This file is indexed.

/usr/include/SurgSim/Math/PolynomialValues.h is in libopensurgsim-dev 0.7.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_POLYNOMIALVALUES_H
#define SURGSIM_MATH_POLYNOMIALVALUES_H

#include "SurgSim/Math/Polynomial.h"
#include "SurgSim/Math/PolynomialRoots.h"
#include "SurgSim/Math/IntervalArithmetic.h"
#include "SurgSim/Math/MinMax.h"

namespace SurgSim
{
namespace Math
{

/// Class to manage polynomial based calculations of interval boundaries.
///
/// \tparam T type of the coefficients and computations
/// \tparam N degree of the polynomial being managed
template <typename T, int N> class PolynomialValues;

/// PolynomialValues<T, 0> specializes the PolynomialValues class for degree 0 (constant polynomials)
/// \sa PolynomialValues<T, N>
template <class T>
class PolynomialValues<T, 0>
{
public:
	/// Constructor. Initialize based on the polynomial p
	/// \param p polynomial on which the value calculations are based
	explicit PolynomialValues(const Polynomial<T, 0>& p);

	/// \return the polynomial basis of this calculation
	const Polynomial<T, 0>& getPolynomial() const;

	/// \param interval an interval on the independent variable over which the
	/// values are to be calculated
	/// \return the minimum and maximum polynomial values over interval
	Interval<T> valuesOverInterval(const Interval<T>& interval) const;

private:
	/// The polynomial under consideration
	Polynomial<T, 0> m_polynomial;
};

/// PolynomialValues<T, 1> specializes the PolynomialValues class for degree 1 (linear polynomials)
/// \sa PolynomialValues<T, N>
template <class T>
class PolynomialValues<T, 1>
{
public:
	/// Constructor. Initialize based on the polynomial p
	/// \param p polynomial on which the value calculations are based
	explicit PolynomialValues(const Polynomial<T, 1>& p);

	/// \return the polynomial basis of this calculation
	const Polynomial<T, 1>& getPolynomial() const;

	/// \param interval an interval on the independent variable over which the
	/// values are to be calculated
	/// \return the minimum and maximum polynomial values over interval
	Interval<T> valuesOverInterval(const Interval<T>& interval) const;

private:
	/// The polynomial under consideration
	Polynomial<T, 1> m_polynomial;
};

/// PolynomialValues<T, 2> specializes the PolynomialValues class for degree 2 (quadratic polynomials)
/// \sa PolynomialValues<T, N>
template <class T>
class PolynomialValues<T, 2>
{
public:
	/// Constructor. Initialize based on the polynomial p
	/// \param p polynomial on which the value calculations are based
	explicit PolynomialValues(const Polynomial<T, 2>& p);

	/// \return the polynomial basis of this calculation
	const Polynomial<T, 2>& getPolynomial() const;

	/// \return the derivative of the polynomial basis for this calculation
	const Polynomial<T, 1>& getDerivative() const;

	/// \return the locations of the extrema for the polynomial
	const PolynomialRoots<T, 1>& getLocationsOfExtrema() const;

	/// \param interval an interval on the independent variable over which the
	/// values are to be calculated
	/// \return the minimum and maximum polynomial values over interval
	Interval<T> valuesOverInterval(const Interval<T>& interval) const;

private:
	/// The polynomial under consideration
	Polynomial<T, 2> m_polynomial;

	/// Cached version of the derivative of the polynomial
	Polynomial<T, 1> m_derivative;

	/// Cached version of the locations of the extrema
	PolynomialRoots<T, 1> m_locationOfExtremum;
};

/// PolynomialValues<T, 3> specializes the PolynomialValues class for degree 3 (cubic polynomials)
/// \sa PolynomialValues<T, N>
template <class T>
class PolynomialValues<T, 3>
{
public:
	/// Constructor. Initialize based on the polynomial p
	/// \param p polynomial on which the value calculations are based
	explicit PolynomialValues(const Polynomial<T, 3>& p);

	/// \return the polynomial basis of this calculation
	const Polynomial<T, 3>& getPolynomial() const;

	/// \return the derivative of the polynomial basis for this calculation
	const Polynomial<T, 2>& getDerivative() const;

	/// \return the locations of the extrema for the polynomial
	const PolynomialRoots<T, 2>& getLocationsOfExtrema() const;

	/// \param interval an interval on the independent variable over which the
	/// values are to be calculated
	/// \return the minimum and maximum polynomial values over interval
	Interval<T> valuesOverInterval(const Interval<T>& interval) const;

private:
	/// The polynomial under consideration
	Polynomial<T, 3> m_polynomial;

	/// Cached version of the derivative of the polynomial
	Polynomial<T, 2> m_derivative;

	/// Cached version of the locations of the extrema
	PolynomialRoots<T, 2> m_locationOfExtremum;
};

/// Calculate the minimum and maximum values of the dependent variable over a specified
/// range of the independent variable
/// \tparam N degree of the polynomial being managed
/// \tparam T type of the coefficients and computations
/// \param p polynomial on which the value calculations are based
/// \param interval an interval on the independent variable over which the
/// values are to be calculated
/// \return the minimum and maximum polynomial values over interval
template <class T, int N>
Interval<T> valuesOverInterval(const Polynomial<T, N>& p, const Interval<T>& interval);

}; // Math
}; // SurgSim

#include "SurgSim/Math/PolynomialValues-inl.h"

#endif // SURGSIM_MATH_POLYNOMIALVALUES_H