This file is indexed.

/usr/include/opencv2/core/mat.hpp is in libopencv-core-dev 3.2.0+dfsg-4build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_CORE_MAT_HPP
#define OPENCV_CORE_MAT_HPP

#ifndef __cplusplus
#  error mat.hpp header must be compiled as C++
#endif

#include "opencv2/core/matx.hpp"
#include "opencv2/core/types.hpp"

#include "opencv2/core/bufferpool.hpp"

namespace cv
{

//! @addtogroup core_basic
//! @{

enum { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25,
    ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 };

class CV_EXPORTS _OutputArray;

//////////////////////// Input/Output Array Arguments /////////////////////////////////

/** @brief This is the proxy class for passing read-only input arrays into OpenCV functions.

It is defined as:
@code
    typedef const _InputArray& InputArray;
@endcode
where _InputArray is a class that can be constructed from `Mat`, `Mat_<T>`, `Matx<T, m, n>`,
`std::vector<T>`, `std::vector<std::vector<T> >` or `std::vector<Mat>`. It can also be constructed
from a matrix expression.

Since this is mostly implementation-level class, and its interface may change in future versions, we
do not describe it in details. There are a few key things, though, that should be kept in mind:

-   When you see in the reference manual or in OpenCV source code a function that takes
    InputArray, it means that you can actually pass `Mat`, `Matx`, `vector<T>` etc. (see above the
    complete list).
-   Optional input arguments: If some of the input arrays may be empty, pass cv::noArray() (or
    simply cv::Mat() as you probably did before).
-   The class is designed solely for passing parameters. That is, normally you *should not*
    declare class members, local and global variables of this type.
-   If you want to design your own function or a class method that can operate of arrays of
    multiple types, you can use InputArray (or OutputArray) for the respective parameters. Inside
    a function you should use _InputArray::getMat() method to construct a matrix header for the
    array (without copying data). _InputArray::kind() can be used to distinguish Mat from
    `vector<>` etc., but normally it is not needed.

Here is how you can use a function that takes InputArray :
@code
    std::vector<Point2f> vec;
    // points or a circle
    for( int i = 0; i < 30; i++ )
        vec.push_back(Point2f((float)(100 + 30*cos(i*CV_PI*2/5)),
                              (float)(100 - 30*sin(i*CV_PI*2/5))));
    cv::transform(vec, vec, cv::Matx23f(0.707, -0.707, 10, 0.707, 0.707, 20));
@endcode
That is, we form an STL vector containing points, and apply in-place affine transformation to the
vector using the 2x3 matrix created inline as `Matx<float, 2, 3>` instance.

Here is how such a function can be implemented (for simplicity, we implement a very specific case of
it, according to the assertion statement inside) :
@code
    void myAffineTransform(InputArray _src, OutputArray _dst, InputArray _m)
    {
        // get Mat headers for input arrays. This is O(1) operation,
        // unless _src and/or _m are matrix expressions.
        Mat src = _src.getMat(), m = _m.getMat();
        CV_Assert( src.type() == CV_32FC2 && m.type() == CV_32F && m.size() == Size(3, 2) );

        // [re]create the output array so that it has the proper size and type.
        // In case of Mat it calls Mat::create, in case of STL vector it calls vector::resize.
        _dst.create(src.size(), src.type());
        Mat dst = _dst.getMat();

        for( int i = 0; i < src.rows; i++ )
            for( int j = 0; j < src.cols; j++ )
            {
                Point2f pt = src.at<Point2f>(i, j);
                dst.at<Point2f>(i, j) = Point2f(m.at<float>(0, 0)*pt.x +
                                                m.at<float>(0, 1)*pt.y +
                                                m.at<float>(0, 2),
                                                m.at<float>(1, 0)*pt.x +
                                                m.at<float>(1, 1)*pt.y +
                                                m.at<float>(1, 2));
            }
    }
@endcode
There is another related type, InputArrayOfArrays, which is currently defined as a synonym for
InputArray:
@code
    typedef InputArray InputArrayOfArrays;
@endcode
It denotes function arguments that are either vectors of vectors or vectors of matrices. A separate
synonym is needed to generate Python/Java etc. wrappers properly. At the function implementation
level their use is similar, but _InputArray::getMat(idx) should be used to get header for the
idx-th component of the outer vector and _InputArray::size().area() should be used to find the
number of components (vectors/matrices) of the outer vector.
 */
class CV_EXPORTS _InputArray
{
public:
    enum {
        KIND_SHIFT = 16,
        FIXED_TYPE = 0x8000 << KIND_SHIFT,
        FIXED_SIZE = 0x4000 << KIND_SHIFT,
        KIND_MASK = 31 << KIND_SHIFT,

        NONE              = 0 << KIND_SHIFT,
        MAT               = 1 << KIND_SHIFT,
        MATX              = 2 << KIND_SHIFT,
        STD_VECTOR        = 3 << KIND_SHIFT,
        STD_VECTOR_VECTOR = 4 << KIND_SHIFT,
        STD_VECTOR_MAT    = 5 << KIND_SHIFT,
        EXPR              = 6 << KIND_SHIFT,
        OPENGL_BUFFER     = 7 << KIND_SHIFT,
        CUDA_HOST_MEM     = 8 << KIND_SHIFT,
        CUDA_GPU_MAT      = 9 << KIND_SHIFT,
        UMAT              =10 << KIND_SHIFT,
        STD_VECTOR_UMAT   =11 << KIND_SHIFT,
        STD_BOOL_VECTOR   =12 << KIND_SHIFT,
        STD_VECTOR_CUDA_GPU_MAT = 13 << KIND_SHIFT
    };

    _InputArray();
    _InputArray(int _flags, void* _obj);
    _InputArray(const Mat& m);
    _InputArray(const MatExpr& expr);
    _InputArray(const std::vector<Mat>& vec);
    template<typename _Tp> _InputArray(const Mat_<_Tp>& m);
    template<typename _Tp> _InputArray(const std::vector<_Tp>& vec);
    _InputArray(const std::vector<bool>& vec);
    template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec);
    template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec);
    template<typename _Tp> _InputArray(const _Tp* vec, int n);
    template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx);
    _InputArray(const double& val);
    _InputArray(const cuda::GpuMat& d_mat);
    _InputArray(const std::vector<cuda::GpuMat>& d_mat_array);
    _InputArray(const ogl::Buffer& buf);
    _InputArray(const cuda::HostMem& cuda_mem);
    template<typename _Tp> _InputArray(const cudev::GpuMat_<_Tp>& m);
    _InputArray(const UMat& um);
    _InputArray(const std::vector<UMat>& umv);

    Mat getMat(int idx=-1) const;
    Mat getMat_(int idx=-1) const;
    UMat getUMat(int idx=-1) const;
    void getMatVector(std::vector<Mat>& mv) const;
    void getUMatVector(std::vector<UMat>& umv) const;
    void getGpuMatVector(std::vector<cuda::GpuMat>& gpumv) const;
    cuda::GpuMat getGpuMat() const;
    ogl::Buffer getOGlBuffer() const;

    int getFlags() const;
    void* getObj() const;
    Size getSz() const;

    int kind() const;
    int dims(int i=-1) const;
    int cols(int i=-1) const;
    int rows(int i=-1) const;
    Size size(int i=-1) const;
    int sizend(int* sz, int i=-1) const;
    bool sameSize(const _InputArray& arr) const;
    size_t total(int i=-1) const;
    int type(int i=-1) const;
    int depth(int i=-1) const;
    int channels(int i=-1) const;
    bool isContinuous(int i=-1) const;
    bool isSubmatrix(int i=-1) const;
    bool empty() const;
    void copyTo(const _OutputArray& arr) const;
    void copyTo(const _OutputArray& arr, const _InputArray & mask) const;
    size_t offset(int i=-1) const;
    size_t step(int i=-1) const;
    bool isMat() const;
    bool isUMat() const;
    bool isMatVector() const;
    bool isUMatVector() const;
    bool isMatx() const;
    bool isVector() const;
    bool isGpuMatVector() const;
    ~_InputArray();

protected:
    int flags;
    void* obj;
    Size sz;

    void init(int _flags, const void* _obj);
    void init(int _flags, const void* _obj, Size _sz);
};


/** @brief This type is very similar to InputArray except that it is used for input/output and output function
parameters.

Just like with InputArray, OpenCV users should not care about OutputArray, they just pass `Mat`,
`vector<T>` etc. to the functions. The same limitation as for `InputArray`: *Do not explicitly
create OutputArray instances* applies here too.

If you want to make your function polymorphic (i.e. accept different arrays as output parameters),
it is also not very difficult. Take the sample above as the reference. Note that
_OutputArray::create() needs to be called before _OutputArray::getMat(). This way you guarantee
that the output array is properly allocated.

Optional output parameters. If you do not need certain output array to be computed and returned to
you, pass cv::noArray(), just like you would in the case of optional input array. At the
implementation level, use _OutputArray::needed() to check if certain output array needs to be
computed or not.

There are several synonyms for OutputArray that are used to assist automatic Python/Java/... wrapper
generators:
@code
    typedef OutputArray OutputArrayOfArrays;
    typedef OutputArray InputOutputArray;
    typedef OutputArray InputOutputArrayOfArrays;
@endcode
 */
class CV_EXPORTS _OutputArray : public _InputArray
{
public:
    enum
    {
        DEPTH_MASK_8U = 1 << CV_8U,
        DEPTH_MASK_8S = 1 << CV_8S,
        DEPTH_MASK_16U = 1 << CV_16U,
        DEPTH_MASK_16S = 1 << CV_16S,
        DEPTH_MASK_32S = 1 << CV_32S,
        DEPTH_MASK_32F = 1 << CV_32F,
        DEPTH_MASK_64F = 1 << CV_64F,
        DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1,
        DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S,
        DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F
    };

    _OutputArray();
    _OutputArray(int _flags, void* _obj);
    _OutputArray(Mat& m);
    _OutputArray(std::vector<Mat>& vec);
    _OutputArray(cuda::GpuMat& d_mat);
    _OutputArray(std::vector<cuda::GpuMat>& d_mat);
    _OutputArray(ogl::Buffer& buf);
    _OutputArray(cuda::HostMem& cuda_mem);
    template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m);
    template<typename _Tp> _OutputArray(std::vector<_Tp>& vec);
    _OutputArray(std::vector<bool>& vec);
    template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec);
    template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec);
    template<typename _Tp> _OutputArray(Mat_<_Tp>& m);
    template<typename _Tp> _OutputArray(_Tp* vec, int n);
    template<typename _Tp, int m, int n> _OutputArray(Matx<_Tp, m, n>& matx);
    _OutputArray(UMat& m);
    _OutputArray(std::vector<UMat>& vec);

    _OutputArray(const Mat& m);
    _OutputArray(const std::vector<Mat>& vec);
    _OutputArray(const cuda::GpuMat& d_mat);
    _OutputArray(const std::vector<cuda::GpuMat>& d_mat);
    _OutputArray(const ogl::Buffer& buf);
    _OutputArray(const cuda::HostMem& cuda_mem);
    template<typename _Tp> _OutputArray(const cudev::GpuMat_<_Tp>& m);
    template<typename _Tp> _OutputArray(const std::vector<_Tp>& vec);
    template<typename _Tp> _OutputArray(const std::vector<std::vector<_Tp> >& vec);
    template<typename _Tp> _OutputArray(const std::vector<Mat_<_Tp> >& vec);
    template<typename _Tp> _OutputArray(const Mat_<_Tp>& m);
    template<typename _Tp> _OutputArray(const _Tp* vec, int n);
    template<typename _Tp, int m, int n> _OutputArray(const Matx<_Tp, m, n>& matx);
    _OutputArray(const UMat& m);
    _OutputArray(const std::vector<UMat>& vec);

    bool fixedSize() const;
    bool fixedType() const;
    bool needed() const;
    Mat& getMatRef(int i=-1) const;
    UMat& getUMatRef(int i=-1) const;
    cuda::GpuMat& getGpuMatRef() const;
    std::vector<cuda::GpuMat>& getGpuMatVecRef() const;
    ogl::Buffer& getOGlBufferRef() const;
    cuda::HostMem& getHostMemRef() const;
    void create(Size sz, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
    void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
    void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
    void createSameSize(const _InputArray& arr, int mtype) const;
    void release() const;
    void clear() const;
    void setTo(const _InputArray& value, const _InputArray & mask = _InputArray()) const;

    void assign(const UMat& u) const;
    void assign(const Mat& m) const;
};


class CV_EXPORTS _InputOutputArray : public _OutputArray
{
public:
    _InputOutputArray();
    _InputOutputArray(int _flags, void* _obj);
    _InputOutputArray(Mat& m);
    _InputOutputArray(std::vector<Mat>& vec);
    _InputOutputArray(cuda::GpuMat& d_mat);
    _InputOutputArray(ogl::Buffer& buf);
    _InputOutputArray(cuda::HostMem& cuda_mem);
    template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m);
    template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec);
    _InputOutputArray(std::vector<bool>& vec);
    template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec);
    template<typename _Tp> _InputOutputArray(std::vector<Mat_<_Tp> >& vec);
    template<typename _Tp> _InputOutputArray(Mat_<_Tp>& m);
    template<typename _Tp> _InputOutputArray(_Tp* vec, int n);
    template<typename _Tp, int m, int n> _InputOutputArray(Matx<_Tp, m, n>& matx);
    _InputOutputArray(UMat& m);
    _InputOutputArray(std::vector<UMat>& vec);

    _InputOutputArray(const Mat& m);
    _InputOutputArray(const std::vector<Mat>& vec);
    _InputOutputArray(const cuda::GpuMat& d_mat);
    _InputOutputArray(const std::vector<cuda::GpuMat>& d_mat);
    _InputOutputArray(const ogl::Buffer& buf);
    _InputOutputArray(const cuda::HostMem& cuda_mem);
    template<typename _Tp> _InputOutputArray(const cudev::GpuMat_<_Tp>& m);
    template<typename _Tp> _InputOutputArray(const std::vector<_Tp>& vec);
    template<typename _Tp> _InputOutputArray(const std::vector<std::vector<_Tp> >& vec);
    template<typename _Tp> _InputOutputArray(const std::vector<Mat_<_Tp> >& vec);
    template<typename _Tp> _InputOutputArray(const Mat_<_Tp>& m);
    template<typename _Tp> _InputOutputArray(const _Tp* vec, int n);
    template<typename _Tp, int m, int n> _InputOutputArray(const Matx<_Tp, m, n>& matx);
    _InputOutputArray(const UMat& m);
    _InputOutputArray(const std::vector<UMat>& vec);
};

typedef const _InputArray& InputArray;
typedef InputArray InputArrayOfArrays;
typedef const _OutputArray& OutputArray;
typedef OutputArray OutputArrayOfArrays;
typedef const _InputOutputArray& InputOutputArray;
typedef InputOutputArray InputOutputArrayOfArrays;

CV_EXPORTS InputOutputArray noArray();

/////////////////////////////////// MatAllocator //////////////////////////////////////

//! Usage flags for allocator
enum UMatUsageFlags
{
    USAGE_DEFAULT = 0,

    // buffer allocation policy is platform and usage specific
    USAGE_ALLOCATE_HOST_MEMORY = 1 << 0,
    USAGE_ALLOCATE_DEVICE_MEMORY = 1 << 1,
    USAGE_ALLOCATE_SHARED_MEMORY = 1 << 2, // It is not equal to: USAGE_ALLOCATE_HOST_MEMORY | USAGE_ALLOCATE_DEVICE_MEMORY

    __UMAT_USAGE_FLAGS_32BIT = 0x7fffffff // Binary compatibility hint
};

struct CV_EXPORTS UMatData;

/** @brief  Custom array allocator
*/
class CV_EXPORTS MatAllocator
{
public:
    MatAllocator() {}
    virtual ~MatAllocator() {}

    // let's comment it off for now to detect and fix all the uses of allocator
    //virtual void allocate(int dims, const int* sizes, int type, int*& refcount,
    //                      uchar*& datastart, uchar*& data, size_t* step) = 0;
    //virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0;
    virtual UMatData* allocate(int dims, const int* sizes, int type,
                               void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const = 0;
    virtual bool allocate(UMatData* data, int accessflags, UMatUsageFlags usageFlags) const = 0;
    virtual void deallocate(UMatData* data) const = 0;
    virtual void map(UMatData* data, int accessflags) const;
    virtual void unmap(UMatData* data) const;
    virtual void download(UMatData* data, void* dst, int dims, const size_t sz[],
                          const size_t srcofs[], const size_t srcstep[],
                          const size_t dststep[]) const;
    virtual void upload(UMatData* data, const void* src, int dims, const size_t sz[],
                        const size_t dstofs[], const size_t dststep[],
                        const size_t srcstep[]) const;
    virtual void copy(UMatData* srcdata, UMatData* dstdata, int dims, const size_t sz[],
                      const size_t srcofs[], const size_t srcstep[],
                      const size_t dstofs[], const size_t dststep[], bool sync) const;

    // default implementation returns DummyBufferPoolController
    virtual BufferPoolController* getBufferPoolController(const char* id = NULL) const;
};


//////////////////////////////// MatCommaInitializer //////////////////////////////////

/** @brief  Comma-separated Matrix Initializer

 The class instances are usually not created explicitly.
 Instead, they are created on "matrix << firstValue" operator.

 The sample below initializes 2x2 rotation matrix:

 \code
 double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180);
 Mat R = (Mat_<double>(2,2) << a, -b, b, a);
 \endcode
*/
template<typename _Tp> class MatCommaInitializer_
{
public:
    //! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat
    MatCommaInitializer_(Mat_<_Tp>* _m);
    //! the operator that takes the next value and put it to the matrix
    template<typename T2> MatCommaInitializer_<_Tp>& operator , (T2 v);
    //! another form of conversion operator
    operator Mat_<_Tp>() const;
protected:
    MatIterator_<_Tp> it;
};


/////////////////////////////////////// Mat ///////////////////////////////////////////

// note that umatdata might be allocated together
// with the matrix data, not as a separate object.
// therefore, it does not have constructor or destructor;
// it should be explicitly initialized using init().
struct CV_EXPORTS UMatData
{
    enum { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2,
        DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24,
        USER_ALLOCATED=32, DEVICE_MEM_MAPPED=64};
    UMatData(const MatAllocator* allocator);
    ~UMatData();

    // provide atomic access to the structure
    void lock();
    void unlock();

    bool hostCopyObsolete() const;
    bool deviceCopyObsolete() const;
    bool deviceMemMapped() const;
    bool copyOnMap() const;
    bool tempUMat() const;
    bool tempCopiedUMat() const;
    void markHostCopyObsolete(bool flag);
    void markDeviceCopyObsolete(bool flag);
    void markDeviceMemMapped(bool flag);

    const MatAllocator* prevAllocator;
    const MatAllocator* currAllocator;
    int urefcount;
    int refcount;
    uchar* data;
    uchar* origdata;
    size_t size;

    int flags;
    void* handle;
    void* userdata;
    int allocatorFlags_;
    int mapcount;
    UMatData* originalUMatData;
};


struct CV_EXPORTS UMatDataAutoLock
{
    explicit UMatDataAutoLock(UMatData* u);
    ~UMatDataAutoLock();
    UMatData* u;
};


struct CV_EXPORTS MatSize
{
    explicit MatSize(int* _p);
    Size operator()() const;
    const int& operator[](int i) const;
    int& operator[](int i);
    operator const int*() const;
    bool operator == (const MatSize& sz) const;
    bool operator != (const MatSize& sz) const;

    int* p;
};

struct CV_EXPORTS MatStep
{
    MatStep();
    explicit MatStep(size_t s);
    const size_t& operator[](int i) const;
    size_t& operator[](int i);
    operator size_t() const;
    MatStep& operator = (size_t s);

    size_t* p;
    size_t buf[2];
protected:
    MatStep& operator = (const MatStep&);
};

/** @example cout_mat.cpp
An example demonstrating the serial out capabilities of cv::Mat
*/

 /** @brief n-dimensional dense array class

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It
can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel
volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms
may be better stored in a SparseMat ). The data layout of the array `M` is defined by the array
`M.step[]`, so that the address of element \f$(i_0,...,i_{M.dims-1})\f$, where \f$0\leq i_k<M.size[k]\f$, is
computed as:
\f[addr(M_{i_0,...,i_{M.dims-1}}) = M.data + M.step[0]*i_0 + M.step[1]*i_1 + ... + M.step[M.dims-1]*i_{M.dims-1}\f]
In case of a 2-dimensional array, the above formula is reduced to:
\f[addr(M_{i,j}) = M.data + M.step[0]*i + M.step[1]*j\f]
Note that `M.step[i] >= M.step[i+1]` (in fact, `M.step[i] >= M.step[i+1]*M.size[i+1]` ). This means
that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane,
and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .

So, the data layout in Mat is fully compatible with CvMat, IplImage, and CvMatND types from OpenCV
1.x. It is also compatible with the majority of dense array types from the standard toolkits and
SDKs, such as Numpy (ndarray), Win32 (independent device bitmaps), and others, that is, with any
array that uses *steps* (or *strides*) to compute the position of a pixel. Due to this
compatibility, it is possible to make a Mat header for user-allocated data and process it in-place
using OpenCV functions.

There are many different ways to create a Mat object. The most popular options are listed below:

- Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue])
constructor. A new array of the specified size and type is allocated. type has the same meaning as
in the cvCreateMat method. For example, CV_8UC1 means a 8-bit single-channel array, CV_32FC2
means a 2-channel (complex) floating-point array, and so on.
@code
    // make a 7x7 complex matrix filled with 1+3j.
    Mat M(7,7,CV_32FC2,Scalar(1,3));
    // and now turn M to a 100x60 15-channel 8-bit matrix.
    // The old content will be deallocated
    M.create(100,60,CV_8UC(15));
@endcode
As noted in the introduction to this chapter, create() allocates only a new array when the shape
or type of the current array are different from the specified ones.

- Create a multi-dimensional array:
@code
    // create a 100x100x100 8-bit array
    int sz[] = {100, 100, 100};
    Mat bigCube(3, sz, CV_8U, Scalar::all(0));
@endcode
It passes the number of dimensions =1 to the Mat constructor but the created array will be
2-dimensional with the number of columns set to 1. So, Mat::dims is always \>= 2 (can also be 0
when the array is empty).

- Use a copy constructor or assignment operator where there can be an array or expression on the
right side (see below). As noted in the introduction, the array assignment is an O(1) operation
because it only copies the header and increases the reference counter. The Mat::clone() method can
be used to get a full (deep) copy of the array when you need it.

- Construct a header for a part of another array. It can be a single row, single column, several
rows, several columns, rectangular region in the array (called a *minor* in algebra) or a
diagonal. Such operations are also O(1) because the new header references the same data. You can
actually modify a part of the array using this feature, for example:
@code
    // add the 5-th row, multiplied by 3 to the 3rd row
    M.row(3) = M.row(3) + M.row(5)*3;
    // now copy the 7-th column to the 1-st column
    // M.col(1) = M.col(7); // this will not work
    Mat M1 = M.col(1);
    M.col(7).copyTo(M1);
    // create a new 320x240 image
    Mat img(Size(320,240),CV_8UC3);
    // select a ROI
    Mat roi(img, Rect(10,10,100,100));
    // fill the ROI with (0,255,0) (which is green in RGB space);
    // the original 320x240 image will be modified
    roi = Scalar(0,255,0);
@endcode
Due to the additional datastart and dataend members, it is possible to compute a relative
sub-array position in the main *container* array using locateROI():
@code
    Mat A = Mat::eye(10, 10, CV_32S);
    // extracts A columns, 1 (inclusive) to 3 (exclusive).
    Mat B = A(Range::all(), Range(1, 3));
    // extracts B rows, 5 (inclusive) to 9 (exclusive).
    // that is, C \~ A(Range(5, 9), Range(1, 3))
    Mat C = B(Range(5, 9), Range::all());
    Size size; Point ofs;
    C.locateROI(size, ofs);
    // size will be (width=10,height=10) and the ofs will be (x=1, y=5)
@endcode
As in case of whole matrices, if you need a deep copy, use the `clone()` method of the extracted
sub-matrices.

- Make a header for user-allocated data. It can be useful to do the following:
    -# Process "foreign" data using OpenCV (for example, when you implement a DirectShow\* filter or
    a processing module for gstreamer, and so on). For example:
    @code
        void process_video_frame(const unsigned char* pixels,
                                 int width, int height, int step)
        {
            Mat img(height, width, CV_8UC3, pixels, step);
            GaussianBlur(img, img, Size(7,7), 1.5, 1.5);
        }
    @endcode
    -# Quickly initialize small matrices and/or get a super-fast element access.
    @code
        double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
        Mat M = Mat(3, 3, CV_64F, m).inv();
    @endcode
    .
    Partial yet very common cases of this *user-allocated data* case are conversions from CvMat and
    IplImage to Mat. For this purpose, there is function cv::cvarrToMat taking pointers to CvMat or
    IplImage and the optional flag indicating whether to copy the data or not.
    @snippet samples/cpp/image.cpp iplimage

- Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:
@code
    // create a double-precision identity martix and add it to M.
    M += Mat::eye(M.rows, M.cols, CV_64F);
@endcode

- Use a comma-separated initializer:
@code
    // create a 3x3 double-precision identity matrix
    Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);
@endcode
With this approach, you first call a constructor of the Mat class with the proper parameters, and
then you just put `<< operator` followed by comma-separated values that can be constants,
variables, expressions, and so on. Also, note the extra parentheses required to avoid compilation
errors.

Once the array is created, it is automatically managed via a reference-counting mechanism. If the
array header is built on top of user-allocated data, you should handle the data by yourself. The
array data is deallocated when no one points to it. If you want to release the data pointed by a
array header before the array destructor is called, use Mat::release().

The next important thing to learn about the array class is element access. This manual already
described how to compute an address of each array element. Normally, you are not required to use the
formula directly in the code. If you know the array element type (which can be retrieved using the
method Mat::type() ), you can access the element \f$M_{ij}\f$ of a 2-dimensional array as:
@code
    M.at<double>(i,j) += 1.f;
@endcode
assuming that `M` is a double-precision floating-point array. There are several variants of the method
at for a different number of dimensions.

If you need to process a whole row of a 2D array, the most efficient way is to get the pointer to
the row first, and then just use the plain C operator [] :
@code
    // compute sum of positive matrix elements
    // (assuming that M isa double-precision matrix)
    double sum=0;
    for(int i = 0; i < M.rows; i++)
    {
        const double* Mi = M.ptr<double>(i);
        for(int j = 0; j < M.cols; j++)
            sum += std::max(Mi[j], 0.);
    }
@endcode
Some operations, like the one above, do not actually depend on the array shape. They just process
elements of an array one by one (or elements from multiple arrays that have the same coordinates,
for example, array addition). Such operations are called *element-wise*. It makes sense to check
whether all the input/output arrays are continuous, namely, have no gaps at the end of each row. If
yes, process them as a long single row:
@code
    // compute the sum of positive matrix elements, optimized variant
    double sum=0;
    int cols = M.cols, rows = M.rows;
    if(M.isContinuous())
    {
        cols *= rows;
        rows = 1;
    }
    for(int i = 0; i < rows; i++)
    {
        const double* Mi = M.ptr<double>(i);
        for(int j = 0; j < cols; j++)
            sum += std::max(Mi[j], 0.);
    }
@endcode
In case of the continuous matrix, the outer loop body is executed just once. So, the overhead is
smaller, which is especially noticeable in case of small matrices.

Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows:
@code
    // compute sum of positive matrix elements, iterator-based variant
    double sum=0;
    MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
    for(; it != it_end; ++it)
        sum += std::max(*it, 0.);
@endcode
The matrix iterators are random-access iterators, so they can be passed to any STL algorithm,
including std::sort().
*/
class CV_EXPORTS Mat
{
public:
    /**
    These are various constructors that form a matrix. As noted in the AutomaticAllocation, often
    the default constructor is enough, and the proper matrix will be allocated by an OpenCV function.
    The constructed matrix can further be assigned to another matrix or matrix expression or can be
    allocated with Mat::create . In the former case, the old content is de-referenced.
     */
    Mat();

    /** @overload
    @param rows Number of rows in a 2D array.
    @param cols Number of columns in a 2D array.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    */
    Mat(int rows, int cols, int type);

    /** @overload
    @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the
    number of columns go in the reverse order.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
      */
    Mat(Size size, int type);

    /** @overload
    @param rows Number of rows in a 2D array.
    @param cols Number of columns in a 2D array.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    @param s An optional value to initialize each matrix element with. To set all the matrix elements to
    the particular value after the construction, use the assignment operator
    Mat::operator=(const Scalar& value) .
    */
    Mat(int rows, int cols, int type, const Scalar& s);

    /** @overload
    @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the
    number of columns go in the reverse order.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    @param s An optional value to initialize each matrix element with. To set all the matrix elements to
    the particular value after the construction, use the assignment operator
    Mat::operator=(const Scalar& value) .
      */
    Mat(Size size, int type, const Scalar& s);

    /** @overload
    @param ndims Array dimensionality.
    @param sizes Array of integers specifying an n-dimensional array shape.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    */
    Mat(int ndims, const int* sizes, int type);

    /** @overload
    @param sizes Array of integers specifying an n-dimensional array shape.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    */
    Mat(const std::vector<int>& sizes, int type);

    /** @overload
    @param ndims Array dimensionality.
    @param sizes Array of integers specifying an n-dimensional array shape.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    @param s An optional value to initialize each matrix element with. To set all the matrix elements to
    the particular value after the construction, use the assignment operator
    Mat::operator=(const Scalar& value) .
    */
    Mat(int ndims, const int* sizes, int type, const Scalar& s);

    /** @overload
    @param sizes Array of integers specifying an n-dimensional array shape.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    @param s An optional value to initialize each matrix element with. To set all the matrix elements to
    the particular value after the construction, use the assignment operator
    Mat::operator=(const Scalar& value) .
    */
    Mat(const std::vector<int>& sizes, int type, const Scalar& s);


    /** @overload
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
    have an independent copy of the sub-array, use Mat::clone() .
    */
    Mat(const Mat& m);

    /** @overload
    @param rows Number of rows in a 2D array.
    @param cols Number of columns in a 2D array.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    @param data Pointer to the user data. Matrix constructors that take data and step parameters do not
    allocate matrix data. Instead, they just initialize the matrix header that points to the specified
    data, which means that no data is copied. This operation is very efficient and can be used to
    process external data using OpenCV functions. The external data is not automatically deallocated, so
    you should take care of it.
    @param step Number of bytes each matrix row occupies. The value should include the padding bytes at
    the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed
    and the actual step is calculated as cols*elemSize(). See Mat::elemSize.
    */
    Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP);

    /** @overload
    @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the
    number of columns go in the reverse order.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    @param data Pointer to the user data. Matrix constructors that take data and step parameters do not
    allocate matrix data. Instead, they just initialize the matrix header that points to the specified
    data, which means that no data is copied. This operation is very efficient and can be used to
    process external data using OpenCV functions. The external data is not automatically deallocated, so
    you should take care of it.
    @param step Number of bytes each matrix row occupies. The value should include the padding bytes at
    the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed
    and the actual step is calculated as cols*elemSize(). See Mat::elemSize.
    */
    Mat(Size size, int type, void* data, size_t step=AUTO_STEP);

    /** @overload
    @param ndims Array dimensionality.
    @param sizes Array of integers specifying an n-dimensional array shape.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    @param data Pointer to the user data. Matrix constructors that take data and step parameters do not
    allocate matrix data. Instead, they just initialize the matrix header that points to the specified
    data, which means that no data is copied. This operation is very efficient and can be used to
    process external data using OpenCV functions. The external data is not automatically deallocated, so
    you should take care of it.
    @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always
    set to the element size). If not specified, the matrix is assumed to be continuous.
    */
    Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0);

    /** @overload
    @param sizes Array of integers specifying an n-dimensional array shape.
    @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
    CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
    @param data Pointer to the user data. Matrix constructors that take data and step parameters do not
    allocate matrix data. Instead, they just initialize the matrix header that points to the specified
    data, which means that no data is copied. This operation is very efficient and can be used to
    process external data using OpenCV functions. The external data is not automatically deallocated, so
    you should take care of it.
    @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always
    set to the element size). If not specified, the matrix is assumed to be continuous.
    */
    Mat(const std::vector<int>& sizes, int type, void* data, const size_t* steps=0);

    /** @overload
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
    have an independent copy of the sub-array, use Mat::clone() .
    @param rowRange Range of the m rows to take. As usual, the range start is inclusive and the range
    end is exclusive. Use Range::all() to take all the rows.
    @param colRange Range of the m columns to take. Use Range::all() to take all the columns.
    */
    Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all());

    /** @overload
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
    have an independent copy of the sub-array, use Mat::clone() .
    @param roi Region of interest.
    */
    Mat(const Mat& m, const Rect& roi);

    /** @overload
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
    have an independent copy of the sub-array, use Mat::clone() .
    @param ranges Array of selected ranges of m along each dimensionality.
    */
    Mat(const Mat& m, const Range* ranges);

    /** @overload
    @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
    by these constructors. Instead, the header pointing to m data or its sub-array is constructed and
    associated with it. The reference counter, if any, is incremented. So, when you modify the matrix
    formed using such a constructor, you also modify the corresponding elements of m . If you want to
    have an independent copy of the sub-array, use Mat::clone() .
    @param ranges Array of selected ranges of m along each dimensionality.
    */
    Mat(const Mat& m, const std::vector<Range>& ranges);

    /** @overload
    @param vec STL vector whose elements form the matrix. The matrix has a single column and the number
    of rows equal to the number of vector elements. Type of the matrix matches the type of vector
    elements. The constructor can handle arbitrary types, for which there is a properly declared
    DataType . This means that the vector elements must be primitive numbers or uni-type numerical
    tuples of numbers. Mixed-type structures are not supported. The corresponding constructor is
    explicit. Since STL vectors are not automatically converted to Mat instances, you should write
    Mat(vec) explicitly. Unless you copy the data into the matrix ( copyData=true ), no new elements
    will be added to the vector because it can potentially yield vector data reallocation, and, thus,
    the matrix data pointer will be invalid.
    @param copyData Flag to specify whether the underlying data of the STL vector should be copied
    to (true) or shared with (false) the newly constructed matrix. When the data is copied, the
    allocated buffer is managed using Mat reference counting mechanism. While the data is shared,
    the reference counter is NULL, and you should not deallocate the data until the matrix is not
    destructed.
    */
    template<typename _Tp> explicit Mat(const std::vector<_Tp>& vec, bool copyData=false);

    /** @overload
    */
    template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true);

    /** @overload
    */
    template<typename _Tp, int m, int n> explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true);

    /** @overload
    */
    template<typename _Tp> explicit Mat(const Point_<_Tp>& pt, bool copyData=true);

    /** @overload
    */
    template<typename _Tp> explicit Mat(const Point3_<_Tp>& pt, bool copyData=true);

    /** @overload
    */
    template<typename _Tp> explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer);

    //! download data from GpuMat
    explicit Mat(const cuda::GpuMat& m);

    //! destructor - calls release()
    ~Mat();

    /** @brief assignment operators

    These are available assignment operators. Since they all are very different, make sure to read the
    operator parameters description.
    @param m Assigned, right-hand-side matrix. Matrix assignment is an O(1) operation. This means that
    no data is copied but the data is shared and the reference counter, if any, is incremented. Before
    assigning new data, the old data is de-referenced via Mat::release .
     */
    Mat& operator = (const Mat& m);

    /** @overload
    @param expr Assigned matrix expression object. As opposite to the first form of the assignment
    operation, the second form can reuse already allocated matrix if it has the right size and type to
    fit the matrix expression result. It is automatically handled by the real function that the matrix
    expressions is expanded to. For example, C=A+B is expanded to add(A, B, C), and add takes care of
    automatic C reallocation.
    */
    Mat& operator = (const MatExpr& expr);

    //! retrieve UMat from Mat
    UMat getUMat(int accessFlags, UMatUsageFlags usageFlags = USAGE_DEFAULT) const;

    /** @brief Creates a matrix header for the specified matrix row.

    The method makes a new header for the specified matrix row and returns it. This is an O(1)
    operation, regardless of the matrix size. The underlying data of the new matrix is shared with the
    original matrix. Here is the example of one of the classical basic matrix processing operations,
    axpy, used by LU and many other algorithms:
    @code
        inline void matrix_axpy(Mat& A, int i, int j, double alpha)
        {
            A.row(i) += A.row(j)*alpha;
        }
    @endcode
    @note In the current implementation, the following code does not work as expected:
    @code
        Mat A;
        ...
        A.row(i) = A.row(j); // will not work
    @endcode
    This happens because A.row(i) forms a temporary header that is further assigned to another header.
    Remember that each of these operations is O(1), that is, no data is copied. Thus, the above
    assignment is not true if you may have expected the j-th row to be copied to the i-th row. To
    achieve that, you should either turn this simple assignment into an expression or use the
    Mat::copyTo method:
    @code
        Mat A;
        ...
        // works, but looks a bit obscure.
        A.row(i) = A.row(j) + 0;
        // this is a bit longer, but the recommended method.
        A.row(j).copyTo(A.row(i));
    @endcode
    @param y A 0-based row index.
     */
    Mat row(int y) const;

    /** @brief Creates a matrix header for the specified matrix column.

    The method makes a new header for the specified matrix column and returns it. This is an O(1)
    operation, regardless of the matrix size. The underlying data of the new matrix is shared with the
    original matrix. See also the Mat::row description.
    @param x A 0-based column index.
     */
    Mat col(int x) const;

    /** @brief Creates a matrix header for the specified row span.

    The method makes a new header for the specified row span of the matrix. Similarly to Mat::row and
    Mat::col , this is an O(1) operation.
    @param startrow An inclusive 0-based start index of the row span.
    @param endrow An exclusive 0-based ending index of the row span.
     */
    Mat rowRange(int startrow, int endrow) const;

    /** @overload
    @param r Range structure containing both the start and the end indices.
    */
    Mat rowRange(const Range& r) const;

    /** @brief Creates a matrix header for the specified column span.

    The method makes a new header for the specified column span of the matrix. Similarly to Mat::row and
    Mat::col , this is an O(1) operation.
    @param startcol An inclusive 0-based start index of the column span.
    @param endcol An exclusive 0-based ending index of the column span.
     */
    Mat colRange(int startcol, int endcol) const;

    /** @overload
    @param r Range structure containing both the start and the end indices.
    */
    Mat colRange(const Range& r) const;

    /** @brief Extracts a diagonal from a matrix

    The method makes a new header for the specified matrix diagonal. The new matrix is represented as a
    single-column matrix. Similarly to Mat::row and Mat::col, this is an O(1) operation.
    @param d index of the diagonal, with the following values:
    - `d=0` is the main diagonal.
    - `d>0` is a diagonal from the lower half. For example, d=1 means the diagonal is set
      immediately below the main one.
    - `d<0` is a diagonal from the upper half. For example, d=-1 means the diagonal is set
      immediately above the main one.
     */
    Mat diag(int d=0) const;

    /** @brief creates a diagonal matrix

    The method creates a square diagonal matrix from specified main diagonal.
    @param d One-dimensional matrix that represents the main diagonal.
     */
    static Mat diag(const Mat& d);

    /** @brief Creates a full copy of the array and the underlying data.

    The method creates a full copy of the array. The original step[] is not taken into account. So, the
    array copy is a continuous array occupying total()*elemSize() bytes.
     */
    Mat clone() const;

    /** @brief Copies the matrix to another one.

    The method copies the matrix data to another matrix. Before copying the data, the method invokes :
    @code
        m.create(this->size(), this->type());
    @endcode
    so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the
    function does not handle the case of a partial overlap between the source and the destination
    matrices.

    When the operation mask is specified, if the Mat::create call shown above reallocates the matrix,
    the newly allocated matrix is initialized with all zeros before copying the data.
    @param m Destination matrix. If it does not have a proper size or type before the operation, it is
    reallocated.
     */
    void copyTo( OutputArray m ) const;

    /** @overload
    @param m Destination matrix. If it does not have a proper size or type before the operation, it is
    reallocated.
    @param mask Operation mask. Its non-zero elements indicate which matrix elements need to be copied.
    The mask has to be of type CV_8U and can have 1 or multiple channels.
    */
    void copyTo( OutputArray m, InputArray mask ) const;

    /** @brief Converts an array to another data type with optional scaling.

    The method converts source pixel values to the target data type. saturate_cast\<\> is applied at
    the end to avoid possible overflows:

    \f[m(x,y) = saturate \_ cast<rType>( \alpha (*this)(x,y) +  \beta )\f]
    @param m output matrix; if it does not have a proper size or type before the operation, it is
    reallocated.
    @param rtype desired output matrix type or, rather, the depth since the number of channels are the
    same as the input has; if rtype is negative, the output matrix will have the same type as the input.
    @param alpha optional scale factor.
    @param beta optional delta added to the scaled values.
     */
    void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;

    /** @brief Provides a functional form of convertTo.

    This is an internally used method called by the @ref MatrixExpressions engine.
    @param m Destination array.
    @param type Desired destination array depth (or -1 if it should be the same as the source type).
     */
    void assignTo( Mat& m, int type=-1 ) const;

    /** @brief Sets all or some of the array elements to the specified value.
    @param s Assigned scalar converted to the actual array type.
    */
    Mat& operator = (const Scalar& s);

    /** @brief Sets all or some of the array elements to the specified value.

    This is an advanced variant of the Mat::operator=(const Scalar& s) operator.
    @param value Assigned scalar converted to the actual array type.
    @param mask Operation mask of the same size as \*this.
     */
    Mat& setTo(InputArray value, InputArray mask=noArray());

    /** @brief Changes the shape and/or the number of channels of a 2D matrix without copying the data.

    The method makes a new matrix header for \*this elements. The new matrix may have a different size
    and/or different number of channels. Any combination is possible if:
    -   No extra elements are included into the new matrix and no elements are excluded. Consequently,
        the product rows\*cols\*channels() must stay the same after the transformation.
    -   No data is copied. That is, this is an O(1) operation. Consequently, if you change the number of
        rows, or the operation changes the indices of elements row in some other way, the matrix must be
        continuous. See Mat::isContinuous .

    For example, if there is a set of 3D points stored as an STL vector, and you want to represent the
    points as a 3xN matrix, do the following:
    @code
        std::vector<Point3f> vec;
        ...
        Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation
                          reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel.
                                      // Also, an O(1) operation
                             t(); // finally, transpose the Nx3 matrix.
                                  // This involves copying all the elements
    @endcode
    @param cn New number of channels. If the parameter is 0, the number of channels remains the same.
    @param rows New number of rows. If the parameter is 0, the number of rows remains the same.
     */
    Mat reshape(int cn, int rows=0) const;

    /** @overload */
    Mat reshape(int cn, int newndims, const int* newsz) const;

    /** @brief Transposes a matrix.

    The method performs matrix transposition by means of matrix expressions. It does not perform the
    actual transposition but returns a temporary matrix transposition object that can be further used as
    a part of more complex matrix expressions or can be assigned to a matrix:
    @code
        Mat A1 = A + Mat::eye(A.size(), A.type())*lambda;
        Mat C = A1.t()*A1; // compute (A + lambda*I)^t * (A + lamda*I)
    @endcode
     */
    MatExpr t() const;

    /** @brief Inverses a matrix.

    The method performs a matrix inversion by means of matrix expressions. This means that a temporary
    matrix inversion object is returned by the method and can be used further as a part of more complex
    matrix expressions or can be assigned to a matrix.
    @param method Matrix inversion method. One of cv::DecompTypes
     */
    MatExpr inv(int method=DECOMP_LU) const;

    /** @brief Performs an element-wise multiplication or division of the two matrices.

    The method returns a temporary object encoding per-element array multiplication, with optional
    scale. Note that this is not a matrix multiplication that corresponds to a simpler "\*" operator.

    Example:
    @code
        Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)
    @endcode
    @param m Another array of the same type and the same size as \*this, or a matrix expression.
    @param scale Optional scale factor.
     */
    MatExpr mul(InputArray m, double scale=1) const;

    /** @brief Computes a cross-product of two 3-element vectors.

    The method computes a cross-product of two 3-element vectors. The vectors must be 3-element
    floating-point vectors of the same shape and size. The result is another 3-element vector of the
    same shape and type as operands.
    @param m Another cross-product operand.
     */
    Mat cross(InputArray m) const;

    /** @brief Computes a dot-product of two vectors.

    The method computes a dot-product of two matrices. If the matrices are not single-column or
    single-row vectors, the top-to-bottom left-to-right scan ordering is used to treat them as 1D
    vectors. The vectors must have the same size and type. If the matrices have more than one channel,
    the dot products from all the channels are summed together.
    @param m another dot-product operand.
     */
    double dot(InputArray m) const;

    /** @brief Returns a zero array of the specified size and type.

    The method returns a Matlab-style zero array initializer. It can be used to quickly form a constant
    array as a function parameter, part of a matrix expression, or as a matrix initializer. :
    @code
        Mat A;
        A = Mat::zeros(3, 3, CV_32F);
    @endcode
    In the example above, a new matrix is allocated only if A is not a 3x3 floating-point matrix.
    Otherwise, the existing matrix A is filled with zeros.
    @param rows Number of rows.
    @param cols Number of columns.
    @param type Created matrix type.
     */
    static MatExpr zeros(int rows, int cols, int type);

    /** @overload
    @param size Alternative to the matrix size specification Size(cols, rows) .
    @param type Created matrix type.
    */
    static MatExpr zeros(Size size, int type);

    /** @overload
    @param ndims Array dimensionality.
    @param sz Array of integers specifying the array shape.
    @param type Created matrix type.
    */
    static MatExpr zeros(int ndims, const int* sz, int type);

    /** @brief Returns an array of all 1's of the specified size and type.

    The method returns a Matlab-style 1's array initializer, similarly to Mat::zeros. Note that using
    this method you can initialize an array with an arbitrary value, using the following Matlab idiom:
    @code
        Mat A = Mat::ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.
    @endcode
    The above operation does not form a 100x100 matrix of 1's and then multiply it by 3. Instead, it
    just remembers the scale factor (3 in this case) and use it when actually invoking the matrix
    initializer.
    @param rows Number of rows.
    @param cols Number of columns.
    @param type Created matrix type.
     */
    static MatExpr ones(int rows, int cols, int type);

    /** @overload
    @param size Alternative to the matrix size specification Size(cols, rows) .
    @param type Created matrix type.
    */
    static MatExpr ones(Size size, int type);

    /** @overload
    @param ndims Array dimensionality.
    @param sz Array of integers specifying the array shape.
    @param type Created matrix type.
    */
    static MatExpr ones(int ndims, const int* sz, int type);

    /** @brief Returns an identity matrix of the specified size and type.

    The method returns a Matlab-style identity matrix initializer, similarly to Mat::zeros. Similarly to
    Mat::ones, you can use a scale operation to create a scaled identity matrix efficiently:
    @code
        // make a 4x4 diagonal matrix with 0.1's on the diagonal.
        Mat A = Mat::eye(4, 4, CV_32F)*0.1;
    @endcode
    @param rows Number of rows.
    @param cols Number of columns.
    @param type Created matrix type.
     */
    static MatExpr eye(int rows, int cols, int type);

    /** @overload
    @param size Alternative matrix size specification as Size(cols, rows) .
    @param type Created matrix type.
    */
    static MatExpr eye(Size size, int type);

    /** @brief Allocates new array data if needed.

    This is one of the key Mat methods. Most new-style OpenCV functions and methods that produce arrays
    call this method for each output array. The method uses the following algorithm:

    -# If the current array shape and the type match the new ones, return immediately. Otherwise,
       de-reference the previous data by calling Mat::release.
    -# Initialize the new header.
    -# Allocate the new data of total()\*elemSize() bytes.
    -# Allocate the new, associated with the data, reference counter and set it to 1.

    Such a scheme makes the memory management robust and efficient at the same time and helps avoid
    extra typing for you. This means that usually there is no need to explicitly allocate output arrays.
    That is, instead of writing:
    @code
        Mat color;
        ...
        Mat gray(color.rows, color.cols, color.depth());
        cvtColor(color, gray, COLOR_BGR2GRAY);
    @endcode
    you can simply write:
    @code
        Mat color;
        ...
        Mat gray;
        cvtColor(color, gray, COLOR_BGR2GRAY);
    @endcode
    because cvtColor, as well as the most of OpenCV functions, calls Mat::create() for the output array
    internally.
    @param rows New number of rows.
    @param cols New number of columns.
    @param type New matrix type.
     */
    void create(int rows, int cols, int type);

    /** @overload
    @param size Alternative new matrix size specification: Size(cols, rows)
    @param type New matrix type.
    */
    void create(Size size, int type);

    /** @overload
    @param ndims New array dimensionality.
    @param sizes Array of integers specifying a new array shape.
    @param type New matrix type.
    */
    void create(int ndims, const int* sizes, int type);

    /** @overload
    @param sizes Array of integers specifying a new array shape.
    @param type New matrix type.
    */
    void create(const std::vector<int>& sizes, int type);

    /** @brief Increments the reference counter.

    The method increments the reference counter associated with the matrix data. If the matrix header
    points to an external data set (see Mat::Mat ), the reference counter is NULL, and the method has no
    effect in this case. Normally, to avoid memory leaks, the method should not be called explicitly. It
    is called implicitly by the matrix assignment operator. The reference counter increment is an atomic
    operation on the platforms that support it. Thus, it is safe to operate on the same matrices
    asynchronously in different threads.
     */
    void addref();

    /** @brief Decrements the reference counter and deallocates the matrix if needed.

    The method decrements the reference counter associated with the matrix data. When the reference
    counter reaches 0, the matrix data is deallocated and the data and the reference counter pointers
    are set to NULL's. If the matrix header points to an external data set (see Mat::Mat ), the
    reference counter is NULL, and the method has no effect in this case.

    This method can be called manually to force the matrix data deallocation. But since this method is
    automatically called in the destructor, or by any other method that changes the data pointer, it is
    usually not needed. The reference counter decrement and check for 0 is an atomic operation on the
    platforms that support it. Thus, it is safe to operate on the same matrices asynchronously in
    different threads.
     */
    void release();

    //! deallocates the matrix data
    void deallocate();
    //! internal use function; properly re-allocates _size, _step arrays
    void copySize(const Mat& m);

    /** @brief Reserves space for the certain number of rows.

    The method reserves space for sz rows. If the matrix already has enough space to store sz rows,
    nothing happens. If the matrix is reallocated, the first Mat::rows rows are preserved. The method
    emulates the corresponding method of the STL vector class.
    @param sz Number of rows.
     */
    void reserve(size_t sz);

    /** @brief Changes the number of matrix rows.

    The methods change the number of matrix rows. If the matrix is reallocated, the first
    min(Mat::rows, sz) rows are preserved. The methods emulate the corresponding methods of the STL
    vector class.
    @param sz New number of rows.
     */
    void resize(size_t sz);

    /** @overload
    @param sz New number of rows.
    @param s Value assigned to the newly added elements.
     */
    void resize(size_t sz, const Scalar& s);

    //! internal function
    void push_back_(const void* elem);

    /** @brief Adds elements to the bottom of the matrix.

    The methods add one or more elements to the bottom of the matrix. They emulate the corresponding
    method of the STL vector class. When elem is Mat , its type and the number of columns must be the
    same as in the container matrix.
    @param elem Added element(s).
     */
    template<typename _Tp> void push_back(const _Tp& elem);

    /** @overload
    @param elem Added element(s).
    */
    template<typename _Tp> void push_back(const Mat_<_Tp>& elem);

    /** @overload
    @param m Added line(s).
    */
    void push_back(const Mat& m);

    /** @brief Removes elements from the bottom of the matrix.

    The method removes one or more rows from the bottom of the matrix.
    @param nelems Number of removed rows. If it is greater than the total number of rows, an exception
    is thrown.
     */
    void pop_back(size_t nelems=1);

    /** @brief Locates the matrix header within a parent matrix.

    After you extracted a submatrix from a matrix using Mat::row, Mat::col, Mat::rowRange,
    Mat::colRange, and others, the resultant submatrix points just to the part of the original big
    matrix. However, each submatrix contains information (represented by datastart and dataend
    fields) that helps reconstruct the original matrix size and the position of the extracted
    submatrix within the original matrix. The method locateROI does exactly that.
    @param wholeSize Output parameter that contains the size of the whole matrix containing *this*
    as a part.
    @param ofs Output parameter that contains an offset of *this* inside the whole matrix.
     */
    void locateROI( Size& wholeSize, Point& ofs ) const;

    /** @brief Adjusts a submatrix size and position within the parent matrix.

    The method is complimentary to Mat::locateROI . The typical use of these functions is to determine
    the submatrix position within the parent matrix and then shift the position somehow. Typically, it
    can be required for filtering operations when pixels outside of the ROI should be taken into
    account. When all the method parameters are positive, the ROI needs to grow in all directions by the
    specified amount, for example:
    @code
        A.adjustROI(2, 2, 2, 2);
    @endcode
    In this example, the matrix size is increased by 4 elements in each direction. The matrix is shifted
    by 2 elements to the left and 2 elements up, which brings in all the necessary pixels for the
    filtering with the 5x5 kernel.

    adjustROI forces the adjusted ROI to be inside of the parent matrix that is boundaries of the
    adjusted ROI are constrained by boundaries of the parent matrix. For example, if the submatrix A is
    located in the first row of a parent matrix and you called A.adjustROI(2, 2, 2, 2) then A will not
    be increased in the upward direction.

    The function is used internally by the OpenCV filtering functions, like filter2D , morphological
    operations, and so on.
    @param dtop Shift of the top submatrix boundary upwards.
    @param dbottom Shift of the bottom submatrix boundary downwards.
    @param dleft Shift of the left submatrix boundary to the left.
    @param dright Shift of the right submatrix boundary to the right.
    @sa copyMakeBorder
     */
    Mat& adjustROI( int dtop, int dbottom, int dleft, int dright );

    /** @brief Extracts a rectangular submatrix.

    The operators make a new header for the specified sub-array of \*this . They are the most
    generalized forms of Mat::row, Mat::col, Mat::rowRange, and Mat::colRange . For example,
    `A(Range(0, 10), Range::all())` is equivalent to `A.rowRange(0, 10)`. Similarly to all of the above,
    the operators are O(1) operations, that is, no matrix data is copied.
    @param rowRange Start and end row of the extracted submatrix. The upper boundary is not included. To
    select all the rows, use Range::all().
    @param colRange Start and end column of the extracted submatrix. The upper boundary is not included.
    To select all the columns, use Range::all().
     */
    Mat operator()( Range rowRange, Range colRange ) const;

    /** @overload
    @param roi Extracted submatrix specified as a rectangle.
    */
    Mat operator()( const Rect& roi ) const;

    /** @overload
    @param ranges Array of selected ranges along each array dimension.
    */
    Mat operator()( const Range* ranges ) const;

    /** @overload
    @param ranges Array of selected ranges along each array dimension.
    */
    Mat operator()(const std::vector<Range>& ranges) const;

    // //! converts header to CvMat; no data is copied
    // operator CvMat() const;
    // //! converts header to CvMatND; no data is copied
    // operator CvMatND() const;
    // //! converts header to IplImage; no data is copied
    // operator IplImage() const;

    template<typename _Tp> operator std::vector<_Tp>() const;
    template<typename _Tp, int n> operator Vec<_Tp, n>() const;
    template<typename _Tp, int m, int n> operator Matx<_Tp, m, n>() const;

    /** @brief Reports whether the matrix is continuous or not.

    The method returns true if the matrix elements are stored continuously without gaps at the end of
    each row. Otherwise, it returns false. Obviously, 1x1 or 1xN matrices are always continuous.
    Matrices created with Mat::create are always continuous. But if you extract a part of the matrix
    using Mat::col, Mat::diag, and so on, or constructed a matrix header for externally allocated data,
    such matrices may no longer have this property.

    The continuity flag is stored as a bit in the Mat::flags field and is computed automatically when
    you construct a matrix header. Thus, the continuity check is a very fast operation, though
    theoretically it could be done as follows:
    @code
        // alternative implementation of Mat::isContinuous()
        bool myCheckMatContinuity(const Mat& m)
        {
            //return (m.flags & Mat::CONTINUOUS_FLAG) != 0;
            return m.rows == 1 || m.step == m.cols*m.elemSize();
        }
    @endcode
    The method is used in quite a few of OpenCV functions. The point is that element-wise operations
    (such as arithmetic and logical operations, math functions, alpha blending, color space
    transformations, and others) do not depend on the image geometry. Thus, if all the input and output
    arrays are continuous, the functions can process them as very long single-row vectors. The example
    below illustrates how an alpha-blending function can be implemented:
    @code
        template<typename T>
        void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst)
        {
            const float alpha_scale = (float)std::numeric_limits<T>::max(),
                        inv_scale = 1.f/alpha_scale;

            CV_Assert( src1.type() == src2.type() &&
                       src1.type() == CV_MAKETYPE(DataType<T>::depth, 4) &&
                       src1.size() == src2.size());
            Size size = src1.size();
            dst.create(size, src1.type());

            // here is the idiom: check the arrays for continuity and,
            // if this is the case,
            // treat the arrays as 1D vectors
            if( src1.isContinuous() && src2.isContinuous() && dst.isContinuous() )
            {
                size.width *= size.height;
                size.height = 1;
            }
            size.width *= 4;

            for( int i = 0; i < size.height; i++ )
            {
                // when the arrays are continuous,
                // the outer loop is executed only once
                const T* ptr1 = src1.ptr<T>(i);
                const T* ptr2 = src2.ptr<T>(i);
                T* dptr = dst.ptr<T>(i);

                for( int j = 0; j < size.width; j += 4 )
                {
                    float alpha = ptr1[j+3]*inv_scale, beta = ptr2[j+3]*inv_scale;
                    dptr[j] = saturate_cast<T>(ptr1[j]*alpha + ptr2[j]*beta);
                    dptr[j+1] = saturate_cast<T>(ptr1[j+1]*alpha + ptr2[j+1]*beta);
                    dptr[j+2] = saturate_cast<T>(ptr1[j+2]*alpha + ptr2[j+2]*beta);
                    dptr[j+3] = saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale);
                }
            }
        }
    @endcode
    This approach, while being very simple, can boost the performance of a simple element-operation by
    10-20 percents, especially if the image is rather small and the operation is quite simple.

    Another OpenCV idiom in this function, a call of Mat::create for the destination array, that
    allocates the destination array unless it already has the proper size and type. And while the newly
    allocated arrays are always continuous, you still need to check the destination array because
    Mat::create does not always allocate a new matrix.
     */
    bool isContinuous() const;

    //! returns true if the matrix is a submatrix of another matrix
    bool isSubmatrix() const;

    /** @brief Returns the matrix element size in bytes.

    The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 ,
    the method returns 3\*sizeof(short) or 6.
     */
    size_t elemSize() const;

    /** @brief Returns the size of each matrix element channel in bytes.

    The method returns the matrix element channel size in bytes, that is, it ignores the number of
    channels. For example, if the matrix type is CV_16SC3 , the method returns sizeof(short) or 2.
     */
    size_t elemSize1() const;

    /** @brief Returns the type of a matrix element.

    The method returns a matrix element type. This is an identifier compatible with the CvMat type
    system, like CV_16SC3 or 16-bit signed 3-channel array, and so on.
     */
    int type() const;

    /** @brief Returns the depth of a matrix element.

    The method returns the identifier of the matrix element depth (the type of each individual channel).
    For example, for a 16-bit signed element array, the method returns CV_16S . A complete list of
    matrix types contains the following values:
    -   CV_8U - 8-bit unsigned integers ( 0..255 )
    -   CV_8S - 8-bit signed integers ( -128..127 )
    -   CV_16U - 16-bit unsigned integers ( 0..65535 )
    -   CV_16S - 16-bit signed integers ( -32768..32767 )
    -   CV_32S - 32-bit signed integers ( -2147483648..2147483647 )
    -   CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN )
    -   CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )
     */
    int depth() const;

    /** @brief Returns the number of matrix channels.

    The method returns the number of matrix channels.
     */
    int channels() const;

    /** @brief Returns a normalized step.

    The method returns a matrix step divided by Mat::elemSize1() . It can be useful to quickly access an
    arbitrary matrix element.
     */
    size_t step1(int i=0) const;

    /** @brief Returns true if the array has no elements.

    The method returns true if Mat::total() is 0 or if Mat::data is NULL. Because of pop_back() and
    resize() methods `M.total() == 0` does not imply that `M.data == NULL`.
     */
    bool empty() const;

    /** @brief Returns the total number of array elements.

    The method returns the number of array elements (a number of pixels if the array represents an
    image).
     */
    size_t total() const;

    //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
    int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;

    /** @brief Returns a pointer to the specified matrix row.

    The methods return `uchar*` or typed pointer to the specified matrix row. See the sample in
    Mat::isContinuous to know how to use these methods.
    @param i0 A 0-based row index.
     */
    uchar* ptr(int i0=0);
    /** @overload */
    const uchar* ptr(int i0=0) const;

    /** @overload
    @param row Index along the dimension 0
    @param col Index along the dimension 1
    */
    uchar* ptr(int row, int col);
    /** @overload
    @param row Index along the dimension 0
    @param col Index along the dimension 1
    */
    const uchar* ptr(int row, int col) const;

    /** @overload */
    uchar* ptr(int i0, int i1, int i2);
    /** @overload */
    const uchar* ptr(int i0, int i1, int i2) const;

    /** @overload */
    uchar* ptr(const int* idx);
    /** @overload */
    const uchar* ptr(const int* idx) const;
    /** @overload */
    template<int n> uchar* ptr(const Vec<int, n>& idx);
    /** @overload */
    template<int n> const uchar* ptr(const Vec<int, n>& idx) const;

    /** @overload */
    template<typename _Tp> _Tp* ptr(int i0=0);
    /** @overload */
    template<typename _Tp> const _Tp* ptr(int i0=0) const;
    /** @overload
    @param row Index along the dimension 0
    @param col Index along the dimension 1
    */
    template<typename _Tp> _Tp* ptr(int row, int col);
    /** @overload
    @param row Index along the dimension 0
    @param col Index along the dimension 1
    */
    template<typename _Tp> const _Tp* ptr(int row, int col) const;
    /** @overload */
    template<typename _Tp> _Tp* ptr(int i0, int i1, int i2);
    /** @overload */
    template<typename _Tp> const _Tp* ptr(int i0, int i1, int i2) const;
    /** @overload */
    template<typename _Tp> _Tp* ptr(const int* idx);
    /** @overload */
    template<typename _Tp> const _Tp* ptr(const int* idx) const;
    /** @overload */
    template<typename _Tp, int n> _Tp* ptr(const Vec<int, n>& idx);
    /** @overload */
    template<typename _Tp, int n> const _Tp* ptr(const Vec<int, n>& idx) const;

    /** @brief Returns a reference to the specified array element.

    The template methods return a reference to the specified array element. For the sake of higher
    performance, the index range checks are only performed in the Debug configuration.

    Note that the variants with a single index (i) can be used to access elements of single-row or
    single-column 2-dimensional arrays. That is, if, for example, A is a 1 x N floating-point matrix and
    B is an M x 1 integer matrix, you can simply write `A.at<float>(k+4)` and `B.at<int>(2*i+1)`
    instead of `A.at<float>(0,k+4)` and `B.at<int>(2*i+1,0)`, respectively.

    The example below initializes a Hilbert matrix:
    @code
        Mat H(100, 100, CV_64F);
        for(int i = 0; i < H.rows; i++)
            for(int j = 0; j < H.cols; j++)
                H.at<double>(i,j)=1./(i+j+1);
    @endcode

    Keep in mind that the size identifier used in the at operator cannot be chosen at random. It depends
    on the image from which you are trying to retrieve the data. The table below gives a better insight in this:
     - If matrix is of type `CV_8U` then use `Mat.at<uchar>(y,x)`.
     - If matrix is of type `CV_8S` then use `Mat.at<schar>(y,x)`.
     - If matrix is of type `CV_16U` then use `Mat.at<ushort>(y,x)`.
     - If matrix is of type `CV_16S` then use `Mat.at<short>(y,x)`.
     - If matrix is of type `CV_32S`  then use `Mat.at<int>(y,x)`.
     - If matrix is of type `CV_32F`  then use `Mat.at<float>(y,x)`.
     - If matrix is of type `CV_64F` then use `Mat.at<double>(y,x)`.

    @param i0 Index along the dimension 0
     */
    template<typename _Tp> _Tp& at(int i0=0);
    /** @overload
    @param i0 Index along the dimension 0
    */
    template<typename _Tp> const _Tp& at(int i0=0) const;
    /** @overload
    @param row Index along the dimension 0
    @param col Index along the dimension 1
    */
    template<typename _Tp> _Tp& at(int row, int col);
    /** @overload
    @param row Index along the dimension 0
    @param col Index along the dimension 1
    */
    template<typename _Tp> const _Tp& at(int row, int col) const;

    /** @overload
    @param i0 Index along the dimension 0
    @param i1 Index along the dimension 1
    @param i2 Index along the dimension 2
    */
    template<typename _Tp> _Tp& at(int i0, int i1, int i2);
    /** @overload
    @param i0 Index along the dimension 0
    @param i1 Index along the dimension 1
    @param i2 Index along the dimension 2
    */
    template<typename _Tp> const _Tp& at(int i0, int i1, int i2) const;

    /** @overload
    @param idx Array of Mat::dims indices.
    */
    template<typename _Tp> _Tp& at(const int* idx);
    /** @overload
    @param idx Array of Mat::dims indices.
    */
    template<typename _Tp> const _Tp& at(const int* idx) const;

    /** @overload */
    template<typename _Tp, int n> _Tp& at(const Vec<int, n>& idx);
    /** @overload */
    template<typename _Tp, int n> const _Tp& at(const Vec<int, n>& idx) const;

    /** @overload
    special versions for 2D arrays (especially convenient for referencing image pixels)
    @param pt Element position specified as Point(j,i) .
    */
    template<typename _Tp> _Tp& at(Point pt);
    /** @overload
    special versions for 2D arrays (especially convenient for referencing image pixels)
    @param pt Element position specified as Point(j,i) .
    */
    template<typename _Tp> const _Tp& at(Point pt) const;

    /** @brief Returns the matrix iterator and sets it to the first matrix element.

    The methods return the matrix read-only or read-write iterators. The use of matrix iterators is very
    similar to the use of bi-directional STL iterators. In the example below, the alpha blending
    function is rewritten using the matrix iterators:
    @code
        template<typename T>
        void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst)
        {
            typedef Vec<T, 4> VT;

            const float alpha_scale = (float)std::numeric_limits<T>::max(),
                        inv_scale = 1.f/alpha_scale;

            CV_Assert( src1.type() == src2.type() &&
                       src1.type() == DataType<VT>::type &&
                       src1.size() == src2.size());
            Size size = src1.size();
            dst.create(size, src1.type());

            MatConstIterator_<VT> it1 = src1.begin<VT>(), it1_end = src1.end<VT>();
            MatConstIterator_<VT> it2 = src2.begin<VT>();
            MatIterator_<VT> dst_it = dst.begin<VT>();

            for( ; it1 != it1_end; ++it1, ++it2, ++dst_it )
            {
                VT pix1 = *it1, pix2 = *it2;
                float alpha = pix1[3]*inv_scale, beta = pix2[3]*inv_scale;
                *dst_it = VT(saturate_cast<T>(pix1[0]*alpha + pix2[0]*beta),
                             saturate_cast<T>(pix1[1]*alpha + pix2[1]*beta),
                             saturate_cast<T>(pix1[2]*alpha + pix2[2]*beta),
                             saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale));
            }
        }
    @endcode
     */
    template<typename _Tp> MatIterator_<_Tp> begin();
    template<typename _Tp> MatConstIterator_<_Tp> begin() const;

    /** @brief Returns the matrix iterator and sets it to the after-last matrix element.

    The methods return the matrix read-only or read-write iterators, set to the point following the last
    matrix element.
     */
    template<typename _Tp> MatIterator_<_Tp> end();
    template<typename _Tp> MatConstIterator_<_Tp> end() const;

    /** @brief Runs the given functor over all matrix elements in parallel.

    The operation passed as argument has to be a function pointer, a function object or a lambda(C++11).

    Example 1. All of the operations below put 0xFF the first channel of all matrix elements:
    @code
        Mat image(1920, 1080, CV_8UC3);
        typedef cv::Point3_<uint8_t> Pixel;

        // first. raw pointer access.
        for (int r = 0; r < image.rows; ++r) {
            Pixel* ptr = image.ptr<Pixel>(0, r);
            const Pixel* ptr_end = ptr + image.cols;
            for (; ptr != ptr_end; ++ptr) {
                ptr->x = 255;
            }
        }

        // Using MatIterator. (Simple but there are a Iterator's overhead)
        for (Pixel &p : cv::Mat_<Pixel>(image)) {
            p.x = 255;
        }

        // Parallel execution with function object.
        struct Operator {
            void operator ()(Pixel &pixel, const int * position) {
                pixel.x = 255;
            }
        };
        image.forEach<Pixel>(Operator());

        // Parallel execution using C++11 lambda.
        image.forEach<Pixel>([](Pixel &p, const int * position) -> void {
            p.x = 255;
        });
    @endcode
    Example 2. Using the pixel's position:
    @code
        // Creating 3D matrix (255 x 255 x 255) typed uint8_t
        // and initialize all elements by the value which equals elements position.
        // i.e. pixels (x,y,z) = (1,2,3) is (b,g,r) = (1,2,3).

        int sizes[] = { 255, 255, 255 };
        typedef cv::Point3_<uint8_t> Pixel;

        Mat_<Pixel> image = Mat::zeros(3, sizes, CV_8UC3);

        image.forEach<Pixel>([&](Pixel& pixel, const int position[]) -> void {
            pixel.x = position[0];
            pixel.y = position[1];
            pixel.z = position[2];
        });
    @endcode
     */
    template<typename _Tp, typename Functor> void forEach(const Functor& operation);
    /** @overload */
    template<typename _Tp, typename Functor> void forEach(const Functor& operation) const;

#ifdef CV_CXX_MOVE_SEMANTICS
    Mat(Mat&& m);
    Mat& operator = (Mat&& m);
#endif

    enum { MAGIC_VAL  = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
    enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };

    /*! includes several bit-fields:
         - the magic signature
         - continuity flag
         - depth
         - number of channels
     */
    int flags;
    //! the matrix dimensionality, >= 2
    int dims;
    //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
    int rows, cols;
    //! pointer to the data
    uchar* data;

    //! helper fields used in locateROI and adjustROI
    const uchar* datastart;
    const uchar* dataend;
    const uchar* datalimit;

    //! custom allocator
    MatAllocator* allocator;
    //! and the standard allocator
    static MatAllocator* getStdAllocator();
    static MatAllocator* getDefaultAllocator();
    static void setDefaultAllocator(MatAllocator* allocator);

    //! interaction with UMat
    UMatData* u;

    MatSize size;
    MatStep step;

protected:
    template<typename _Tp, typename Functor> void forEach_impl(const Functor& operation);
};


///////////////////////////////// Mat_<_Tp> ////////////////////////////////////

/** @brief Template matrix class derived from Mat

@code
    template<typename _Tp> class Mat_ : public Mat
    {
    public:
        // ... some specific methods
        //         and
        // no new extra fields
    };
@endcode
The class `Mat_<_Tp>` is a *thin* template wrapper on top of the Mat class. It does not have any
extra data fields. Nor this class nor Mat has any virtual methods. Thus, references or pointers to
these two classes can be freely but carefully converted one to another. For example:
@code
    // create a 100x100 8-bit matrix
    Mat M(100,100,CV_8U);
    // this will be compiled fine. no any data conversion will be done.
    Mat_<float>& M1 = (Mat_<float>&)M;
    // the program is likely to crash at the statement below
    M1(99,99) = 1.f;
@endcode
While Mat is sufficient in most cases, Mat_ can be more convenient if you use a lot of element
access operations and if you know matrix type at the compilation time. Note that
`Mat::at(int y,int x)` and `Mat_::operator()(int y,int x)` do absolutely the same
and run at the same speed, but the latter is certainly shorter:
@code
    Mat_<double> M(20,20);
    for(int i = 0; i < M.rows; i++)
        for(int j = 0; j < M.cols; j++)
            M(i,j) = 1./(i+j+1);
    Mat E, V;
    eigen(M,E,V);
    cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0);
@endcode
To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter:
@code
    // allocate a 320x240 color image and fill it with green (in RGB space)
    Mat_<Vec3b> img(240, 320, Vec3b(0,255,0));
    // now draw a diagonal white line
    for(int i = 0; i < 100; i++)
        img(i,i)=Vec3b(255,255,255);
    // and now scramble the 2nd (red) channel of each pixel
    for(int i = 0; i < img.rows; i++)
        for(int j = 0; j < img.cols; j++)
            img(i,j)[2] ^= (uchar)(i ^ j);
@endcode
 */
template<typename _Tp> class Mat_ : public Mat
{
public:
    typedef _Tp value_type;
    typedef typename DataType<_Tp>::channel_type channel_type;
    typedef MatIterator_<_Tp> iterator;
    typedef MatConstIterator_<_Tp> const_iterator;

    //! default constructor
    Mat_();
    //! equivalent to Mat(_rows, _cols, DataType<_Tp>::type)
    Mat_(int _rows, int _cols);
    //! constructor that sets each matrix element to specified value
    Mat_(int _rows, int _cols, const _Tp& value);
    //! equivalent to Mat(_size, DataType<_Tp>::type)
    explicit Mat_(Size _size);
    //! constructor that sets each matrix element to specified value
    Mat_(Size _size, const _Tp& value);
    //! n-dim array constructor
    Mat_(int _ndims, const int* _sizes);
    //! n-dim array constructor that sets each matrix element to specified value
    Mat_(int _ndims, const int* _sizes, const _Tp& value);
    //! copy/conversion contructor. If m is of different type, it's converted
    Mat_(const Mat& m);
    //! copy constructor
    Mat_(const Mat_& m);
    //! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type
    Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP);
    //! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type
    Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0);
    //! selects a submatrix
    Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all());
    //! selects a submatrix
    Mat_(const Mat_& m, const Rect& roi);
    //! selects a submatrix, n-dim version
    Mat_(const Mat_& m, const Range* ranges);
    //! selects a submatrix, n-dim version
    Mat_(const Mat_& m, const std::vector<Range>& ranges);
    //! from a matrix expression
    explicit Mat_(const MatExpr& e);
    //! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column
    explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false);
    template<int n> explicit Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData=true);
    template<int m, int n> explicit Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& mtx, bool copyData=true);
    explicit Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
    explicit Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
    explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer);

    Mat_& operator = (const Mat& m);
    Mat_& operator = (const Mat_& m);
    //! set all the elements to s.
    Mat_& operator = (const _Tp& s);
    //! assign a matrix expression
    Mat_& operator = (const MatExpr& e);

    //! iterators; they are smart enough to skip gaps in the end of rows
    iterator begin();
    iterator end();
    const_iterator begin() const;
    const_iterator end() const;

    //! template methods for for operation over all matrix elements.
    // the operations take care of skipping gaps in the end of rows (if any)
    template<typename Functor> void forEach(const Functor& operation);
    template<typename Functor> void forEach(const Functor& operation) const;

    //! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type)
    void create(int _rows, int _cols);
    //! equivalent to Mat::create(_size, DataType<_Tp>::type)
    void create(Size _size);
    //! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type)
    void create(int _ndims, const int* _sizes);
    //! cross-product
    Mat_ cross(const Mat_& m) const;
    //! data type conversion
    template<typename T2> operator Mat_<T2>() const;
    //! overridden forms of Mat::row() etc.
    Mat_ row(int y) const;
    Mat_ col(int x) const;
    Mat_ diag(int d=0) const;
    Mat_ clone() const;

    //! overridden forms of Mat::elemSize() etc.
    size_t elemSize() const;
    size_t elemSize1() const;
    int type() const;
    int depth() const;
    int channels() const;
    size_t step1(int i=0) const;
    //! returns step()/sizeof(_Tp)
    size_t stepT(int i=0) const;

    //! overridden forms of Mat::zeros() etc. Data type is omitted, of course
    static MatExpr zeros(int rows, int cols);
    static MatExpr zeros(Size size);
    static MatExpr zeros(int _ndims, const int* _sizes);
    static MatExpr ones(int rows, int cols);
    static MatExpr ones(Size size);
    static MatExpr ones(int _ndims, const int* _sizes);
    static MatExpr eye(int rows, int cols);
    static MatExpr eye(Size size);

    //! some more overriden methods
    Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright );
    Mat_ operator()( const Range& rowRange, const Range& colRange ) const;
    Mat_ operator()( const Rect& roi ) const;
    Mat_ operator()( const Range* ranges ) const;
    Mat_ operator()(const std::vector<Range>& ranges) const;

    //! more convenient forms of row and element access operators
    _Tp* operator [](int y);
    const _Tp* operator [](int y) const;

    //! returns reference to the specified element
    _Tp& operator ()(const int* idx);
    //! returns read-only reference to the specified element
    const _Tp& operator ()(const int* idx) const;

    //! returns reference to the specified element
    template<int n> _Tp& operator ()(const Vec<int, n>& idx);
    //! returns read-only reference to the specified element
    template<int n> const _Tp& operator ()(const Vec<int, n>& idx) const;

    //! returns reference to the specified element (1D case)
    _Tp& operator ()(int idx0);
    //! returns read-only reference to the specified element (1D case)
    const _Tp& operator ()(int idx0) const;
    //! returns reference to the specified element (2D case)
    _Tp& operator ()(int row, int col);
    //! returns read-only reference to the specified element (2D case)
    const _Tp& operator ()(int row, int col) const;
    //! returns reference to the specified element (3D case)
    _Tp& operator ()(int idx0, int idx1, int idx2);
    //! returns read-only reference to the specified element (3D case)
    const _Tp& operator ()(int idx0, int idx1, int idx2) const;

    _Tp& operator ()(Point pt);
    const _Tp& operator ()(Point pt) const;

    //! conversion to vector.
    operator std::vector<_Tp>() const;
    //! conversion to Vec
    template<int n> operator Vec<typename DataType<_Tp>::channel_type, n>() const;
    //! conversion to Matx
    template<int m, int n> operator Matx<typename DataType<_Tp>::channel_type, m, n>() const;

#ifdef CV_CXX_MOVE_SEMANTICS
    Mat_(Mat_&& m);
    Mat_& operator = (Mat_&& m);

    Mat_(Mat&& m);
    Mat_& operator = (Mat&& m);

    Mat_(MatExpr&& e);
#endif
};

typedef Mat_<uchar> Mat1b;
typedef Mat_<Vec2b> Mat2b;
typedef Mat_<Vec3b> Mat3b;
typedef Mat_<Vec4b> Mat4b;

typedef Mat_<short> Mat1s;
typedef Mat_<Vec2s> Mat2s;
typedef Mat_<Vec3s> Mat3s;
typedef Mat_<Vec4s> Mat4s;

typedef Mat_<ushort> Mat1w;
typedef Mat_<Vec2w> Mat2w;
typedef Mat_<Vec3w> Mat3w;
typedef Mat_<Vec4w> Mat4w;

typedef Mat_<int>   Mat1i;
typedef Mat_<Vec2i> Mat2i;
typedef Mat_<Vec3i> Mat3i;
typedef Mat_<Vec4i> Mat4i;

typedef Mat_<float> Mat1f;
typedef Mat_<Vec2f> Mat2f;
typedef Mat_<Vec3f> Mat3f;
typedef Mat_<Vec4f> Mat4f;

typedef Mat_<double> Mat1d;
typedef Mat_<Vec2d> Mat2d;
typedef Mat_<Vec3d> Mat3d;
typedef Mat_<Vec4d> Mat4d;

/** @todo document */
class CV_EXPORTS UMat
{
public:
    //! default constructor
    UMat(UMatUsageFlags usageFlags = USAGE_DEFAULT);
    //! constructs 2D matrix of the specified size and type
    // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
    UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
    UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
    //! constucts 2D matrix and fills it with the specified value _s.
    UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);
    UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);

    //! constructs n-dimensional matrix
    UMat(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
    UMat(int ndims, const int* sizes, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT);

    //! copy constructor
    UMat(const UMat& m);

    //! creates a matrix header for a part of the bigger matrix
    UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all());
    UMat(const UMat& m, const Rect& roi);
    UMat(const UMat& m, const Range* ranges);
    UMat(const UMat& m, const std::vector<Range>& ranges);
    //! builds matrix from std::vector with or without copying the data
    template<typename _Tp> explicit UMat(const std::vector<_Tp>& vec, bool copyData=false);
    //! builds matrix from cv::Vec; the data is copied by default
    template<typename _Tp, int n> explicit UMat(const Vec<_Tp, n>& vec, bool copyData=true);
    //! builds matrix from cv::Matx; the data is copied by default
    template<typename _Tp, int m, int n> explicit UMat(const Matx<_Tp, m, n>& mtx, bool copyData=true);
    //! builds matrix from a 2D point
    template<typename _Tp> explicit UMat(const Point_<_Tp>& pt, bool copyData=true);
    //! builds matrix from a 3D point
    template<typename _Tp> explicit UMat(const Point3_<_Tp>& pt, bool copyData=true);
    //! builds matrix from comma initializer
    template<typename _Tp> explicit UMat(const MatCommaInitializer_<_Tp>& commaInitializer);

    //! destructor - calls release()
    ~UMat();
    //! assignment operators
    UMat& operator = (const UMat& m);

    Mat getMat(int flags) const;

    //! returns a new matrix header for the specified row
    UMat row(int y) const;
    //! returns a new matrix header for the specified column
    UMat col(int x) const;
    //! ... for the specified row span
    UMat rowRange(int startrow, int endrow) const;
    UMat rowRange(const Range& r) const;
    //! ... for the specified column span
    UMat colRange(int startcol, int endcol) const;
    UMat colRange(const Range& r) const;
    //! ... for the specified diagonal
    // (d=0 - the main diagonal,
    //  >0 - a diagonal from the lower half,
    //  <0 - a diagonal from the upper half)
    UMat diag(int d=0) const;
    //! constructs a square diagonal matrix which main diagonal is vector "d"
    static UMat diag(const UMat& d);

    //! returns deep copy of the matrix, i.e. the data is copied
    UMat clone() const;
    //! copies the matrix content to "m".
    // It calls m.create(this->size(), this->type()).
    void copyTo( OutputArray m ) const;
    //! copies those matrix elements to "m" that are marked with non-zero mask elements.
    void copyTo( OutputArray m, InputArray mask ) const;
    //! converts matrix to another datatype with optional scalng. See cvConvertScale.
    void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;

    void assignTo( UMat& m, int type=-1 ) const;

    //! sets every matrix element to s
    UMat& operator = (const Scalar& s);
    //! sets some of the matrix elements to s, according to the mask
    UMat& setTo(InputArray value, InputArray mask=noArray());
    //! creates alternative matrix header for the same data, with different
    // number of channels and/or different number of rows. see cvReshape.
    UMat reshape(int cn, int rows=0) const;
    UMat reshape(int cn, int newndims, const int* newsz) const;

    //! matrix transposition by means of matrix expressions
    UMat t() const;
    //! matrix inversion by means of matrix expressions
    UMat inv(int method=DECOMP_LU) const;
    //! per-element matrix multiplication by means of matrix expressions
    UMat mul(InputArray m, double scale=1) const;

    //! computes dot-product
    double dot(InputArray m) const;

    //! Matlab-style matrix initialization
    static UMat zeros(int rows, int cols, int type);
    static UMat zeros(Size size, int type);
    static UMat zeros(int ndims, const int* sz, int type);
    static UMat ones(int rows, int cols, int type);
    static UMat ones(Size size, int type);
    static UMat ones(int ndims, const int* sz, int type);
    static UMat eye(int rows, int cols, int type);
    static UMat eye(Size size, int type);

    //! allocates new matrix data unless the matrix already has specified size and type.
    // previous data is unreferenced if needed.
    void create(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
    void create(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
    void create(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);
    void create(const std::vector<int>& sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT);

    //! increases the reference counter; use with care to avoid memleaks
    void addref();
    //! decreases reference counter;
    // deallocates the data when reference counter reaches 0.
    void release();

    //! deallocates the matrix data
    void deallocate();
    //! internal use function; properly re-allocates _size, _step arrays
    void copySize(const UMat& m);

    //! locates matrix header within a parent matrix. See below
    void locateROI( Size& wholeSize, Point& ofs ) const;
    //! moves/resizes the current matrix ROI inside the parent matrix.
    UMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
    //! extracts a rectangular sub-matrix
    // (this is a generalized form of row, rowRange etc.)
    UMat operator()( Range rowRange, Range colRange ) const;
    UMat operator()( const Rect& roi ) const;
    UMat operator()( const Range* ranges ) const;
    UMat operator()(const std::vector<Range>& ranges) const;

    //! returns true iff the matrix data is continuous
    // (i.e. when there are no gaps between successive rows).
    // similar to CV_IS_MAT_CONT(cvmat->type)
    bool isContinuous() const;

    //! returns true if the matrix is a submatrix of another matrix
    bool isSubmatrix() const;

    //! returns element size in bytes,
    // similar to CV_ELEM_SIZE(cvmat->type)
    size_t elemSize() const;
    //! returns the size of element channel in bytes.
    size_t elemSize1() const;
    //! returns element type, similar to CV_MAT_TYPE(cvmat->type)
    int type() const;
    //! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
    int depth() const;
    //! returns element type, similar to CV_MAT_CN(cvmat->type)
    int channels() const;
    //! returns step/elemSize1()
    size_t step1(int i=0) const;
    //! returns true if matrix data is NULL
    bool empty() const;
    //! returns the total number of matrix elements
    size_t total() const;

    //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
    int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;

#ifdef CV_CXX_MOVE_SEMANTICS
    UMat(UMat&& m);
    UMat& operator = (UMat&& m);
#endif

    void* handle(int accessFlags) const;
    void ndoffset(size_t* ofs) const;

    enum { MAGIC_VAL  = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
    enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };

    /*! includes several bit-fields:
         - the magic signature
         - continuity flag
         - depth
         - number of channels
     */
    int flags;
    //! the matrix dimensionality, >= 2
    int dims;
    //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
    int rows, cols;

    //! custom allocator
    MatAllocator* allocator;
    UMatUsageFlags usageFlags; // usage flags for allocator
    //! and the standard allocator
    static MatAllocator* getStdAllocator();

    // black-box container of UMat data
    UMatData* u;

    // offset of the submatrix (or 0)
    size_t offset;

    MatSize size;
    MatStep step;

protected:
};


/////////////////////////// multi-dimensional sparse matrix //////////////////////////

/** @brief The class SparseMat represents multi-dimensional sparse numerical arrays.

Such a sparse array can store elements of any type that Mat can store. *Sparse* means that only
non-zero elements are stored (though, as a result of operations on a sparse matrix, some of its
stored elements can actually become 0. It is up to you to detect such elements and delete them
using SparseMat::erase ). The non-zero elements are stored in a hash table that grows when it is
filled so that the search time is O(1) in average (regardless of whether element is there or not).
Elements can be accessed using the following methods:
-   Query operations (SparseMat::ptr and the higher-level SparseMat::ref, SparseMat::value and
    SparseMat::find), for example:
    @code
        const int dims = 5;
        int size[5] = {10, 10, 10, 10, 10};
        SparseMat sparse_mat(dims, size, CV_32F);
        for(int i = 0; i < 1000; i++)
        {
            int idx[dims];
            for(int k = 0; k < dims; k++)
                idx[k] = rand() % size[k];
            sparse_mat.ref<float>(idx) += 1.f;
        }
        cout << "nnz = " << sparse_mat.nzcount() << endl;
    @endcode
-   Sparse matrix iterators. They are similar to MatIterator but different from NAryMatIterator.
    That is, the iteration loop is familiar to STL users:
    @code
        // prints elements of a sparse floating-point matrix
        // and the sum of elements.
        SparseMatConstIterator_<float>
            it = sparse_mat.begin<float>(),
            it_end = sparse_mat.end<float>();
        double s = 0;
        int dims = sparse_mat.dims();
        for(; it != it_end; ++it)
        {
            // print element indices and the element value
            const SparseMat::Node* n = it.node();
            printf("(");
            for(int i = 0; i < dims; i++)
                printf("%d%s", n->idx[i], i < dims-1 ? ", " : ")");
            printf(": %g\n", it.value<float>());
            s += *it;
        }
        printf("Element sum is %g\n", s);
    @endcode
    If you run this loop, you will notice that elements are not enumerated in a logical order
    (lexicographical, and so on). They come in the same order as they are stored in the hash table
    (semi-randomly). You may collect pointers to the nodes and sort them to get the proper ordering.
    Note, however, that pointers to the nodes may become invalid when you add more elements to the
    matrix. This may happen due to possible buffer reallocation.
-   Combination of the above 2 methods when you need to process 2 or more sparse matrices
    simultaneously. For example, this is how you can compute unnormalized cross-correlation of the 2
    floating-point sparse matrices:
    @code
        double cross_corr(const SparseMat& a, const SparseMat& b)
        {
            const SparseMat *_a = &a, *_b = &b;
            // if b contains less elements than a,
            // it is faster to iterate through b
            if(_a->nzcount() > _b->nzcount())
                std::swap(_a, _b);
            SparseMatConstIterator_<float> it = _a->begin<float>(),
                                           it_end = _a->end<float>();
            double ccorr = 0;
            for(; it != it_end; ++it)
            {
                // take the next element from the first matrix
                float avalue = *it;
                const Node* anode = it.node();
                // and try to find an element with the same index in the second matrix.
                // since the hash value depends only on the element index,
                // reuse the hash value stored in the node
                float bvalue = _b->value<float>(anode->idx,&anode->hashval);
                ccorr += avalue*bvalue;
            }
            return ccorr;
        }
    @endcode
 */
class CV_EXPORTS SparseMat
{
public:
    typedef SparseMatIterator iterator;
    typedef SparseMatConstIterator const_iterator;

    enum { MAGIC_VAL=0x42FD0000, MAX_DIM=32, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 };

    //! the sparse matrix header
    struct CV_EXPORTS Hdr
    {
        Hdr(int _dims, const int* _sizes, int _type);
        void clear();
        int refcount;
        int dims;
        int valueOffset;
        size_t nodeSize;
        size_t nodeCount;
        size_t freeList;
        std::vector<uchar> pool;
        std::vector<size_t> hashtab;
        int size[MAX_DIM];
    };

    //! sparse matrix node - element of a hash table
    struct CV_EXPORTS Node
    {
        //! hash value
        size_t hashval;
        //! index of the next node in the same hash table entry
        size_t next;
        //! index of the matrix element
        int idx[MAX_DIM];
    };

    /** @brief Various SparseMat constructors.
     */
    SparseMat();

    /** @overload
    @param dims Array dimensionality.
    @param _sizes Sparce matrix size on all dementions.
    @param _type Sparse matrix data type.
    */
    SparseMat(int dims, const int* _sizes, int _type);

    /** @overload
    @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted
    to sparse representation.
    */
    SparseMat(const SparseMat& m);

    /** @overload
    @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted
    to sparse representation.
    */
    explicit SparseMat(const Mat& m);

    //! the destructor
    ~SparseMat();

    //! assignment operator. This is O(1) operation, i.e. no data is copied
    SparseMat& operator = (const SparseMat& m);
    //! equivalent to the corresponding constructor
    SparseMat& operator = (const Mat& m);

    //! creates full copy of the matrix
    SparseMat clone() const;

    //! copies all the data to the destination matrix. All the previous content of m is erased
    void copyTo( SparseMat& m ) const;
    //! converts sparse matrix to dense matrix.
    void copyTo( Mat& m ) const;
    //! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type
    void convertTo( SparseMat& m, int rtype, double alpha=1 ) const;
    //! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling.
    /*!
        @param [out] m - output matrix; if it does not have a proper size or type before the operation,
            it is reallocated
        @param [in] rtype – desired output matrix type or, rather, the depth since the number of channels
            are the same as the input has; if rtype is negative, the output matrix will have the
            same type as the input.
        @param [in] alpha – optional scale factor
        @param [in] beta – optional delta added to the scaled values
    */
    void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;

    // not used now
    void assignTo( SparseMat& m, int type=-1 ) const;

    //! reallocates sparse matrix.
    /*!
        If the matrix already had the proper size and type,
        it is simply cleared with clear(), otherwise,
        the old matrix is released (using release()) and the new one is allocated.
    */
    void create(int dims, const int* _sizes, int _type);
    //! sets all the sparse matrix elements to 0, which means clearing the hash table.
    void clear();
    //! manually increments the reference counter to the header.
    void addref();
    // decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated.
    void release();

    //! converts sparse matrix to the old-style representation; all the elements are copied.
    //operator CvSparseMat*() const;
    //! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements)
    size_t elemSize() const;
    //! returns elemSize()/channels()
    size_t elemSize1() const;

    //! returns type of sparse matrix elements
    int type() const;
    //! returns the depth of sparse matrix elements
    int depth() const;
    //! returns the number of channels
    int channels() const;

    //! returns the array of sizes, or NULL if the matrix is not allocated
    const int* size() const;
    //! returns the size of i-th matrix dimension (or 0)
    int size(int i) const;
    //! returns the matrix dimensionality
    int dims() const;
    //! returns the number of non-zero elements (=the number of hash table nodes)
    size_t nzcount() const;

    //! computes the element hash value (1D case)
    size_t hash(int i0) const;
    //! computes the element hash value (2D case)
    size_t hash(int i0, int i1) const;
    //! computes the element hash value (3D case)
    size_t hash(int i0, int i1, int i2) const;
    //! computes the element hash value (nD case)
    size_t hash(const int* idx) const;

    //!@{
    /*!
     specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case.
     return pointer to the matrix element.
      - if the element is there (it's non-zero), the pointer to it is returned
      - if it's not there and createMissing=false, NULL pointer is returned
      - if it's not there and createMissing=true, then the new element
        is created and initialized with 0. Pointer to it is returned
      - if the optional hashval pointer is not NULL, the element hash value is
        not computed, but *hashval is taken instead.
    */
    //! returns pointer to the specified element (1D case)
    uchar* ptr(int i0, bool createMissing, size_t* hashval=0);
    //! returns pointer to the specified element (2D case)
    uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0);
    //! returns pointer to the specified element (3D case)
    uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0);
    //! returns pointer to the specified element (nD case)
    uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0);
    //!@}

    //!@{
    /*!
     return read-write reference to the specified sparse matrix element.

     `ref<_Tp>(i0,...[,hashval])` is equivalent to `*(_Tp*)ptr(i0,...,true[,hashval])`.
     The methods always return a valid reference.
     If the element did not exist, it is created and initialiazed with 0.
    */
    //! returns reference to the specified element (1D case)
    template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0);
    //! returns reference to the specified element (2D case)
    template<typename _Tp> _Tp& ref(int i0, int i1, size_t* hashval=0);
    //! returns reference to the specified element (3D case)
    template<typename _Tp> _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
    //! returns reference to the specified element (nD case)
    template<typename _Tp> _Tp& ref(const int* idx, size_t* hashval=0);
    //!@}

    //!@{
    /*!
     return value of the specified sparse matrix element.

     `value<_Tp>(i0,...[,hashval])` is equivalent to
     @code
     { const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); }
     @endcode

     That is, if the element did not exist, the methods return 0.
     */
    //! returns value of the specified element (1D case)
    template<typename _Tp> _Tp value(int i0, size_t* hashval=0) const;
    //! returns value of the specified element (2D case)
    template<typename _Tp> _Tp value(int i0, int i1, size_t* hashval=0) const;
    //! returns value of the specified element (3D case)
    template<typename _Tp> _Tp value(int i0, int i1, int i2, size_t* hashval=0) const;
    //! returns value of the specified element (nD case)
    template<typename _Tp> _Tp value(const int* idx, size_t* hashval=0) const;
    //!@}

    //!@{
    /*!
     Return pointer to the specified sparse matrix element if it exists

     `find<_Tp>(i0,...[,hashval])` is equivalent to `(_const Tp*)ptr(i0,...false[,hashval])`.

     If the specified element does not exist, the methods return NULL.
    */
    //! returns pointer to the specified element (1D case)
    template<typename _Tp> const _Tp* find(int i0, size_t* hashval=0) const;
    //! returns pointer to the specified element (2D case)
    template<typename _Tp> const _Tp* find(int i0, int i1, size_t* hashval=0) const;
    //! returns pointer to the specified element (3D case)
    template<typename _Tp> const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const;
    //! returns pointer to the specified element (nD case)
    template<typename _Tp> const _Tp* find(const int* idx, size_t* hashval=0) const;
    //!@}

    //! erases the specified element (2D case)
    void erase(int i0, int i1, size_t* hashval=0);
    //! erases the specified element (3D case)
    void erase(int i0, int i1, int i2, size_t* hashval=0);
    //! erases the specified element (nD case)
    void erase(const int* idx, size_t* hashval=0);

    //!@{
    /*!
       return the sparse matrix iterator pointing to the first sparse matrix element
    */
    //! returns the sparse matrix iterator at the matrix beginning
    SparseMatIterator begin();
    //! returns the sparse matrix iterator at the matrix beginning
    template<typename _Tp> SparseMatIterator_<_Tp> begin();
    //! returns the read-only sparse matrix iterator at the matrix beginning
    SparseMatConstIterator begin() const;
    //! returns the read-only sparse matrix iterator at the matrix beginning
    template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const;
    //!@}
    /*!
       return the sparse matrix iterator pointing to the element following the last sparse matrix element
    */
    //! returns the sparse matrix iterator at the matrix end
    SparseMatIterator end();
    //! returns the read-only sparse matrix iterator at the matrix end
    SparseMatConstIterator end() const;
    //! returns the typed sparse matrix iterator at the matrix end
    template<typename _Tp> SparseMatIterator_<_Tp> end();
    //! returns the typed read-only sparse matrix iterator at the matrix end
    template<typename _Tp> SparseMatConstIterator_<_Tp> end() const;

    //! returns the value stored in the sparse martix node
    template<typename _Tp> _Tp& value(Node* n);
    //! returns the value stored in the sparse martix node
    template<typename _Tp> const _Tp& value(const Node* n) const;

    ////////////// some internal-use methods ///////////////
    Node* node(size_t nidx);
    const Node* node(size_t nidx) const;

    uchar* newNode(const int* idx, size_t hashval);
    void removeNode(size_t hidx, size_t nidx, size_t previdx);
    void resizeHashTab(size_t newsize);

    int flags;
    Hdr* hdr;
};



///////////////////////////////// SparseMat_<_Tp> ////////////////////////////////////

/** @brief Template sparse n-dimensional array class derived from SparseMat

SparseMat_ is a thin wrapper on top of SparseMat created in the same way as Mat_ . It simplifies
notation of some operations:
@code
    int sz[] = {10, 20, 30};
    SparseMat_<double> M(3, sz);
    ...
    M.ref(1, 2, 3) = M(4, 5, 6) + M(7, 8, 9);
@endcode
 */
template<typename _Tp> class SparseMat_ : public SparseMat
{
public:
    typedef SparseMatIterator_<_Tp> iterator;
    typedef SparseMatConstIterator_<_Tp> const_iterator;

    //! the default constructor
    SparseMat_();
    //! the full constructor equivelent to SparseMat(dims, _sizes, DataType<_Tp>::type)
    SparseMat_(int dims, const int* _sizes);
    //! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted
    SparseMat_(const SparseMat& m);
    //! the copy constructor. This is O(1) operation - no data is copied
    SparseMat_(const SparseMat_& m);
    //! converts dense matrix to the sparse form
    SparseMat_(const Mat& m);
    //! converts the old-style sparse matrix to the C++ class. All the elements are copied
    //SparseMat_(const CvSparseMat* m);
    //! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted
    SparseMat_& operator = (const SparseMat& m);
    //! the assignment operator. This is O(1) operation - no data is copied
    SparseMat_& operator = (const SparseMat_& m);
    //! converts dense matrix to the sparse form
    SparseMat_& operator = (const Mat& m);

    //! makes full copy of the matrix. All the elements are duplicated
    SparseMat_ clone() const;
    //! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type)
    void create(int dims, const int* _sizes);
    //! converts sparse matrix to the old-style CvSparseMat. All the elements are copied
    //operator CvSparseMat*() const;

    //! returns type of the matrix elements
    int type() const;
    //! returns depth of the matrix elements
    int depth() const;
    //! returns the number of channels in each matrix element
    int channels() const;

    //! equivalent to SparseMat::ref<_Tp>(i0, hashval)
    _Tp& ref(int i0, size_t* hashval=0);
    //! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval)
    _Tp& ref(int i0, int i1, size_t* hashval=0);
    //! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval)
    _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
    //! equivalent to SparseMat::ref<_Tp>(idx, hashval)
    _Tp& ref(const int* idx, size_t* hashval=0);

    //! equivalent to SparseMat::value<_Tp>(i0, hashval)
    _Tp operator()(int i0, size_t* hashval=0) const;
    //! equivalent to SparseMat::value<_Tp>(i0, i1, hashval)
    _Tp operator()(int i0, int i1, size_t* hashval=0) const;
    //! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval)
    _Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const;
    //! equivalent to SparseMat::value<_Tp>(idx, hashval)
    _Tp operator()(const int* idx, size_t* hashval=0) const;

    //! returns sparse matrix iterator pointing to the first sparse matrix element
    SparseMatIterator_<_Tp> begin();
    //! returns read-only sparse matrix iterator pointing to the first sparse matrix element
    SparseMatConstIterator_<_Tp> begin() const;
    //! returns sparse matrix iterator pointing to the element following the last sparse matrix element
    SparseMatIterator_<_Tp> end();
    //! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element
    SparseMatConstIterator_<_Tp> end() const;
};



////////////////////////////////// MatConstIterator //////////////////////////////////

class CV_EXPORTS MatConstIterator
{
public:
    typedef uchar* value_type;
    typedef ptrdiff_t difference_type;
    typedef const uchar** pointer;
    typedef uchar* reference;

#ifndef OPENCV_NOSTL
    typedef std::random_access_iterator_tag iterator_category;
#endif

    //! default constructor
    MatConstIterator();
    //! constructor that sets the iterator to the beginning of the matrix
    MatConstIterator(const Mat* _m);
    //! constructor that sets the iterator to the specified element of the matrix
    MatConstIterator(const Mat* _m, int _row, int _col=0);
    //! constructor that sets the iterator to the specified element of the matrix
    MatConstIterator(const Mat* _m, Point _pt);
    //! constructor that sets the iterator to the specified element of the matrix
    MatConstIterator(const Mat* _m, const int* _idx);
    //! copy constructor
    MatConstIterator(const MatConstIterator& it);

    //! copy operator
    MatConstIterator& operator = (const MatConstIterator& it);
    //! returns the current matrix element
    const uchar* operator *() const;
    //! returns the i-th matrix element, relative to the current
    const uchar* operator [](ptrdiff_t i) const;

    //! shifts the iterator forward by the specified number of elements
    MatConstIterator& operator += (ptrdiff_t ofs);
    //! shifts the iterator backward by the specified number of elements
    MatConstIterator& operator -= (ptrdiff_t ofs);
    //! decrements the iterator
    MatConstIterator& operator --();
    //! decrements the iterator
    MatConstIterator operator --(int);
    //! increments the iterator
    MatConstIterator& operator ++();
    //! increments the iterator
    MatConstIterator operator ++(int);
    //! returns the current iterator position
    Point pos() const;
    //! returns the current iterator position
    void pos(int* _idx) const;

    ptrdiff_t lpos() const;
    void seek(ptrdiff_t ofs, bool relative = false);
    void seek(const int* _idx, bool relative = false);

    const Mat* m;
    size_t elemSize;
    const uchar* ptr;
    const uchar* sliceStart;
    const uchar* sliceEnd;
};



////////////////////////////////// MatConstIterator_ /////////////////////////////////

/** @brief Matrix read-only iterator
 */
template<typename _Tp>
class MatConstIterator_ : public MatConstIterator
{
public:
    typedef _Tp value_type;
    typedef ptrdiff_t difference_type;
    typedef const _Tp* pointer;
    typedef const _Tp& reference;

#ifndef OPENCV_NOSTL
    typedef std::random_access_iterator_tag iterator_category;
#endif

    //! default constructor
    MatConstIterator_();
    //! constructor that sets the iterator to the beginning of the matrix
    MatConstIterator_(const Mat_<_Tp>* _m);
    //! constructor that sets the iterator to the specified element of the matrix
    MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0);
    //! constructor that sets the iterator to the specified element of the matrix
    MatConstIterator_(const Mat_<_Tp>* _m, Point _pt);
    //! constructor that sets the iterator to the specified element of the matrix
    MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx);
    //! copy constructor
    MatConstIterator_(const MatConstIterator_& it);

    //! copy operator
    MatConstIterator_& operator = (const MatConstIterator_& it);
    //! returns the current matrix element
    const _Tp& operator *() const;
    //! returns the i-th matrix element, relative to the current
    const _Tp& operator [](ptrdiff_t i) const;

    //! shifts the iterator forward by the specified number of elements
    MatConstIterator_& operator += (ptrdiff_t ofs);
    //! shifts the iterator backward by the specified number of elements
    MatConstIterator_& operator -= (ptrdiff_t ofs);
    //! decrements the iterator
    MatConstIterator_& operator --();
    //! decrements the iterator
    MatConstIterator_ operator --(int);
    //! increments the iterator
    MatConstIterator_& operator ++();
    //! increments the iterator
    MatConstIterator_ operator ++(int);
    //! returns the current iterator position
    Point pos() const;
};



//////////////////////////////////// MatIterator_ ////////////////////////////////////

/** @brief Matrix read-write iterator
*/
template<typename _Tp>
class MatIterator_ : public MatConstIterator_<_Tp>
{
public:
    typedef _Tp* pointer;
    typedef _Tp& reference;

#ifndef OPENCV_NOSTL
    typedef std::random_access_iterator_tag iterator_category;
#endif

    //! the default constructor
    MatIterator_();
    //! constructor that sets the iterator to the beginning of the matrix
    MatIterator_(Mat_<_Tp>* _m);
    //! constructor that sets the iterator to the specified element of the matrix
    MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0);
    //! constructor that sets the iterator to the specified element of the matrix
    MatIterator_(Mat_<_Tp>* _m, Point _pt);
    //! constructor that sets the iterator to the specified element of the matrix
    MatIterator_(Mat_<_Tp>* _m, const int* _idx);
    //! copy constructor
    MatIterator_(const MatIterator_& it);
    //! copy operator
    MatIterator_& operator = (const MatIterator_<_Tp>& it );

    //! returns the current matrix element
    _Tp& operator *() const;
    //! returns the i-th matrix element, relative to the current
    _Tp& operator [](ptrdiff_t i) const;

    //! shifts the iterator forward by the specified number of elements
    MatIterator_& operator += (ptrdiff_t ofs);
    //! shifts the iterator backward by the specified number of elements
    MatIterator_& operator -= (ptrdiff_t ofs);
    //! decrements the iterator
    MatIterator_& operator --();
    //! decrements the iterator
    MatIterator_ operator --(int);
    //! increments the iterator
    MatIterator_& operator ++();
    //! increments the iterator
    MatIterator_ operator ++(int);
};



/////////////////////////////// SparseMatConstIterator ///////////////////////////////

/**  @brief Read-Only Sparse Matrix Iterator.

 Here is how to use the iterator to compute the sum of floating-point sparse matrix elements:

 \code
 SparseMatConstIterator it = m.begin(), it_end = m.end();
 double s = 0;
 CV_Assert( m.type() == CV_32F );
 for( ; it != it_end; ++it )
    s += it.value<float>();
 \endcode
*/
class CV_EXPORTS SparseMatConstIterator
{
public:
    //! the default constructor
    SparseMatConstIterator();
    //! the full constructor setting the iterator to the first sparse matrix element
    SparseMatConstIterator(const SparseMat* _m);
    //! the copy constructor
    SparseMatConstIterator(const SparseMatConstIterator& it);

    //! the assignment operator
    SparseMatConstIterator& operator = (const SparseMatConstIterator& it);

    //! template method returning the current matrix element
    template<typename _Tp> const _Tp& value() const;
    //! returns the current node of the sparse matrix. it.node->idx is the current element index
    const SparseMat::Node* node() const;

    //! moves iterator to the previous element
    SparseMatConstIterator& operator --();
    //! moves iterator to the previous element
    SparseMatConstIterator operator --(int);
    //! moves iterator to the next element
    SparseMatConstIterator& operator ++();
    //! moves iterator to the next element
    SparseMatConstIterator operator ++(int);

    //! moves iterator to the element after the last element
    void seekEnd();

    const SparseMat* m;
    size_t hashidx;
    uchar* ptr;
};



////////////////////////////////// SparseMatIterator /////////////////////////////////

/** @brief  Read-write Sparse Matrix Iterator

 The class is similar to cv::SparseMatConstIterator,
 but can be used for in-place modification of the matrix elements.
*/
class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator
{
public:
    //! the default constructor
    SparseMatIterator();
    //! the full constructor setting the iterator to the first sparse matrix element
    SparseMatIterator(SparseMat* _m);
    //! the full constructor setting the iterator to the specified sparse matrix element
    SparseMatIterator(SparseMat* _m, const int* idx);
    //! the copy constructor
    SparseMatIterator(const SparseMatIterator& it);

    //! the assignment operator
    SparseMatIterator& operator = (const SparseMatIterator& it);
    //! returns read-write reference to the current sparse matrix element
    template<typename _Tp> _Tp& value() const;
    //! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!)
    SparseMat::Node* node() const;

    //! moves iterator to the next element
    SparseMatIterator& operator ++();
    //! moves iterator to the next element
    SparseMatIterator operator ++(int);
};



/////////////////////////////// SparseMatConstIterator_ //////////////////////////////

/** @brief  Template Read-Only Sparse Matrix Iterator Class.

 This is the derived from SparseMatConstIterator class that
 introduces more convenient operator *() for accessing the current element.
*/
template<typename _Tp> class SparseMatConstIterator_ : public SparseMatConstIterator
{
public:

#ifndef OPENCV_NOSTL
    typedef std::forward_iterator_tag iterator_category;
#endif

    //! the default constructor
    SparseMatConstIterator_();
    //! the full constructor setting the iterator to the first sparse matrix element
    SparseMatConstIterator_(const SparseMat_<_Tp>* _m);
    SparseMatConstIterator_(const SparseMat* _m);
    //! the copy constructor
    SparseMatConstIterator_(const SparseMatConstIterator_& it);

    //! the assignment operator
    SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it);
    //! the element access operator
    const _Tp& operator *() const;

    //! moves iterator to the next element
    SparseMatConstIterator_& operator ++();
    //! moves iterator to the next element
    SparseMatConstIterator_ operator ++(int);
};



///////////////////////////////// SparseMatIterator_ /////////////////////////////////

/** @brief  Template Read-Write Sparse Matrix Iterator Class.

 This is the derived from cv::SparseMatConstIterator_ class that
 introduces more convenient operator *() for accessing the current element.
*/
template<typename _Tp> class SparseMatIterator_ : public SparseMatConstIterator_<_Tp>
{
public:

#ifndef OPENCV_NOSTL
    typedef std::forward_iterator_tag iterator_category;
#endif

    //! the default constructor
    SparseMatIterator_();
    //! the full constructor setting the iterator to the first sparse matrix element
    SparseMatIterator_(SparseMat_<_Tp>* _m);
    SparseMatIterator_(SparseMat* _m);
    //! the copy constructor
    SparseMatIterator_(const SparseMatIterator_& it);

    //! the assignment operator
    SparseMatIterator_& operator = (const SparseMatIterator_& it);
    //! returns the reference to the current element
    _Tp& operator *() const;

    //! moves the iterator to the next element
    SparseMatIterator_& operator ++();
    //! moves the iterator to the next element
    SparseMatIterator_ operator ++(int);
};



/////////////////////////////////// NAryMatIterator //////////////////////////////////

/** @brief n-ary multi-dimensional array iterator.

Use the class to implement unary, binary, and, generally, n-ary element-wise operations on
multi-dimensional arrays. Some of the arguments of an n-ary function may be continuous arrays, some
may be not. It is possible to use conventional MatIterator 's for each array but incrementing all of
the iterators after each small operations may be a big overhead. In this case consider using
NAryMatIterator to iterate through several matrices simultaneously as long as they have the same
geometry (dimensionality and all the dimension sizes are the same). On each iteration `it.planes[0]`,
`it.planes[1]`,... will be the slices of the corresponding matrices.

The example below illustrates how you can compute a normalized and threshold 3D color histogram:
@code
    void computeNormalizedColorHist(const Mat& image, Mat& hist, int N, double minProb)
    {
        const int histSize[] = {N, N, N};

        // make sure that the histogram has a proper size and type
        hist.create(3, histSize, CV_32F);

        // and clear it
        hist = Scalar(0);

        // the loop below assumes that the image
        // is a 8-bit 3-channel. check it.
        CV_Assert(image.type() == CV_8UC3);
        MatConstIterator_<Vec3b> it = image.begin<Vec3b>(),
                                 it_end = image.end<Vec3b>();
        for( ; it != it_end; ++it )
        {
            const Vec3b& pix = *it;
            hist.at<float>(pix[0]*N/256, pix[1]*N/256, pix[2]*N/256) += 1.f;
        }

        minProb *= image.rows*image.cols;

        // initialize iterator (the style is different from STL).
        // after initialization the iterator will contain
        // the number of slices or planes the iterator will go through.
        // it simultaneously increments iterators for several matrices
        // supplied as a null terminated list of pointers
        const Mat* arrays[] = {&hist, 0};
        Mat planes[1];
        NAryMatIterator itNAry(arrays, planes, 1);
        double s = 0;
        // iterate through the matrix. on each iteration
        // itNAry.planes[i] (of type Mat) will be set to the current plane
        // of the i-th n-dim matrix passed to the iterator constructor.
        for(int p = 0; p < itNAry.nplanes; p++, ++itNAry)
        {
            threshold(itNAry.planes[0], itNAry.planes[0], minProb, 0, THRESH_TOZERO);
            s += sum(itNAry.planes[0])[0];
        }

        s = 1./s;
        itNAry = NAryMatIterator(arrays, planes, 1);
        for(int p = 0; p < itNAry.nplanes; p++, ++itNAry)
            itNAry.planes[0] *= s;
    }
@endcode
 */
class CV_EXPORTS NAryMatIterator
{
public:
    //! the default constructor
    NAryMatIterator();
    //! the full constructor taking arbitrary number of n-dim matrices
    NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1);
    //! the full constructor taking arbitrary number of n-dim matrices
    NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1);
    //! the separate iterator initialization method
    void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1);

    //! proceeds to the next plane of every iterated matrix
    NAryMatIterator& operator ++();
    //! proceeds to the next plane of every iterated matrix (postfix increment operator)
    NAryMatIterator operator ++(int);

    //! the iterated arrays
    const Mat** arrays;
    //! the current planes
    Mat* planes;
    //! data pointers
    uchar** ptrs;
    //! the number of arrays
    int narrays;
    //! the number of hyper-planes that the iterator steps through
    size_t nplanes;
    //! the size of each segment (in elements)
    size_t size;
protected:
    int iterdepth;
    size_t idx;
};



///////////////////////////////// Matrix Expressions /////////////////////////////////

class CV_EXPORTS MatOp
{
public:
    MatOp();
    virtual ~MatOp();

    virtual bool elementWise(const MatExpr& expr) const;
    virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0;
    virtual void roi(const MatExpr& expr, const Range& rowRange,
                     const Range& colRange, MatExpr& res) const;
    virtual void diag(const MatExpr& expr, int d, MatExpr& res) const;
    virtual void augAssignAdd(const MatExpr& expr, Mat& m) const;
    virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const;
    virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const;
    virtual void augAssignDivide(const MatExpr& expr, Mat& m) const;
    virtual void augAssignAnd(const MatExpr& expr, Mat& m) const;
    virtual void augAssignOr(const MatExpr& expr, Mat& m) const;
    virtual void augAssignXor(const MatExpr& expr, Mat& m) const;

    virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
    virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const;

    virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
    virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const;

    virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
    virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const;

    virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
    virtual void divide(double s, const MatExpr& expr, MatExpr& res) const;

    virtual void abs(const MatExpr& expr, MatExpr& res) const;

    virtual void transpose(const MatExpr& expr, MatExpr& res) const;
    virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
    virtual void invert(const MatExpr& expr, int method, MatExpr& res) const;

    virtual Size size(const MatExpr& expr) const;
    virtual int type(const MatExpr& expr) const;
};

/** @brief Matrix expression representation
@anchor MatrixExpressions
This is a list of implemented matrix operations that can be combined in arbitrary complex
expressions (here A, B stand for matrices ( Mat ), s for a scalar ( Scalar ), alpha for a
real-valued scalar ( double )):
-   Addition, subtraction, negation: `A+B`, `A-B`, `A+s`, `A-s`, `s+A`, `s-A`, `-A`
-   Scaling: `A*alpha`
-   Per-element multiplication and division: `A.mul(B)`, `A/B`, `alpha/A`
-   Matrix multiplication: `A*B`
-   Transposition: `A.t()` (means A<sup>T</sup>)
-   Matrix inversion and pseudo-inversion, solving linear systems and least-squares problems:
    `A.inv([method]) (~ A<sup>-1</sup>)`,   `A.inv([method])*B (~ X: AX=B)`
-   Comparison: `A cmpop B`, `A cmpop alpha`, `alpha cmpop A`, where *cmpop* is one of
  `>`, `>=`, `==`, `!=`, `<=`, `<`. The result of comparison is an 8-bit single channel mask whose
    elements are set to 255 (if the particular element or pair of elements satisfy the condition) or
    0.
-   Bitwise logical operations: `A logicop B`, `A logicop s`, `s logicop A`, `~A`, where *logicop* is one of
  `&`, `|`, `^`.
-   Element-wise minimum and maximum: `min(A, B)`, `min(A, alpha)`, `max(A, B)`, `max(A, alpha)`
-   Element-wise absolute value: `abs(A)`
-   Cross-product, dot-product: `A.cross(B)`, `A.dot(B)`
-   Any function of matrix or matrices and scalars that returns a matrix or a scalar, such as norm,
    mean, sum, countNonZero, trace, determinant, repeat, and others.
-   Matrix initializers ( Mat::eye(), Mat::zeros(), Mat::ones() ), matrix comma-separated
    initializers, matrix constructors and operators that extract sub-matrices (see Mat description).
-   Mat_<destination_type>() constructors to cast the result to the proper type.
@note Comma-separated initializers and probably some other operations may require additional
explicit Mat() or Mat_<T>() constructor calls to resolve a possible ambiguity.

Here are examples of matrix expressions:
@code
    // compute pseudo-inverse of A, equivalent to A.inv(DECOMP_SVD)
    SVD svd(A);
    Mat pinvA = svd.vt.t()*Mat::diag(1./svd.w)*svd.u.t();

    // compute the new vector of parameters in the Levenberg-Marquardt algorithm
    x -= (A.t()*A + lambda*Mat::eye(A.cols,A.cols,A.type())).inv(DECOMP_CHOLESKY)*(A.t()*err);

    // sharpen image using "unsharp mask" algorithm
    Mat blurred; double sigma = 1, threshold = 5, amount = 1;
    GaussianBlur(img, blurred, Size(), sigma, sigma);
    Mat lowContrastMask = abs(img - blurred) < threshold;
    Mat sharpened = img*(1+amount) + blurred*(-amount);
    img.copyTo(sharpened, lowContrastMask);
@endcode
*/
class CV_EXPORTS MatExpr
{
public:
    MatExpr();
    explicit MatExpr(const Mat& m);

    MatExpr(const MatOp* _op, int _flags, const Mat& _a = Mat(), const Mat& _b = Mat(),
            const Mat& _c = Mat(), double _alpha = 1, double _beta = 1, const Scalar& _s = Scalar());

    operator Mat() const;
    template<typename _Tp> operator Mat_<_Tp>() const;

    Size size() const;
    int type() const;

    MatExpr row(int y) const;
    MatExpr col(int x) const;
    MatExpr diag(int d = 0) const;
    MatExpr operator()( const Range& rowRange, const Range& colRange ) const;
    MatExpr operator()( const Rect& roi ) const;

    MatExpr t() const;
    MatExpr inv(int method = DECOMP_LU) const;
    MatExpr mul(const MatExpr& e, double scale=1) const;
    MatExpr mul(const Mat& m, double scale=1) const;

    Mat cross(const Mat& m) const;
    double dot(const Mat& m) const;

    const MatOp* op;
    int flags;

    Mat a, b, c;
    double alpha, beta;
    Scalar s;
};

//! @} core_basic

//! @relates cv::MatExpr
//! @{
CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a);
CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m);
CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e);
CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s);
CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e);
CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2);

CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a);
CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m);
CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e);
CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s);
CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e);
CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2);

CV_EXPORTS MatExpr operator - (const Mat& m);
CV_EXPORTS MatExpr operator - (const MatExpr& e);

CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator * (const Mat& a, double s);
CV_EXPORTS MatExpr operator * (double s, const Mat& a);
CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m);
CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e);
CV_EXPORTS MatExpr operator * (const MatExpr& e, double s);
CV_EXPORTS MatExpr operator * (double s, const MatExpr& e);
CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2);

CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator / (const Mat& a, double s);
CV_EXPORTS MatExpr operator / (double s, const Mat& a);
CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m);
CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e);
CV_EXPORTS MatExpr operator / (const MatExpr& e, double s);
CV_EXPORTS MatExpr operator / (double s, const MatExpr& e);
CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2);

CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator < (const Mat& a, double s);
CV_EXPORTS MatExpr operator < (double s, const Mat& a);

CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator <= (const Mat& a, double s);
CV_EXPORTS MatExpr operator <= (double s, const Mat& a);

CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator == (const Mat& a, double s);
CV_EXPORTS MatExpr operator == (double s, const Mat& a);

CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator != (const Mat& a, double s);
CV_EXPORTS MatExpr operator != (double s, const Mat& a);

CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator >= (const Mat& a, double s);
CV_EXPORTS MatExpr operator >= (double s, const Mat& a);

CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator > (const Mat& a, double s);
CV_EXPORTS MatExpr operator > (double s, const Mat& a);

CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a);

CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a);

CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a);

CV_EXPORTS MatExpr operator ~(const Mat& m);

CV_EXPORTS MatExpr min(const Mat& a, const Mat& b);
CV_EXPORTS MatExpr min(const Mat& a, double s);
CV_EXPORTS MatExpr min(double s, const Mat& a);

CV_EXPORTS MatExpr max(const Mat& a, const Mat& b);
CV_EXPORTS MatExpr max(const Mat& a, double s);
CV_EXPORTS MatExpr max(double s, const Mat& a);

/** @brief Calculates an absolute value of each matrix element.

abs is a meta-function that is expanded to one of absdiff or convertScaleAbs forms:
- C = abs(A-B) is equivalent to `absdiff(A, B, C)`
- C = abs(A) is equivalent to `absdiff(A, Scalar::all(0), C)`
- C = `Mat_<Vec<uchar,n> >(abs(A*alpha + beta))` is equivalent to `convertScaleAbs(A, C, alpha,
beta)`

The output matrix has the same size and the same type as the input one except for the last case,
where C is depth=CV_8U .
@param m matrix.
@sa @ref MatrixExpressions, absdiff, convertScaleAbs
 */
CV_EXPORTS MatExpr abs(const Mat& m);
/** @overload
@param e matrix expression.
*/
CV_EXPORTS MatExpr abs(const MatExpr& e);
//! @} relates cv::MatExpr

} // cv

#include "opencv2/core/mat.inl.hpp"

#endif // OPENCV_CORE_MAT_HPP