This file is indexed.

/usr/include/SurgSim/Math/CubicSolver-inl.h is in libopensurgsim-dev 0.7.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// This file is a part of the OpenSurgSim project.
// Copyright 2016, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_CUBICSOLVER_INL_H
#define SURGSIM_MATH_CUBICSOLVER_INL_H

#include <boost/math/tools/roots.hpp>
#include <limits>
#include <vector>

#include "SurgSim/Math/IntervalArithmetic.h"
#include "SurgSim/Math/PolynomialRoots.h"

using boost::math::tools::bisect;


namespace SurgSim
{
namespace Math
{

template <class T>
int findRootsInRange01(const Polynomial<T, 3>& p, std::array<T, 3>* roots)
{
	int numberOfRoots = 0;
	boost::math::tools::eps_tolerance<T> tolerance(std::numeric_limits<T>::digits - 3);
	const T epsilon = 4 * std::numeric_limits<T>::epsilon();

	// Is degenerate?
	if (isNearZero(p.getCoefficient(3), epsilon))
	{
		Polynomial<T, 2> quadratic(p.getCoefficient(0), p.getCoefficient(1), p.getCoefficient(2));
		PolynomialRoots<T, 2> quadraticRoots(quadratic, std::numeric_limits<T>::epsilon());

		for (int i = 0; i < quadraticRoots.getNumRoots(); ++i)
		{
			if (quadraticRoots[i] >= 0.0 && quadraticRoots[i] <= 1.0)
			{
				(*roots)[numberOfRoots++] = quadraticRoots[i];
			}
		}

		return numberOfRoots;
	}

	PolynomialRoots<T, 2> stationaryPoints(p.derivative(), std::numeric_limits<T>::epsilon());
	if (stationaryPoints.getNumRoots() < 2 ||
		!Interval<T>(0, 1).overlapsWith(Interval<T>(stationaryPoints[0], stationaryPoints[1])))
	{
		T p0 = p.getCoefficient(0); // p.evaluate(static_cast<T>(0));
		if (isNearZero(p0, epsilon))
		{
			(*roots)[0] = 0.0;
			return 1;
		}

		T p1 = p.evaluate(static_cast<T>(1));
		if (isNearZero(p1, epsilon))
		{
			(*roots)[0] = static_cast<T>(1);
			return 1;
		}
		if (p0 * p1 < 0)
		{
			auto bracket = bisect(p, static_cast<T>(0), static_cast<T>(1), tolerance);
			(*roots)[0] = (bracket.first + bracket.second) * 0.5;
			return 1;
		}

	}
	else
	{
		// Build the monotonic intervals partitioning [0..1] to be analyzed one by one
		// #performance HS-2016-feb-17 Test with boost::static_vector as this gets used by the CCD
		std::vector<Interval<T>> intervals;

		T lastValue = static_cast<T>(0);
		if (stationaryPoints[0] > static_cast<T>(0))
		{
			intervals.emplace_back(lastValue, stationaryPoints[0]);
			lastValue = stationaryPoints[0];
		}
		if (stationaryPoints[1] < static_cast<T>(1))
		{
			intervals.emplace_back(lastValue, stationaryPoints[1]);
			lastValue = stationaryPoints[1];
		}
		intervals.emplace_back(lastValue, static_cast<T>(1));

		for (auto interval : intervals)
		{
			// On each interval, only 1 root can be found
			T pMin = p.evaluate(interval.getMin());
			if (isNearZero(pMin, epsilon))
			{
				(*roots)[numberOfRoots++] = interval.getMin();
			}
			else
			{
				T pMax = p.evaluate(interval.getMax());
				if (isNearZero(pMax, epsilon))
				{
					(*roots)[numberOfRoots++] = interval.getMax();
				}
				else if (pMin * pMax < 0)
				{
					auto bracket = bisect(p, interval.getMin(), interval.getMax(), tolerance);
					(*roots)[numberOfRoots++] = (bracket.first + bracket.second) * 0.5;
				}
			}
		}
	}

	return numberOfRoots;
}

}; // Math
}; // SurgSim

#endif // SURGSIM_MATH_CUBICSOLVER_INL_H