/usr/include/SurgSim/Math/MlcpGaussSeidelSolver.h is in libopensurgsim-dev 0.7.0-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | // This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_MATH_MLCPGAUSSSEIDELSOLVER_H
#define SURGSIM_MATH_MLCPGAUSSSEIDELSOLVER_H
#include <memory.h>
#include "SurgSim/Math/Matrix.h"
#include "SurgSim/Math/MlcpProblem.h"
#include "SurgSim/Math/MlcpSolver.h"
#include "SurgSim/Math/MlcpSolution.h"
#include "SurgSim/Math/Vector.h"
namespace SurgSim
{
namespace Framework
{
class Logger;
}
namespace Math
{
/// A solver for mixed LCP problems using the Gauss-Seidel iterative method.
///
/// The problem can contain:
/// - CONSTRAINT = Bilateral constraint (all atomic, a fixed 3D point=3 atomics independents constraints)
/// - CONTACT = Unilateral constraint
/// * frictionless => 1 atomic constraint per contact
/// * frictional with Coulomb friction (1 mu parameter per contact) => 3 atomic dependent constraints per contact
/// (1 directional + 2 tangentials)
/// - SUTURING = Sliding constraint for suturing
/// * Frictionless suturing constraint => 2 atomic constraints per sliding point
/// * Frictional suturing constraint => 3 atomic constraints per sliding point (2 directional + 1 tangential with
/// friction on it) => 1 mu parameter per frictional suturing
///
/// See e.g.: Duriez, Christian; Dubois, F.; Kheddar, A.; Andriot, C., "Realistic haptic rendering of interacting
/// deformable objects in virtual environments," <i>IEEE Transactions on Visualization and Computer Graphics,</i>
/// vol.12, no.1, pp.36,47, Jan.-Feb. 2006.
class MlcpGaussSeidelSolver : public MlcpSolver
{
public:
/// Constructor.
MlcpGaussSeidelSolver();
/// Constructor.
/// \param epsilonConvergence The precision.
/// \param contactTolerance The contact tolerance.
/// \param maxIterations The max iterations.
MlcpGaussSeidelSolver(double epsilonConvergence, double contactTolerance, size_t maxIterations);
/// Destructor.
virtual ~MlcpGaussSeidelSolver();
/// Resolution of a given MLCP (Gauss Seidel iterative solver)
/// \param problem The mlcp problem
/// \param [out] solution The mlcp solution
/// \return true if successfully converged.
bool solve(const MlcpProblem& problem, MlcpSolution* solution);
/// \return The precision.
double getEpsilonConvergence() const;
/// Set the precision.
/// \param precision The precision.
void setEpsilonConvergence(double precision);
/// \return The contact tolerance.
double getContactTolerance() const;
/// Set the contact tolerance.
/// \param tolerance The contact tolerance.
void setContactTolerance(double tolerance);
/// \return The max number of iterations.
size_t getMaxIterations() const;
/// Set the max number of iterations.
/// \param maxIterations The max number of iterations.
void setMaxIterations(size_t maxIterations);
private:
void computeEnforcementSystem(size_t problemSize, const MlcpProblem::Matrix& A,
const MlcpProblem::Vector& b,
const MlcpSolution::Vector& initialGuessAndSolution,
const std::vector<MlcpConstraintType>& constraintsType,
size_t constraintID, size_t matrixEntryForConstraintID);
void calculateConvergenceCriteria(size_t problemSize, const MlcpProblem::Matrix& A,
const MlcpProblem::Vector& b,
const MlcpSolution::Vector& initialGuessAndSolution,
const std::vector<MlcpConstraintType>& constraintsType,
double constraintConvergenceCriteria[MLCP_NUM_CONSTRAINT_TYPES],
double* convergenceCriteria,
bool* validSignorini);
void doOneIteration(size_t problemSize, const MlcpProblem::Matrix& A,
const MlcpProblem::Vector& b,
MlcpSolution::Vector* initialGuessAndSolution,
const MlcpProblem::Vector& frictionCoefs,
const std::vector<MlcpConstraintType>& constraintsType,
double constraintConvergenceCriteria[MLCP_NUM_CONSTRAINT_TYPES], double* convergenceCriteria,
bool* validSignorini);
void printViolationsAndConvergence(size_t problemSize, const MlcpProblem::Matrix& A,
const MlcpProblem::Vector& b,
const MlcpSolution::Vector& initialGuessAndSolution,
const std::vector<MlcpConstraintType>& constraintsType,
double convergenceCriteria,
bool validSignorini, size_t iterations);
/// The precision.
double m_epsilonConvergence;
/// The contact tolerance.
double m_contactTolerance;
/// The maximum number of iterations
size_t m_maxIterations;
/// The number of atomic constraints, aka the system size.
size_t m_numEnforcedAtomicConstraints;
/// The left-hand side matrix.
Matrix m_lhsEnforcedLocalSystem;
/// The right-hand side vector.
Vector m_rhsEnforcedLocalSystem;
/// The logger.
std::shared_ptr<SurgSim::Framework::Logger> m_logger;
};
}; // namespace Math
}; // namespace SurgSim
#endif // SURGSIM_MATH_MLCPGAUSSSEIDELSOLVER_H
|