This file is indexed.

/usr/include/openturns/Dirichlet.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//                                               -*- C++ -*-
/**
 *  @brief The Dirichlet distribution
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_DIRICHLET_HXX
#define OPENTURNS_DIRICHLET_HXX

#include "openturns/ContinuousDistribution.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class Dirichlet
 *
 * The Dirichlet distribution.
 */
class OT_API Dirichlet
  : public ContinuousDistribution
{
  CLASSNAME;
public:

  /** Default constructor */
  Dirichlet();

  /** Parameters constructor */
  Dirichlet(const Point & theta);

  /** Comparison operator */
  Bool operator ==(const Dirichlet & other) const;
protected:
  Bool equals(const DistributionImplementation & other) const;
public:

  /** String converter */
  String __repr__() const;
  String __str__(const String & offset = "") const;



  /* Interface inherited from Distribution */

  /** Virtual constructor */
  virtual Dirichlet * clone() const;

  /** Get one realization of the distribution */
  Point getRealization() const;

  /** Get the PDF of the distribution */
  using ContinuousDistribution::computePDF;
  Scalar computePDF(const Point & point) const;
  using ContinuousDistribution::computeLogPDF;
  Scalar computeLogPDF(const Point & point) const;

  /** Get the CDF of the distribution */
  using ContinuousDistribution::computeCDF;
  Scalar computeCDF(const Point & point) const;

  /** Get the standard deviation of the distribution */
  Point getStandardDeviation() const;

  /** Get the skewness of the distribution */
  Point getSkewness() const;

  /** Get the kurtosis of the distribution */
  Point getKurtosis() const;

  /** Parameters value and description accessor */
  virtual PointWithDescriptionCollection getParametersCollection() const;
  using ContinuousDistribution::setParametersCollection;
  void setParametersCollection(const PointCollection & parametersCollection);

  /** Parameters value accessors */
  void setParameter(const Point & parameter);
  Point getParameter() const;

  /** Parameters description accessor */
  Description getParameterDescription() const;

  /* Interface specific to Dirichlet */

  /** Theta accessor */
  void setTheta(const Point & theta);
  Point getTheta() const;

  /** Compute the PDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  using DistributionImplementation::computeConditionalPDF;
  Scalar computeConditionalPDF(const Scalar x, const Point & y) const;

  /** Compute the CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  using DistributionImplementation::computeConditionalCDF;
  Scalar computeConditionalCDF(const Scalar x, const Point & y) const;

  /** Compute the quantile of Xi | X1, ..., Xi-1, i.e. x such that CDF(x|y) = q with x = Xi, y = (X1,...,Xi-1) */
  using DistributionImplementation::computeConditionalQuantile;
  Scalar computeConditionalQuantile(const Scalar q, const Point & y) const;

  /** Get the i-th marginal distribution */
  Implementation getMarginal(const UnsignedInteger i) const;

  /** Get the distribution of the marginal distribution corresponding to indices dimensions */
  Implementation getMarginal(const Indices & indices) const;

  /** Tell if the distribution has independent marginals */
  Bool hasIndependentCopula() const;

  /** Tell if the distribution has an elliptical copula */
  Bool hasEllipticalCopula() const;

  /** Get the Spearman correlation of the distribution */
  CorrelationMatrix getSpearmanCorrelation() const;

  /** Get the Kendall concordance of the distribution */
  CorrelationMatrix getKendallTau() const;

  /** Method save() stores the object through the StorageManager */
  void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  void load(Advocate & adv);


protected:

private:

  /** Initialize the integration routine */
  void initializeIntegration() const;

  /** Compute the mean of the distribution */
  void computeMean() const;

  /** Compute the covariance of the distribution */
  void computeCovariance() const;

  /** Get the quantile of the distribution */
  Scalar computeScalarQuantile(const Scalar prob,
                               const Bool tail = false) const;

  /** Compute the numerical range of the distribution given the parameters values */
  void computeRange();

  /** Update the derivative attributes */
  void update();

  /** The main parameter set of the distribution */
  Point theta_;
  Scalar sumTheta_;
  Scalar normalizationFactor_;
  mutable Bool isInitializedCDF_;
  mutable PointCollection integrationNodes_;
  mutable PointCollection integrationWeights_;
}; /* class Dirichlet */


END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_DIRICHLET_HXX */