometry.
   * It's used for the efficiency (to pass precomputed/cached data of the frame that participates
   * in the Odometry processing several times).
   */
  struct CV_EXPORTS OdometryFrame : public RgbdFrame
  {
    /** These constants are used to set a type of cache which has to be prepared depending on the frame role:
     * srcFrame or dstFrame (see compute method of the Odometry class). For the srcFrame and dstFrame different cache data may be required,
     * some part of a cache may be common for both frame roles.
     * @param CACHE_SRC The cache data for the srcFrame will be prepared.
     * @param CACHE_DST The cache data for the dstFrame will be prepared.
     * @param CACHE_ALL The cache data for both srcFrame and dstFrame roles will be computed.
     */
    enum
    {
      CACHE_SRC = 1, CACHE_DST = 2, CACHE_ALL = CACHE_SRC + CACHE_DST
    };

    OdometryFrame();
    OdometryFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);

    virtual void
    release();

    void
    releasePyramids();

    std::vector<Mat> pyramidImage;
    std::vector<Mat> pyramidDepth;
    std::vector<Mat> pyramidMask;

    std::vector<Mat> pyramidCloud;

    std::vector<Mat> pyramid_dI_dx;
    std::vector<Mat> pyramid_dI_dy;
    std::vector<Mat> pyramidTexturedMask;

    std::vector<Mat> pyramidNormals;
    std::vector<Mat> pyramidNormalsMask;
  };

  /** Base class for computation of odometry.
   */
  class CV_EXPORTS Odometry: public Algorithm
  {
  public:

    /** A class of transformation*/
    enum
    {
      ROTATION = 1, TRANSLATION = 2, RIGID_BODY_MOTION = 4
    };

    static inline float
    DEFAULT_MIN_DEPTH()
    {
      return 0.f; // in meters
    }
    static inline float
    DEFAULT_MAX_DEPTH()
    {
      return 4.f; // in meters
    }
    static inline float
    DEFAULT_MAX_DEPTH_DIFF()
    {
      return 0.07f; // in meters
    }
    static inline float
    DEFAULT_MAX_POINTS_PART()
    {
      return 0.07f; // in [0, 1]
    }
    static inline float
    DEFAULT_MAX_TRANSLATION()
    {
      return 0.15f; // in meters
    }
    static inline float
    DEFAULT_MAX_ROTATION()
    {
      return 15; // in degrees
    }

    /** Method to compute a transformation from the source frame to the destination one.
     * Some odometry algorithms do not used some data of frames (eg. ICP does not use images).
     * In such case corresponding arguments can be set as empty Mat.
     * The method returns true if all internal computions were possible (e.g. there were enough correspondences,
     * system of equations has a solution, etc) and resulting transformation satisfies some test if it's provided
     * by the Odometry inheritor implementation (e.g. thresholds for maximum translation and rotation).
     * @param srcImage Image data of the source frame (CV_8UC1)
     * @param srcDepth Depth data of the source frame (CV_32FC1, in meters)
     * @param srcMask Mask that sets which pixels have to be used from the source frame (CV_8UC1)
     * @param dstImage Image data of the destination frame (CV_8UC1)
     * @param dstDepth Depth data of the destination frame (CV_32FC1, in meters)
     * @param dstMask Mask that sets which pixels have to be used from the destination frame (CV_8UC1)
     * @param Rt Resulting transformation from the source frame to the destination one (rigid body motion):
     dst_p = Rt * src_p, where dst_p is a homogeneous point in the destination frame and src_p is
     homogeneous point in the source frame,
     Rt is 4x4 matrix of CV_64FC1 type.
     * @param initRt Initial transformation from the source frame to the destination one (optional)
     */
    bool
    compute(const Mat& srcImage, const Mat& srcDepth, const Mat& srcMask, const Mat& dstImage, const Mat& dstDepth,
            const Mat& dstMask, Mat& Rt, const Mat& initRt = Mat()) const;

    /** One more method to compute a transformation from the source frame to the destination one.
     * It is designed to save on computing the frame data (image pyramids, normals, etc.).
     */
    bool
    compute(Ptr<OdometryFrame>& srcFrame, Ptr<OdometryFrame>& dstFrame, Mat& Rt, const Mat& initRt = Mat()) const;

    /** Prepare a cache for the frame. The function checks the precomputed/passed data (throws the error if this data
     * does not satisfy) and computes all remaining cache data needed for the frame. Returned size is a resolution
     * of the prepared frame.
     * @param frame The odometry which will process the frame.
     * @param cacheType The cache type: CACHE_SRC, CACHE_DST or CACHE_ALL.
     */
    virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;

    static Ptr<Odometry> create(const String & odometryType);

    /** @see setCameraMatrix */
    virtual cv::Mat getCameraMatrix() const = 0;
    /** @copybrief getCameraMatrix @see getCameraMatrix */
    virtual void setCameraMatrix(const cv::Mat &val) = 0;
    /** @see setTransformType */
    virtual int getTransformType() const = 0;
    /** @copybrief getTransformType @see getTransformType */
    virtual void setTransformType(int val) = 0;

  protected:
    virtual void
    checkParams() const = 0;

    virtual bool
    computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
                const Mat& initRt) const = 0;
  };

  /** Odometry based on the paper "Real-Time Visual Odometry from Dense RGB-D Images",
   * F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011.
   */
  class CV_EXPORTS RgbdOdometry: public Odometry
  {
  public:
    RgbdOdometry();
    /** Constructor.
     * @param cameraMatrix Camera matrix
     * @param minDepth Pixels with depth less than minDepth will not be used (in meters)
     * @param maxDepth Pixels with depth larger than maxDepth will not be used (in meters)
     * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
     *                     if their depth difference is larger than maxDepthDiff (in meters)
     * @param iterCounts Count of iterations on each pyramid level.
     * @param minGradientMagnitudes For each pyramid level the pixels will be filtered out
     *                              if they have gradient magnitude less than minGradientMagnitudes[level].
     * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
     * @param transformType Class of transformation
     */
    RgbdOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(),
                 float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), const std::vector<int>& iterCounts = std::vector<int>(),
                 const std::vector<float>& minGradientMagnitudes = std::vector<float>(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(),
                 int transformType = RIGID_BODY_MOTION);

    virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;

    cv::Mat getCameraMatrix() const
    {
        return cameraMatrix;
    }
    void setCameraMatrix(const cv::Mat &val)
    {
        cameraMatrix = val;
    }
    double getMinDepth() const
    {
        return minDepth;
    }
    void setMinDepth(double val)
    {
        minDepth = val;
    }
    double getMaxDepth() const
    {
        return maxDepth;
    }
    void setMaxDepth(double val)
    {
        maxDepth = val;
    }
    double getMaxDepthDiff() const
    {
        return maxDepthDiff;
    }
    void setMaxDepthDiff(double val)
    {
        maxDepthDiff = val;
    }
    cv::Mat getIterationCounts() const
    {
        return iterCounts;
    }
    void setIterationCounts(const cv::Mat &val)
    {
        iterCounts = val;
    }
    cv::Mat getMinGradientMagnitudes() const
    {
        return minGradientMagnitudes;
    }
    void setMinGradientMagnitudes(const cv::Mat &val)
    {
        minGradientMagnitudes = val;
    }
    double getMaxPointsPart() const
    {
        return maxPointsPart;
    }
    void setMaxPointsPart(double val)
    {
        maxPointsPart = val;
    }
    int getTransformType() const
    {
        return transformType;
    }
    void setTransformType(int val)
    {
        transformType = val;
    }
    double getMaxTranslation() const
    {
        return maxTranslation;
    }
    void setMaxTranslation(double val)
    {
        maxTranslation = val;
    }
    double getMaxRotation() const
    {
        return maxRotation;
    }
    void setMaxRotation(double val)
    {
        maxRotation = val;
    }

  protected:
    virtual void
    checkParams() const;

    virtual bool
    computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
                const Mat& initRt) const;

    // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
    /*float*/
    double minDepth, maxDepth, maxDepthDiff;
    /*vector<int>*/
    Mat iterCounts;
    /*vector<float>*/
    Mat minGradientMagnitudes;
    double maxPointsPart;

    Mat cameraMatrix;
    int transformType;

    double maxTranslation, maxRotation;
  };

  /** Odometry based on the paper "KinectFusion: Real-Time Dense Surface Mapping and Tracking",
   * Richard A. Newcombe, Andrew Fitzgibbon, at al, SIGGRAPH, 2011.
   */
  class ICPOdometry: public Odometry
  {
  public:
    ICPOdometry();
    /** Constructor.
     * @param cameraMatrix Camera matrix
     * @param minDepth Pixels with depth less than minDepth will not be used
     * @param maxDepth Pixels with depth larger than maxDepth will not be used
     * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
     *                     if their depth difference is larger than maxDepthDiff
     * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
     * @param iterCounts Count of iterations on each pyramid level.
     * @param transformType Class of trasformation
     */
    ICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(),
                float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(),
                const std::vector<int>& iterCounts = std::vector<int>(), int transformType = RIGID_BODY_MOTION);

    virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;

    cv::Mat getCameraMatrix() const
    {
        return cameraMatrix;
    }
    void setCameraMatrix(const cv::Mat &val)
    {
        cameraMatrix = val;
    }
    double getMinDepth() const
    {
        return minDepth;
    }
    void setMinDepth(double val)
    {
        minDepth = val;
    }
    double getMaxDepth() const
    {
        return maxDepth;
    }
    void setMaxDepth(double val)
    {
        maxDepth = val;
    }
    double getMaxDepthDiff() const
    {
        return maxDepthDiff;
    }
    void setMaxDepthDiff(double val)
    {
        maxDepthDiff = val;
    }
    cv::Mat getIterationCounts() const
    {
        return iterCounts;
    }
    void setIterationCounts(const cv::Mat &val)
    {
        iterCounts = val;
    }
    double getMaxPointsPart() const
    {
        return maxPointsPart;
    }
    void setMaxPointsPart(double val)
    {
        maxPointsPart = val;
    }
    int getTransformType() const
    {
        return transformType;
    }
    void setTransformType(int val)
    {
        transformType = val;
    }
    double getMaxTranslation() const
    {
        return maxTranslation;
    }
    void setMaxTranslation(double val)
    {
        maxTranslation = val;
    }
    double getMaxRotation() const
    {
        return maxRotation;
    }
    void setMaxRotation(double val)
    {
        maxRotation = val;
    }
    Ptr<RgbdNormals> getNormalsComputer() const
    {
        return normalsComputer;
    }

  protected:
    virtual void
    checkParams() const;

    virtual bool
    computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
                const Mat& initRt) const;

    // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
    /*float*/
    double minDepth, maxDepth, maxDepthDiff;
    /*float*/
    double maxPointsPart;
    /*vector<int>*/
    Mat iterCounts;

    Mat cameraMatrix;
    int transformType;

    double maxTranslation, maxRotation;

    mutable Ptr<RgbdNormals> normalsComputer;
  };

  /** Odometry that merges RgbdOdometry and ICPOdometry by minimize sum of their energy functions.
   */

  class RgbdICPOdometry: public Odometry
  {
  public:
    RgbdICPOdometry();
    /** Constructor.
     * @param cameraMatrix Camera matrix
     * @param minDepth Pixels with depth less than minDepth will not be used
     * @param maxDepth Pixels with depth larger than maxDepth will not be used
     * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
     *                     if their depth difference is larger than maxDepthDiff
     * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
     * @param iterCounts Count of iterations on each pyramid level.
     * @param minGradientMagnitudes For each pyramid level the pixels will be filtered out
     *                              if they have gradient magnitude less than minGradientMagnitudes[level].
     * @param transformType Class of trasformation
     */
    RgbdICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(),
                    float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(),
                    const std::vector<int>& iterCounts = std::vector<int>(),
                    const std::vector<float>& minGradientMagnitudes = std::vector<float>(),
                    int transformType = RIGID_BODY_MOTION);

    virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;

    cv::Mat getCameraMatrix() const
    {
        return cameraMatrix;
    }
    void setCameraMatrix(const cv::Mat &val)
    {
        cameraMatrix = val;
    }
    double getMinDepth() const
    {
        return minDepth;
    }
    void setMinDepth(double val)
    {
        minDepth = val;
    }
    double getMaxDepth() const
    {
        return maxDepth;
    }
    void setMaxDepth(double val)
    {
        maxDepth = val;
    }
    double getMaxDepthDiff() const
    {
        return maxDepthDiff;
    }
    void setMaxDepthDiff(double val)
    {
        maxDepthDiff = val;
    }
    double getMaxPointsPart() const
    {
        return maxPointsPart;
    }
    void setMaxPointsPart(double val)
    {
        maxPointsPart = val;
    }
    cv::Mat getIterationCounts() const
    {
        return iterCounts;
    }
    void setIterationCounts(const cv::Mat &val)
    {
        iterCounts = val;
    }
    cv::Mat getMinGradientMagnitudes() const
    {
        return minGradientMagnitudes;
    }
    void setMinGradientMagnitudes(const cv::Mat &val)
    {
        minGradientMagnitudes = val;
    }
    int getTransformType() const
    {
        return transformType;
    }
    void setTransformType(int val)
    {
        transformType = val;
    }
    double getMaxTranslation() const
    {
        return maxTranslation;
    }
    void setMaxTranslation(double val)
    {
        maxTranslation = val;
    }
    double getMaxRotation() const
    {
        return maxRotation;
    }
    void setMaxRotation(double val)
    {
        maxRotation = val;
    }
    Ptr<RgbdNormals> getNormalsComputer() const
    {
        return normalsComputer;
    }

  protected:
    virtual void
    checkParams() const;

    virtual bool
    computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
                const Mat& initRt) const;

    // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
    /*float*/
    double minDepth, maxDepth, maxDepthDiff;
    /*float*/
    double maxPointsPart;
    /*vector<int>*/
    Mat iterCounts;
    /*vector<float>*/
    Mat minGradientMagnitudes;

    Mat cameraMatrix;
    int transformType;

    double maxTranslation, maxRotation;

    mutable Ptr<RgbdNormals> normalsComputer;
  };

  /** Warp the image: compute 3d points from the depth, transform them using given transformation,
   * then project color point cloud to an image plane.
   * This function can be used to visualize results of the Odometry algorithm.
   * @param image The image (of CV_8UC1 or CV_8UC3 type)
   * @param depth The depth (of type used in depthTo3d fuction)
   * @param mask The mask of used pixels (of CV_8UC1), it can be empty
   * @param Rt The transformation that will be applied to the 3d points computed from the depth
   * @param cameraMatrix Camera matrix
   * @param distCoeff Distortion coefficients
   * @param warpedImage The warped image.
   * @param warpedDepth The warped depth.
   * @param warpedMask The warped mask.
   */
  CV_EXPORTS
  void
  warpFrame(const Mat& image, const Mat& depth, const Mat& mask, const Mat& Rt, const Mat& cameraMatrix,
            const Mat& distCoeff, Mat& warpedImage, Mat* warpedDepth = 0, Mat* warpedMask = 0);

// TODO Depth interpolation
// Curvature
// Get rescaleDepth return dubles if asked for

//! @}

} /* namespace rgbd */
} /* namespace cv */

#include "opencv2/rgbd/linemod.hpp"

#endif /* __cplusplus */
#endif

/* End of file. */