This file is indexed.

/usr/include/opencv2/flann/dist.h is in libopencv-flann-dev 3.2.0+dfsg-4build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_DIST_H_
#define OPENCV_FLANN_DIST_H_

#include <cmath>
#include <cstdlib>
#include <string.h>
#ifdef _MSC_VER
typedef unsigned __int32 uint32_t;
typedef unsigned __int64 uint64_t;
#else
#include <stdint.h>
#endif

#include "defines.h"

#if (defined WIN32 || defined _WIN32) && defined(_M_ARM)
# include <Intrin.h>
#endif

#ifdef __ARM_NEON__
# include "arm_neon.h"
#endif

namespace cvflann
{

template<typename T>
inline T abs(T x) { return (x<0) ? -x : x; }

template<>
inline int abs<int>(int x) { return ::abs(x); }

template<>
inline float abs<float>(float x) { return fabsf(x); }

template<>
inline double abs<double>(double x) { return fabs(x); }

template<typename T>
struct Accumulator { typedef T Type; };
template<>
struct Accumulator<unsigned char>  { typedef float Type; };
template<>
struct Accumulator<unsigned short> { typedef float Type; };
template<>
struct Accumulator<unsigned int> { typedef float Type; };
template<>
struct Accumulator<char>   { typedef float Type; };
template<>
struct Accumulator<short>  { typedef float Type; };
template<>
struct Accumulator<int> { typedef float Type; };

#undef True
#undef False

class True
{
};

class False
{
};


/**
 * Squared Euclidean distance functor.
 *
 * This is the simpler, unrolled version. This is preferable for
 * very low dimensionality data (eg 3D points)
 */
template<class T>
struct L2_Simple
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
    {
        ResultType result = ResultType();
        ResultType diff;
        for(size_t i = 0; i < size; ++i ) {
            diff = *a++ - *b++;
            result += diff*diff;
        }
        return result;
    }

    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return (a-b)*(a-b);
    }
};



/**
 * Squared Euclidean distance functor, optimized version
 */
template<class T>
struct L2
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the squared Euclidean distance between two vectors.
     *
     *	This is highly optimised, with loop unrolling, as it is one
     *	of the most expensive inner loops.
     *
     *	The computation of squared root at the end is omitted for
     *	efficiency.
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = (ResultType)(a[0] - b[0]);
            diff1 = (ResultType)(a[1] - b[1]);
            diff2 = (ResultType)(a[2] - b[2]);
            diff3 = (ResultType)(a[3] - b[3]);
            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
            a += 4;
            b += 4;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            diff0 = (ResultType)(*a++ - *b++);
            result += diff0 * diff0;
        }
        return result;
    }

    /**
     *	Partial euclidean distance, using just one dimension. This is used by the
     *	kd-tree when computing partial distances while traversing the tree.
     *
     *	Squared root is omitted for efficiency.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return (a-b)*(a-b);
    }
};


/*
 * Manhattan distance functor, optimized version
 */
template<class T>
struct L1
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the Manhattan (L_1) distance between two vectors.
     *
     *	This is highly optimised, with loop unrolling, as it is one
     *	of the most expensive inner loops.
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = (ResultType)abs(a[0] - b[0]);
            diff1 = (ResultType)abs(a[1] - b[1]);
            diff2 = (ResultType)abs(a[2] - b[2]);
            diff3 = (ResultType)abs(a[3] - b[3]);
            result += diff0 + diff1 + diff2 + diff3;
            a += 4;
            b += 4;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            diff0 = (ResultType)abs(*a++ - *b++);
            result += diff0;
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return abs(a-b);
    }
};



template<class T>
struct MinkowskiDistance
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    int order;

    MinkowskiDistance(int order_) : order(order_) {}

    /**
     *  Compute the Minkowsky (L_p) distance between two vectors.
     *
     *	This is highly optimised, with loop unrolling, as it is one
     *	of the most expensive inner loops.
     *
     *	The computation of squared root at the end is omitted for
     *	efficiency.
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = (ResultType)abs(a[0] - b[0]);
            diff1 = (ResultType)abs(a[1] - b[1]);
            diff2 = (ResultType)abs(a[2] - b[2]);
            diff3 = (ResultType)abs(a[3] - b[3]);
            result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
            a += 4;
            b += 4;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            diff0 = (ResultType)abs(*a++ - *b++);
            result += pow(diff0,order);
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return pow(static_cast<ResultType>(abs(a-b)),order);
    }
};



template<class T>
struct MaxDistance
{
    typedef False is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the max distance (L_infinity) between two vectors.
     *
     *  This distance is not a valid kdtree distance, it's not dimensionwise additive.
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = abs(a[0] - b[0]);
            diff1 = abs(a[1] - b[1]);
            diff2 = abs(a[2] - b[2]);
            diff3 = abs(a[3] - b[3]);
            if (diff0>result) {result = diff0; }
            if (diff1>result) {result = diff1; }
            if (diff2>result) {result = diff2; }
            if (diff3>result) {result = diff3; }
            a += 4;
            b += 4;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            diff0 = abs(*a++ - *b++);
            result = (diff0>result) ? diff0 : result;
        }
        return result;
    }

    /* This distance functor is not dimension-wise additive, which
     * makes it an invalid kd-tree distance, not implementing the accum_dist method */

};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/**
 * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
 * bit count of A exclusive XOR'ed with B
 */
struct HammingLUT
{
    typedef False is_kdtree_distance;
    typedef False is_vector_space_distance;

    typedef unsigned char ElementType;
    typedef int ResultType;

    /** this will count the bits in a ^ b
     */
    ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const
    {
        static const uchar popCountTable[] =
        {
            0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
            3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
        };
        ResultType result = 0;
        for (size_t i = 0; i < size; i++) {
            result += popCountTable[a[i] ^ b[i]];
        }
        return result;
    }
};

/**
 * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
 * That code was taken from brief.cpp in OpenCV
 */
template<class T>
struct Hamming
{
    typedef False is_kdtree_distance;
    typedef False is_vector_space_distance;


    typedef T ElementType;
    typedef int ResultType;

    template<typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
    {
        ResultType result = 0;
#ifdef __ARM_NEON__
        {
            uint32x4_t bits = vmovq_n_u32(0);
            for (size_t i = 0; i < size; i += 16) {
                uint8x16_t A_vec = vld1q_u8 (a + i);
                uint8x16_t B_vec = vld1q_u8 (b + i);
                uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
                uint8x16_t bitsSet = vcntq_u8 (AxorB);
                uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
                uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
                bits = vaddq_u32(bits, bitSet4);
            }
            uint64x2_t bitSet2 = vpaddlq_u32 (bits);
            result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
            result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
        }
#elif __GNUC__
        {
            //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
            typedef unsigned long long pop_t;
            const size_t modulo = size % sizeof(pop_t);
            const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
            const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
            const pop_t* a2_end = a2 + (size / sizeof(pop_t));

            for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));

            if (modulo) {
                //in the case where size is not dividable by sizeof(size_t)
                //need to mask off the bits at the end
                pop_t a_final = 0, b_final = 0;
                memcpy(&a_final, a2, modulo);
                memcpy(&b_final, b2, modulo);
                result += __builtin_popcountll(a_final ^ b_final);
            }
        }
#else // NO NEON and NOT GNUC
        typedef unsigned long long pop_t;
        HammingLUT lut;
        result = lut(reinterpret_cast<const unsigned char*> (a),
                     reinterpret_cast<const unsigned char*> (b), size * sizeof(pop_t));
#endif
        return result;
    }
};

template<typename T>
struct Hamming2
{
    typedef False is_kdtree_distance;
    typedef False is_vector_space_distance;

    typedef T ElementType;
    typedef int ResultType;

    /** This is popcount_3() from:
     * http://en.wikipedia.org/wiki/Hamming_weight */
    unsigned int popcnt32(uint32_t n) const
    {
        n -= ((n >> 1) & 0x55555555);
        n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
        return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
    }

#ifdef FLANN_PLATFORM_64_BIT
    unsigned int popcnt64(uint64_t n) const
    {
        n -= ((n >> 1) & 0x5555555555555555);
        n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333);
        return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56;
    }
#endif

    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
    {
#ifdef FLANN_PLATFORM_64_BIT
        const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
        const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
        ResultType result = 0;
        size /= (sizeof(uint64_t)/sizeof(unsigned char));
        for(size_t i = 0; i < size; ++i ) {
            result += popcnt64(*pa ^ *pb);
            ++pa;
            ++pb;
        }
#else
        const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
        const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
        ResultType result = 0;
        size /= (sizeof(uint32_t)/sizeof(unsigned char));
        for(size_t i = 0; i < size; ++i ) {
            result += popcnt32(*pa ^ *pb);
            ++pa;
            ++pb;
        }
#endif
        return result;
    }
};



////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

template<class T>
struct HistIntersectionDistance
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the histogram intersection distance
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType min0, min1, min2, min3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);
            min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);
            min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);
            min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);
            result += min0 + min1 + min2 + min3;
            a += 4;
            b += 4;
            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        /* Process last 0-3 pixels.  Not needed for standard vector lengths. */
        while (a < last) {
            min0 = (ResultType)(*a < *b ? *a : *b);
            result += min0;
            ++a;
            ++b;
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        return a<b ? a : b;
    }
};



template<class T>
struct HellingerDistance
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the Hellinger distance
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
    {
        ResultType result = ResultType();
        ResultType diff0, diff1, diff2, diff3;
        Iterator1 last = a + size;
        Iterator1 lastgroup = last - 3;

        /* Process 4 items with each loop for efficiency. */
        while (a < lastgroup) {
            diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
            diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
            diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
            diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
            result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
            a += 4;
            b += 4;
        }
        while (a < last) {
            diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
            result += diff0 * diff0;
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        ResultType diff = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
        return diff * diff;
    }
};


template<class T>
struct ChiSquareDistance
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the chi-square distance
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        ResultType sum, diff;
        Iterator1 last = a + size;

        while (a < last) {
            sum = (ResultType)(*a + *b);
            if (sum>0) {
                diff = (ResultType)(*a - *b);
                result += diff*diff/sum;
            }
            ++a;
            ++b;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        ResultType result = ResultType();
        ResultType sum, diff;

        sum = (ResultType)(a+b);
        if (sum>0) {
            diff = (ResultType)(a-b);
            result = diff*diff/sum;
        }
        return result;
    }
};


template<class T>
struct KL_Divergence
{
    typedef True is_kdtree_distance;
    typedef True is_vector_space_distance;

    typedef T ElementType;
    typedef typename Accumulator<T>::Type ResultType;

    /**
     *  Compute the Kullback–Leibler divergence
     */
    template <typename Iterator1, typename Iterator2>
    ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
    {
        ResultType result = ResultType();
        Iterator1 last = a + size;

        while (a < last) {
            if (* b != 0) {
                ResultType ratio = (ResultType)(*a / *b);
                if (ratio>0) {
                    result += *a * log(ratio);
                }
            }
            ++a;
            ++b;

            if ((worst_dist>0)&&(result>worst_dist)) {
                return result;
            }
        }
        return result;
    }

    /**
     * Partial distance, used by the kd-tree.
     */
    template <typename U, typename V>
    inline ResultType accum_dist(const U& a, const V& b, int) const
    {
        ResultType result = ResultType();
        if( *b != 0 ) {
            ResultType ratio = (ResultType)(a / b);
            if (ratio>0) {
                result = a * log(ratio);
            }
        }
        return result;
    }
};



/*
 * This is a "zero iterator". It basically behaves like a zero filled
 * array to all algorithms that use arrays as iterators (STL style).
 * It's useful when there's a need to compute the distance between feature
 * and origin it and allows for better compiler optimisation than using a
 * zero-filled array.
 */
template <typename T>
struct ZeroIterator
{

    T operator*()
    {
        return 0;
    }

    T operator[](int)
    {
        return 0;
    }

    const ZeroIterator<T>& operator ++()
    {
        return *this;
    }

    ZeroIterator<T> operator ++(int)
    {
        return *this;
    }

    ZeroIterator<T>& operator+=(int)
    {
        return *this;
    }

};


/*
 * Depending on processed distances, some of them are already squared (e.g. L2)
 * and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure
 * we are working on ^2 distances, thus following templates to ensure that.
 */
template <typename Distance, typename ElementType>
struct squareDistance
{
    typedef typename Distance::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return dist*dist; }
};


template <typename ElementType>
struct squareDistance<L2_Simple<ElementType>, ElementType>
{
    typedef typename L2_Simple<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return dist; }
};

template <typename ElementType>
struct squareDistance<L2<ElementType>, ElementType>
{
    typedef typename L2<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return dist; }
};


template <typename ElementType>
struct squareDistance<MinkowskiDistance<ElementType>, ElementType>
{
    typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return dist; }
};

template <typename ElementType>
struct squareDistance<HellingerDistance<ElementType>, ElementType>
{
    typedef typename HellingerDistance<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return dist; }
};

template <typename ElementType>
struct squareDistance<ChiSquareDistance<ElementType>, ElementType>
{
    typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return dist; }
};


template <typename Distance>
typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist )
{
    typedef typename Distance::ElementType ElementType;

    squareDistance<Distance, ElementType> dummy;
    return dummy( dist );
}


/*
 * ...and a template to ensure the user that he will process the normal distance,
 * and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance)
 * that will result in doing actually sqrt(dist*dist) for L1 distance for instance.
 */
template <typename Distance, typename ElementType>
struct simpleDistance
{
    typedef typename Distance::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return dist; }
};


template <typename ElementType>
struct simpleDistance<L2_Simple<ElementType>, ElementType>
{
    typedef typename L2_Simple<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return sqrt(dist); }
};

template <typename ElementType>
struct simpleDistance<L2<ElementType>, ElementType>
{
    typedef typename L2<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return sqrt(dist); }
};


template <typename ElementType>
struct simpleDistance<MinkowskiDistance<ElementType>, ElementType>
{
    typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return sqrt(dist); }
};

template <typename ElementType>
struct simpleDistance<HellingerDistance<ElementType>, ElementType>
{
    typedef typename HellingerDistance<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return sqrt(dist); }
};

template <typename ElementType>
struct simpleDistance<ChiSquareDistance<ElementType>, ElementType>
{
    typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
    ResultType operator()( ResultType dist ) { return sqrt(dist); }
};


template <typename Distance>
typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist )
{
    typedef typename Distance::ElementType ElementType;

    simpleDistance<Distance, ElementType> dummy;
    return dummy( dist );
}

}

#endif //OPENCV_FLANN_DIST_H_