/usr/include/openturns/ARMALikelihoodFactory.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | // -*- C++ -*-
/**
* @brief The class enables to get the coefficients of an ARMA process using the likelihood function
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_ARMALIKELIHOODFACTORY_HXX
#define OPENTURNS_ARMALIKELIHOODFACTORY_HXX
#include "openturns/ARMAFactoryImplementation.hxx"
#include "openturns/OptimizationAlgorithm.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class ARMALikelihoodFactory
*
* The class implements the classical likelihood for estimating ARMA coefficients
*/
class OT_API ARMALikelihoodFactory
: public ARMAFactoryImplementation
{
CLASSNAME;
public:
/** Default constructor */
ARMALikelihoodFactory();
/** Default constructor */
ARMALikelihoodFactory(const UnsignedInteger p,
const UnsignedInteger q,
const UnsignedInteger dimension,
const Bool invertible = true);
/** Parameter constructor */
ARMALikelihoodFactory(const Indices & p,
const Indices & q,
const UnsignedInteger dimension,
const Bool invertible = true);
/** Virtual constructor */
virtual ARMALikelihoodFactory * clone() const;
/** String converter */
String __repr__() const;
String __str__(const String & offset = "") const;
/** set accessor for starting point of the optimization
* We also add a global set method
*/
void setInitialARCoefficients(const ARMACoefficients & phi);
void setInitialMACoefficients(const ARMACoefficients & theta);
void setInitialCovarianceMatrix(const CovarianceMatrix & covarianceMatrix);
void setInitialConditions(const ARMACoefficients & arCoefficients, const ARMACoefficients & maCoefficients, const CovarianceMatrix & covarianceMatrix);
/** get accessor for starting point of the optimization */
ARMACoefficients getInitialARCoefficients() const;
ARMACoefficients getInitialMACoefficients() const;
CovarianceMatrix getInitialCovarianceMatrix() const;
/** Build method ==> estimating the coefficients */
ARMA build(const TimeSeries & timeSeries) const;
ARMA build(const ProcessSample & sample) const;
/** Verbosity accessor */
Bool getVerbose() const;
void setVerbose(const Bool verbose);
/** Method save() stores the object through the StorageManager */
void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
void load(Advocate & adv);
private :
/** Parameter g is the maximum of p and q */
mutable UnsignedInteger currentG_;
/** TimeSeries used to pass data */
mutable TimeSeries w_;
/** Dimension parameter - only used to pass data */
UnsignedInteger dimension_;
/** only used to pass data to be used in computeLogLikelihood */
mutable CovarianceMatrix covarianceMatrix_;
mutable SquareMatrix covarianceMatrixCholesky_;
mutable SquareMatrix covarianceMatrixCholeskyInverse_;
/** autocovariance matrix ==> matrix of size (dimension, max(1,p) * dimension)
* only used to pass data to be used in computeLogLikelihood */
mutable Matrix autoCovariance_;
/** crosscovariance matrix ==> matrix of size (dimension, max(1,q) * dimension)
* only used to pass data to be used in computeLogLikelihood */
mutable Matrix crossCovariance_;
/** CoefficientsBlockMatrix ==> matrix of size (dimension , (p + q) * dimension)
* only used to pass data to be used in computeLogLikelihood
* Encapsulate both AR coefficients \phi, MA coefficients \theta
* Sign conventions are different between OpenTurns and Mauricio's papers, so a
* sign change is performed by accessors. In order to improve performance during
* matrix multiplication, transposed matrices are stored. */
mutable Matrix blockPhiTThetaTMatrix_;
/** only used to pass data to be used in computeLogLikeliHood */
mutable Scalar sigma2_;
/** Bool variables */
mutable Bool hasInitializedARCoefficients_;
mutable Bool hasInitializedMACoefficients_;
mutable Bool hasInitializedCovarianceMatrix_;
/** Verbosity control */
Bool verbose_;
/** Method that initialize the size of matrices and vectors depending on the used couple (p, q) */
void initialize();
/** Compute W0 matrix */
SquareMatrix computeW0Matrix() const;
/** Likelihood function ==> Compute the reduced form of the likelihood */
Scalar computeLogLikelihood(const Point & beta) const;
/** Run the default initilization of coefficients / covariance for the optimization */
void defaultInitialize() const;
/** Compute the autocovariance matrix - This method is public for validation purposes*/
void computeAutocovarianceMatrix() const;
/** Compute the cross-covariance matrix - This method is public for validation purposes */
void computeCrossCovarianceMatrix() const;
/** Compute the Cholesky factor of V1 Omega V1^{T} */
SquareMatrix computeV1_Omega_V1T_Cholesky() const;
/** Compute R xi matrices */
Matrix computeRXi() const;
/** Compute eta matrices */
Matrix computeEta() const;
/** Compute h vectors */
Point computeVectorh(const Matrix & rxi, const Matrix & eta, const Matrix & matV1_Omega_V1TCholesky) const;
/** Compute H^{T} H matrix */
SymmetricMatrix computeHTH(const Matrix & rxi) const;
/** Compute I + M^{T} H^{T} H M matrix */
CovarianceMatrix computeI_MTHTHM(const SymmetricMatrix & matrix_HTH, const Matrix & matV1_Omega_V1TCholesky) const;
/** Likelihood function accessor */
Function getLogLikelihoodFunction() const;
/** Likelihood constraint accessor */
Function getLogLikelihoodInequalityConstraint() const;
/** likelihood estimate */
Point computeLogLikelihoodInequalityConstraint( const Point & beta ) const;
/** only used to pass data to be used in computeLogLikelihood and computeLogLikelihoodInequalityConstraint */
mutable UnsignedInteger inputDimension_;
/** only used to pass data to be used in computeLogLikelihoodInequalityConstraint */
mutable UnsignedInteger nbInequalityConstraint_;
/** Optimization solver accessor */
OptimizationAlgorithm getOptimizationAlgorithm() const;
void setOptimizationAlgorithm(const OptimizationAlgorithm & solver);
// @deprecated
OptimizationAlgorithm getOptimizationSolver() const;
void setOptimizationSolver(const OptimizationAlgorithm & solver);
/** Initialize default Cobyla solver parameter using the ResourceMap */
void initializeCobylaSolverParameter();
protected:
/** Optimization solver */
mutable OptimizationAlgorithm solver_;
}; /* class ARMALikelihoodFactory */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_ARMALIKELIHOODFACTORY_HXX */
|