/usr/include/opencv2/rgbd.hpp is in libopencv-contrib-dev 3.2.0+dfsg-4build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 | /*
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef __OPENCV_RGBD_HPP__
#define __OPENCV_RGBD_HPP__
#ifdef __cplusplus
#include <opencv2/core.hpp>
#include <limits>
/** @defgroup rgbd RGB-Depth Processing
*/
namespace cv
{
namespace rgbd
{
//! @addtogroup rgbd
//! @{
/** Checks if the value is a valid depth. For CV_16U or CV_16S, the convention is to be invalid if it is
* a limit. For a float/double, we just check if it is a NaN
* @param depth the depth to check for validity
*/
CV_EXPORTS
inline bool
isValidDepth(const float & depth)
{
return !cvIsNaN(depth);
}
CV_EXPORTS
inline bool
isValidDepth(const double & depth)
{
return !cvIsNaN(depth);
}
CV_EXPORTS
inline bool
isValidDepth(const short int & depth)
{
return (depth != std::numeric_limits<short int>::min()) && (depth != std::numeric_limits<short int>::max());
}
CV_EXPORTS
inline bool
isValidDepth(const unsigned short int & depth)
{
return (depth != std::numeric_limits<unsigned short int>::min())
&& (depth != std::numeric_limits<unsigned short int>::max());
}
CV_EXPORTS
inline bool
isValidDepth(const int & depth)
{
return (depth != std::numeric_limits<int>::min()) && (depth != std::numeric_limits<int>::max());
}
CV_EXPORTS
inline bool
isValidDepth(const unsigned int & depth)
{
return (depth != std::numeric_limits<unsigned int>::min()) && (depth != std::numeric_limits<unsigned int>::max());
}
/** Object that can compute the normals in an image.
* It is an object as it can cache data for speed efficiency
* The implemented methods are either:
* - FALS (the fastest) and SRI from
* ``Fast and Accurate Computation of Surface Normals from Range Images``
* by H. Badino, D. Huber, Y. Park and T. Kanade
* - the normals with bilateral filtering on a depth image from
* ``Gradient Response Maps for Real-Time Detection of Texture-Less Objects``
* by S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit
*/
class CV_EXPORTS RgbdNormals: public Algorithm
{
public:
enum RGBD_NORMALS_METHOD
{
RGBD_NORMALS_METHOD_FALS, RGBD_NORMALS_METHOD_LINEMOD, RGBD_NORMALS_METHOD_SRI
};
RgbdNormals()
:
rows_(0),
cols_(0),
depth_(0),
K_(Mat()),
window_size_(0),
method_(RGBD_NORMALS_METHOD_FALS),
rgbd_normals_impl_(0)
{
}
/** Constructor
* @param rows the number of rows of the depth image normals will be computed on
* @param cols the number of cols of the depth image normals will be computed on
* @param depth the depth of the normals (only CV_32F or CV_64F)
* @param K the calibration matrix to use
* @param window_size the window size to compute the normals: can only be 1,3,5 or 7
* @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS
*/
RgbdNormals(int rows, int cols, int depth, InputArray K, int window_size = 5, int method =
RGBD_NORMALS_METHOD_FALS);
~RgbdNormals();
/** Given a set of 3d points in a depth image, compute the normals at each point.
* @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S
* @param normals a rows x cols x 3 matrix
*/
void
operator()(InputArray points, OutputArray normals) const;
/** Initializes some data that is cached for later computation
* If that function is not called, it will be called the first time normals are computed
*/
void
initialize() const;
int getRows() const
{
return rows_;
}
void setRows(int val)
{
rows_ = val;
}
int getCols() const
{
return cols_;
}
void setCols(int val)
{
cols_ = val;
}
int getWindowSize() const
{
return window_size_;
}
void setWindowSize(int val)
{
window_size_ = val;
}
int getDepth() const
{
return depth_;
}
void setDepth(int val)
{
depth_ = val;
}
cv::Mat getK() const
{
return K_;
}
void setK(const cv::Mat &val)
{
K_ = val;
}
int getMethod() const
{
return method_;
}
void setMethod(int val)
{
method_ = val;
}
protected:
void
initialize_normals_impl(int rows, int cols, int depth, const Mat & K, int window_size, int method) const;
int rows_, cols_, depth_;
Mat K_;
int window_size_;
int method_;
mutable void* rgbd_normals_impl_;
};
/** Object that can clean a noisy depth image
*/
class CV_EXPORTS DepthCleaner: public Algorithm
{
public:
/** NIL method is from
* ``Modeling Kinect Sensor Noise for Improved 3d Reconstruction and Tracking``
* by C. Nguyen, S. Izadi, D. Lovel
*/
enum DEPTH_CLEANER_METHOD
{
DEPTH_CLEANER_NIL
};
DepthCleaner()
:
depth_(0),
window_size_(0),
method_(DEPTH_CLEANER_NIL),
depth_cleaner_impl_(0)
{
}
/** Constructor
* @param depth the depth of the normals (only CV_32F or CV_64F)
* @param window_size the window size to compute the normals: can only be 1,3,5 or 7
* @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS
*/
DepthCleaner(int depth, int window_size = 5, int method = DEPTH_CLEANER_NIL);
~DepthCleaner();
/** Given a set of 3d points in a depth image, compute the normals at each point.
* @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S
* @param depth a rows x cols matrix of the cleaned up depth
*/
void
operator()(InputArray points, OutputArray depth) const;
/** Initializes some data that is cached for later computation
* If that function is not called, it will be called the first time normals are computed
*/
void
initialize() const;
int getWindowSize() const
{
return window_size_;
}
void setWindowSize(int val)
{
window_size_ = val;
}
int getDepth() const
{
return depth_;
}
void setDepth(int val)
{
depth_ = val;
}
int getMethod() const
{
return method_;
}
void setMethod(int val)
{
method_ = val;
}
protected:
void
initialize_cleaner_impl() const;
int depth_;
int window_size_;
int method_;
mutable void* depth_cleaner_impl_;
};
/** Registers depth data to an external camera
* Registration is performed by creating a depth cloud, transforming the cloud by
* the rigid body transformation between the cameras, and then projecting the
* transformed points into the RGB camera.
*
* uv_rgb = K_rgb * [R | t] * z * inv(K_ir) * uv_ir
*
* Currently does not check for negative depth values.
*
* @param unregisteredCameraMatrix the camera matrix of the depth camera
* @param registeredCameraMatrix the camera matrix of the external camera
* @param registeredDistCoeffs the distortion coefficients of the external camera
* @param Rt the rigid body transform between the cameras. Transforms points from depth camera frame to external camera frame.
* @param unregisteredDepth the input depth data
* @param outputImagePlaneSize the image plane dimensions of the external camera (width, height)
* @param registeredDepth the result of transforming the depth into the external camera
* @param depthDilation whether or not the depth is dilated to avoid holes and occlusion errors (optional)
*/
CV_EXPORTS
void
registerDepth(InputArray unregisteredCameraMatrix, InputArray registeredCameraMatrix, InputArray registeredDistCoeffs,
InputArray Rt, InputArray unregisteredDepth, const Size& outputImagePlaneSize,
OutputArray registeredDepth, bool depthDilation=false);
/**
* @param depth the depth image
* @param in_K
* @param in_points the list of xy coordinates
* @param points3d the resulting 3d points
*/
CV_EXPORTS
void
depthTo3dSparse(InputArray depth, InputArray in_K, InputArray in_points, OutputArray points3d);
/** Converts a depth image to an organized set of 3d points.
* The coordinate system is x pointing left, y down and z away from the camera
* @param depth the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
* (as done with the Microsoft Kinect), otherwise, if given as CV_32F or CV_64F, it is assumed in meters)
* @param K The calibration matrix
* @param points3d the resulting 3d points. They are of depth the same as `depth` if it is CV_32F or CV_64F, and the
* depth of `K` if `depth` is of depth CV_U
* @param mask the mask of the points to consider (can be empty)
*/
CV_EXPORTS
void
depthTo3d(InputArray depth, InputArray K, OutputArray points3d, InputArray mask = noArray());
/** If the input image is of type CV_16UC1 (like the Kinect one), the image is converted to floats, divided
* by 1000 to get a depth in meters, and the values 0 are converted to std::numeric_limits<float>::quiet_NaN()
* Otherwise, the image is simply converted to floats
* @param in the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
* (as done with the Microsoft Kinect), it is assumed in meters)
* @param depth the desired output depth (floats or double)
* @param out The rescaled float depth image
*/
CV_EXPORTS
void
rescaleDepth(InputArray in, int depth, OutputArray out);
/** Object that can compute planes in an image
*/
class CV_EXPORTS RgbdPlane: public Algorithm
{
public:
enum RGBD_PLANE_METHOD
{
RGBD_PLANE_METHOD_DEFAULT
};
RgbdPlane(RGBD_PLANE_METHOD method = RGBD_PLANE_METHOD_DEFAULT)
:
method_(method),
block_size_(40),
min_size_(block_size_*block_size_),
threshold_(0.01),
sensor_error_a_(0),
sensor_error_b_(0),
sensor_error_c_(0)
{
}
/** Find The planes in a depth image
* @param points3d the 3d points organized like the depth image: rows x cols with 3 channels
* @param normals the normals for every point in the depth image
* @param mask An image where each pixel is labeled with the plane it belongs to
* and 255 if it does not belong to any plane
* @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0, norm(a,b,c)=1
* and c < 0 (so that the normal points towards the camera)
*/
void
operator()(InputArray points3d, InputArray normals, OutputArray mask,
OutputArray plane_coefficients);
/** Find The planes in a depth image but without doing a normal check, which is faster but less accurate
* @param points3d the 3d points organized like the depth image: rows x cols with 3 channels
* @param mask An image where each pixel is labeled with the plane it belongs to
* and 255 if it does not belong to any plane
* @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0
*/
void
operator()(InputArray points3d, OutputArray mask, OutputArray plane_coefficients);
int getBlockSize() const
{
return block_size_;
}
void setBlockSize(int val)
{
block_size_ = val;
}
int getMinSize() const
{
return min_size_;
}
void setMinSize(int val)
{
min_size_ = val;
}
int getMethod() const
{
return method_;
}
void setMethod(int val)
{
method_ = val;
}
double getThreshold() const
{
return threshold_;
}
void setThreshold(double val)
{
threshold_ = val;
}
double getSensorErrorA() const
{
return sensor_error_a_;
}
void setSensorErrorA(double val)
{
sensor_error_a_ = val;
}
double getSensorErrorB() const
{
return sensor_error_b_;
}
void setSensorErrorB(double val)
{
sensor_error_b_ = val;
}
double getSensorErrorC() const
{
return sensor_error_c_;
}
void setSensorErrorC(double val)
{
sensor_error_c_ = val;
}
private:
/** The method to use to compute the planes */
int method_;
/** The size of the blocks to look at for a stable MSE */
int block_size_;
/** The minimum size of a cluster to be considered a plane */
int min_size_;
/** How far a point can be from a plane to belong to it (in meters) */
double threshold_;
/** coefficient of the sensor error with respect to the. All 0 by default but you want a=0.0075 for a Kinect */
double sensor_error_a_, sensor_error_b_, sensor_error_c_;
};
/** Object that contains a frame data.
*/
struct CV_EXPORTS RgbdFrame
{
RgbdFrame();
RgbdFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);
virtual ~RgbdFrame();
virtual void
release();
int ID;
Mat image;
Mat depth;
Mat mask;
Mat normals;
};
/** Object that contains a frame data that is possibly needed for the Odometry.
* It's used for the efficiency (to pass precomputed/cached data of the frame that participates
* in the Odometry processing several times).
*/
struct CV_EXPORTS OdometryFrame : public RgbdFrame
{
/** These constants are used to set a type of cache which has to be prepared depending on the frame role:
* srcFrame or dstFrame (see compute method of the Odometry class). For the srcFrame and dstFrame different cache data may be required,
* some part of a cache may be common for both frame roles.
* @param CACHE_SRC The cache data for the srcFrame will be prepared.
* @param CACHE_DST The cache data for the dstFrame will be prepared.
* @param CACHE_ALL The cache data for both srcFrame and dstFrame roles will be computed.
*/
enum
{
CACHE_SRC = 1, CACHE_DST = 2, CACHE_ALL = CACHE_SRC + CACHE_DST
};
OdometryFrame();
OdometryFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1);
virtual void
release();
void
releasePyramids();
std::vector<Mat> pyramidImage;
std::vector<Mat> pyramidDepth;
std::vector<Mat> pyramidMask;
std::vector<Mat> pyramidCloud;
std::vector<Mat> pyramid_dI_dx;
std::vector<Mat> pyramid_dI_dy;
std::vector<Mat> pyramidTexturedMask;
std::vector<Mat> pyramidNormals;
std::vector<Mat> pyramidNormalsMask;
};
/** Base class for computation of odometry.
*/
class CV_EXPORTS Odometry: public Algorithm
{
public:
/** A class of transformation*/
enum
{
ROTATION = 1, TRANSLATION = 2, RIGID_BODY_MOTION = 4
};
static inline float
DEFAULT_MIN_DEPTH()
{
return 0.f; // in meters
}
static inline float
DEFAULT_MAX_DEPTH()
{
return 4.f; // in meters
}
static inline float
DEFAULT_MAX_DEPTH_DIFF()
{
return 0.07f; // in meters
}
static inline float
DEFAULT_MAX_POINTS_PART()
{
return 0.07f; // in [0, 1]
}
static inline float
DEFAULT_MAX_TRANSLATION()
{
return 0.15f; // in meters
}
static inline float
DEFAULT_MAX_ROTATION()
{
return 15; // in degrees
}
/** Method to compute a transformation from the source frame to the destination one.
* Some odometry algorithms do not used some data of frames (eg. ICP does not use images).
* In such case corresponding arguments can be set as empty Mat.
* The method returns true if all internal computions were possible (e.g. there were enough correspondences,
* system of equations has a solution, etc) and resulting transformation satisfies some test if it's provided
* by the Odometry inheritor implementation (e.g. thresholds for maximum translation and rotation).
* @param srcImage Image data of the source frame (CV_8UC1)
* @param srcDepth Depth data of the source frame (CV_32FC1, in meters)
* @param srcMask Mask that sets which pixels have to be used from the source frame (CV_8UC1)
* @param dstImage Image data of the destination frame (CV_8UC1)
* @param dstDepth Depth data of the destination frame (CV_32FC1, in meters)
* @param dstMask Mask that sets which pixels have to be used from the destination frame (CV_8UC1)
* @param Rt Resulting transformation from the source frame to the destination one (rigid body motion):
dst_p = Rt * src_p, where dst_p is a homogeneous point in the destination frame and src_p is
homogeneous point in the source frame,
Rt is 4x4 matrix of CV_64FC1 type.
* @param initRt Initial transformation from the source frame to the destination one (optional)
*/
bool
compute(const Mat& srcImage, const Mat& srcDepth, const Mat& srcMask, const Mat& dstImage, const Mat& dstDepth,
const Mat& dstMask, Mat& Rt, const Mat& initRt = Mat()) const;
/** One more method to compute a transformation from the source frame to the destination one.
* It is designed to save on computing the frame data (image pyramids, normals, etc.).
*/
bool
compute(Ptr<OdometryFrame>& srcFrame, Ptr<OdometryFrame>& dstFrame, Mat& Rt, const Mat& initRt = Mat()) const;
/** Prepare a cache for the frame. The function checks the precomputed/passed data (throws the error if this data
* does not satisfy) and computes all remaining cache data needed for the frame. Returned size is a resolution
* of the prepared frame.
* @param frame The odometry which will process the frame.
* @param cacheType The cache type: CACHE_SRC, CACHE_DST or CACHE_ALL.
*/
virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;
static Ptr<Odometry> create(const String & odometryType);
/** @see setCameraMatrix */
virtual cv::Mat getCameraMatrix() const = 0;
/** @copybrief getCameraMatrix @see getCameraMatrix */
virtual void setCameraMatrix(const cv::Mat &val) = 0;
/** @see setTransformType */
virtual int getTransformType() const = 0;
/** @copybrief getTransformType @see getTransformType */
virtual void setTransformType(int val) = 0;
protected:
virtual void
checkParams() const = 0;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
const Mat& initRt) const = 0;
};
/** Odometry based on the paper "Real-Time Visual Odometry from Dense RGB-D Images",
* F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011.
*/
class CV_EXPORTS RgbdOdometry: public Odometry
{
public:
RgbdOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param minDepth Pixels with depth less than minDepth will not be used (in meters)
* @param maxDepth Pixels with depth larger than maxDepth will not be used (in meters)
* @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff (in meters)
* @param iterCounts Count of iterations on each pyramid level.
* @param minGradientMagnitudes For each pyramid level the pixels will be filtered out
* if they have gradient magnitude less than minGradientMagnitudes[level].
* @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
* @param transformType Class of transformation
*/
RgbdOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(),
float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), const std::vector<int>& iterCounts = std::vector<int>(),
const std::vector<float>& minGradientMagnitudes = std::vector<float>(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(),
int transformType = RIGID_BODY_MOTION);
virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;
cv::Mat getCameraMatrix() const
{
return cameraMatrix;
}
void setCameraMatrix(const cv::Mat &val)
{
cameraMatrix = val;
}
double getMinDepth() const
{
return minDepth;
}
void setMinDepth(double val)
{
minDepth = val;
}
double getMaxDepth() const
{
return maxDepth;
}
void setMaxDepth(double val)
{
maxDepth = val;
}
double getMaxDepthDiff() const
{
return maxDepthDiff;
}
void setMaxDepthDiff(double val)
{
maxDepthDiff = val;
}
cv::Mat getIterationCounts() const
{
return iterCounts;
}
void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
cv::Mat getMinGradientMagnitudes() const
{
return minGradientMagnitudes;
}
void setMinGradientMagnitudes(const cv::Mat &val)
{
minGradientMagnitudes = val;
}
double getMaxPointsPart() const
{
return maxPointsPart;
}
void setMaxPointsPart(double val)
{
maxPointsPart = val;
}
int getTransformType() const
{
return transformType;
}
void setTransformType(int val)
{
transformType = val;
}
double getMaxTranslation() const
{
return maxTranslation;
}
void setMaxTranslation(double val)
{
maxTranslation = val;
}
double getMaxRotation() const
{
return maxRotation;
}
void setMaxRotation(double val)
{
maxRotation = val;
}
protected:
virtual void
checkParams() const;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
const Mat& initRt) const;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
/*float*/
double minDepth, maxDepth, maxDepthDiff;
/*vector<int>*/
Mat iterCounts;
/*vector<float>*/
Mat minGradientMagnitudes;
double maxPointsPart;
Mat cameraMatrix;
int transformType;
double maxTranslation, maxRotation;
};
/** Odometry based on the paper "KinectFusion: Real-Time Dense Surface Mapping and Tracking",
* Richard A. Newcombe, Andrew Fitzgibbon, at al, SIGGRAPH, 2011.
*/
class ICPOdometry: public Odometry
{
public:
ICPOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param minDepth Pixels with depth less than minDepth will not be used
* @param maxDepth Pixels with depth larger than maxDepth will not be used
* @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff
* @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
* @param iterCounts Count of iterations on each pyramid level.
* @param transformType Class of trasformation
*/
ICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(),
float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(),
const std::vector<int>& iterCounts = std::vector<int>(), int transformType = RIGID_BODY_MOTION);
virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;
cv::Mat getCameraMatrix() const
{
return cameraMatrix;
}
void setCameraMatrix(const cv::Mat &val)
{
cameraMatrix = val;
}
double getMinDepth() const
{
return minDepth;
}
void setMinDepth(double val)
{
minDepth = val;
}
double getMaxDepth() const
{
return maxDepth;
}
void setMaxDepth(double val)
{
maxDepth = val;
}
double getMaxDepthDiff() const
{
return maxDepthDiff;
}
void setMaxDepthDiff(double val)
{
maxDepthDiff = val;
}
cv::Mat getIterationCounts() const
{
return iterCounts;
}
void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
double getMaxPointsPart() const
{
return maxPointsPart;
}
void setMaxPointsPart(double val)
{
maxPointsPart = val;
}
int getTransformType() const
{
return transformType;
}
void setTransformType(int val)
{
transformType = val;
}
double getMaxTranslation() const
{
return maxTranslation;
}
void setMaxTranslation(double val)
{
maxTranslation = val;
}
double getMaxRotation() const
{
return maxRotation;
}
void setMaxRotation(double val)
{
maxRotation = val;
}
Ptr<RgbdNormals> getNormalsComputer() const
{
return normalsComputer;
}
protected:
virtual void
checkParams() const;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
const Mat& initRt) const;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
/*float*/
double minDepth, maxDepth, maxDepthDiff;
/*float*/
double maxPointsPart;
/*vector<int>*/
Mat iterCounts;
Mat cameraMatrix;
int transformType;
double maxTranslation, maxRotation;
mutable Ptr<RgbdNormals> normalsComputer;
};
/** Odometry that merges RgbdOdometry and ICPOdometry by minimize sum of their energy functions.
*/
class RgbdICPOdometry: public Odometry
{
public:
RgbdICPOdometry();
/** Constructor.
* @param cameraMatrix Camera matrix
* @param minDepth Pixels with depth less than minDepth will not be used
* @param maxDepth Pixels with depth larger than maxDepth will not be used
* @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out
* if their depth difference is larger than maxDepthDiff
* @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart
* @param iterCounts Count of iterations on each pyramid level.
* @param minGradientMagnitudes For each pyramid level the pixels will be filtered out
* if they have gradient magnitude less than minGradientMagnitudes[level].
* @param transformType Class of trasformation
*/
RgbdICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(),
float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(),
const std::vector<int>& iterCounts = std::vector<int>(),
const std::vector<float>& minGradientMagnitudes = std::vector<float>(),
int transformType = RIGID_BODY_MOTION);
virtual Size prepareFrameCache(Ptr<OdometryFrame>& frame, int cacheType) const;
cv::Mat getCameraMatrix() const
{
return cameraMatrix;
}
void setCameraMatrix(const cv::Mat &val)
{
cameraMatrix = val;
}
double getMinDepth() const
{
return minDepth;
}
void setMinDepth(double val)
{
minDepth = val;
}
double getMaxDepth() const
{
return maxDepth;
}
void setMaxDepth(double val)
{
maxDepth = val;
}
double getMaxDepthDiff() const
{
return maxDepthDiff;
}
void setMaxDepthDiff(double val)
{
maxDepthDiff = val;
}
double getMaxPointsPart() const
{
return maxPointsPart;
}
void setMaxPointsPart(double val)
{
maxPointsPart = val;
}
cv::Mat getIterationCounts() const
{
return iterCounts;
}
void setIterationCounts(const cv::Mat &val)
{
iterCounts = val;
}
cv::Mat getMinGradientMagnitudes() const
{
return minGradientMagnitudes;
}
void setMinGradientMagnitudes(const cv::Mat &val)
{
minGradientMagnitudes = val;
}
int getTransformType() const
{
return transformType;
}
void setTransformType(int val)
{
transformType = val;
}
double getMaxTranslation() const
{
return maxTranslation;
}
void setMaxTranslation(double val)
{
maxTranslation = val;
}
double getMaxRotation() const
{
return maxRotation;
}
void setMaxRotation(double val)
{
maxRotation = val;
}
Ptr<RgbdNormals> getNormalsComputer() const
{
return normalsComputer;
}
protected:
virtual void
checkParams() const;
virtual bool
computeImpl(const Ptr<OdometryFrame>& srcFrame, const Ptr<OdometryFrame>& dstFrame, Mat& Rt,
const Mat& initRt) const;
// Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now.
/*float*/
double minDepth, maxDepth, maxDepthDiff;
/*float*/
double maxPointsPart;
/*vector<int>*/
Mat iterCounts;
/*vector<float>*/
Mat minGradientMagnitudes;
Mat cameraMatrix;
int transformType;
double maxTranslation, maxRotation;
mutable Ptr<RgbdNormals> normalsComputer;
};
/** Warp the image: compute 3d points from the depth, transform them using given transformation,
* then project color point cloud to an image plane.
* This function can be used to visualize results of the Odometry algorithm.
* @param image The image (of CV_8UC1 or CV_8UC3 type)
* @param depth The depth (of type used in depthTo3d fuction)
* @param mask The mask of used pixels (of CV_8UC1), it can be empty
* @param Rt The transformation that will be applied to the 3d points computed from the depth
* @param cameraMatrix Camera matrix
* @param distCoeff Distortion coefficients
* @param warpedImage The warped image.
* @param warpedDepth The warped depth.
* @param warpedMask The warped mask.
*/
CV_EXPORTS
void
warpFrame(const Mat& image, const Mat& depth, const Mat& mask, const Mat& Rt, const Mat& cameraMatrix,
const Mat& distCoeff, Mat& warpedImage, Mat* warpedDepth = 0, Mat* warpedMask = 0);
// TODO Depth interpolation
// Curvature
// Get rescaleDepth return dubles if asked for
//! @}
} /* namespace rgbd */
} /* namespace cv */
#include "opencv2/rgbd/linemod.hpp"
#endif /* __cplusplus */
#endif
/* End of file. */
|