This file is indexed.

/usr/include/openturns/DistributionImplementation.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
//                                               -*- C++ -*-
/**
 *  @brief Abstract top-level class for all distributions
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX
#define OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX

#include "openturns/PersistentObject.hxx"
#include "openturns/Point.hxx"
#include "openturns/PointWithDescription.hxx"
#include "openturns/Sample.hxx"
#include "openturns/Indices.hxx"
#include "openturns/Interval.hxx"
#include "openturns/LevelSet.hxx"
#include "openturns/CorrelationMatrix.hxx"
#include "openturns/SquareMatrix.hxx"
#include "openturns/Graph.hxx"
#include "openturns/Description.hxx"
#include "openturns/EvaluationImplementation.hxx"
#include "openturns/GradientImplementation.hxx"
#include "openturns/PersistentCollection.hxx"
#include "openturns/UniVariatePolynomial.hxx"
#include "openturns/PiecewiseHermiteEvaluation.hxx"
#include "openturns/ResourceMap.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class DistributionImplementation
 *
 * The class describes the probabilistic concept of distribution.
 * Instances of this class can produce samples following the
 * distribution, can compute PDF or CDF, etc.
 * They are the actual key component of RandomVectors.
 */
class OT_API DistributionImplementation
  : public PersistentObject
{
  CLASSNAME;
public:

  typedef Pointer<DistributionImplementation>       Implementation;
  typedef Function                     IsoProbabilisticTransformation;
  typedef IsoProbabilisticTransformation            InverseIsoProbabilisticTransformation;
  typedef Collection<Point>                PointCollection;
  typedef Collection<PointWithDescription> PointWithDescriptionCollection;

  /** Default constructor */
  DistributionImplementation();

  /** Comparison operator */
  Bool operator ==(const DistributionImplementation & other) const;
protected:
  virtual Bool equals(const DistributionImplementation & other) const;
public:
  Bool operator !=(const DistributionImplementation & other) const;

  /** Addition operator */
  Implementation operator + (const DistributionImplementation & other) const;
  Implementation operator + (const Implementation & other) const;

  Implementation operator + (const Scalar value) const;

  /** Substraction operator */
  Implementation operator - (const DistributionImplementation & other) const;
  Implementation operator - (const Implementation & other) const;

  Implementation operator - (const Scalar value) const;

  /** Multiplication operator */
  Implementation operator * (const DistributionImplementation & other) const;
  Implementation operator * (const Implementation & other) const;

  Implementation operator * (const Scalar value) const;

  /** Division operator */
  Implementation operator / (const DistributionImplementation & other) const;
  Implementation operator / (const Implementation & other) const;

  Implementation operator / (const Scalar value) const;

  /** Methods to transform distributions by usual functions */
  Implementation cos() const;
  Implementation sin() const;
  Implementation tan() const;

  Implementation acos() const;
  Implementation asin() const;
  Implementation atan() const;

  Implementation cosh() const;
  Implementation sinh() const;
  Implementation tanh() const;

  Implementation acosh() const;
  Implementation asinh() const;
  Implementation atanh() const;

  Implementation exp() const;
  Implementation log() const;
  Implementation ln() const;

  Implementation pow(const SignedInteger exponent) const;
  Implementation pow(const Scalar exponent) const;
  Implementation inverse() const;
  Implementation sqr() const;
  Implementation sqrt() const;
  Implementation cbrt() const;
  Implementation abs() const;

  /** String converter */
  virtual String __repr__() const;
  String __str__(const String & offset = "") const;

  /** Weight accessor */
  void setWeight(Scalar w);
  Scalar getWeight() const;

  /** Dimension accessor */
  UnsignedInteger getDimension() const;

  /* Here is the interface that all derived class must implement */

  /** Virtual constructor */
  virtual DistributionImplementation * clone() const;

  /** Get one realization of the distribution */
  virtual Point getRealization() const;
protected:
  virtual Point getRealizationByInversion() const;

public:
  /** Get a numerical sample whose elements follow the distributionImplementation */
  virtual Sample getSample(const UnsignedInteger size) const;
protected:
  virtual Sample getSampleByInversion(const UnsignedInteger size) const;
  virtual Sample getSampleByQMC(const UnsignedInteger size) const;

public:
  /** Get the DDF of the distribution */
  virtual Scalar computeDDF(const Scalar scalar) const;
  virtual Point  computeDDF(const Point & point) const;
  virtual Sample computeDDF(const Sample & sample) const;
protected:
  virtual Sample computeDDFSequential(const Sample & sample) const;
  virtual Sample computeDDFParallel(const Sample & sample) const;
public:

  /** Get the PDF of the distribution */
  virtual Scalar computePDF(const Scalar scalar) const;
  virtual Scalar computePDF(const Point & point) const;
  virtual Sample computePDF(const Sample & sample) const;
protected:
  virtual Sample computePDFSequential(const Sample & sample) const;
  virtual Sample computePDFParallel(const Sample & sample) const;
public:

  virtual Scalar computeLogPDF(const Scalar scalar) const;
  virtual Scalar computeLogPDF(const Point & point) const;
  virtual Sample computeLogPDF(const Sample & sample) const;
protected:
  virtual Sample computeLogPDFSequential(const Sample & sample) const;
  virtual Sample computeLogPDFParallel(const Sample & sample) const;
public:

  /** Compute the PDF of 1D distributions over a regular grid */
  virtual Sample computePDF(const Scalar xMin,
                            const Scalar xMax,
                            const UnsignedInteger pointNumber,
                            Sample & grid) const;

  /** Compute the PDF of nD distributions over a regular grid */
  virtual Sample computePDF(const Point & xMin,
                            const Point & xMax,
                            const Indices & pointNumber,
                            Sample & grid) const;

  /** Compute the log-PDF of 1D distributions over a regular grid */
  virtual Sample computeLogPDF(const Scalar xMin,
                               const Scalar xMax,
                               const UnsignedInteger pointNumber,
                               Sample & grid) const;

  /** Compute the log-PDF of nD distributions over a regular grid */
  virtual Sample computeLogPDF(const Point & xMin,
                               const Point & xMax,
                               const Indices & pointNumber,
                               Sample & grid) const;

  /** Get the CDF of the distribution */
  virtual Scalar computeCDF(const Scalar scalar) const;
  virtual Scalar computeComplementaryCDF(const Scalar scalar) const;
  virtual Scalar computeSurvivalFunction(const Scalar scalar) const;

  virtual Scalar computeCDF(const Point & point) const;
  virtual Scalar computeComplementaryCDF(const Point & point) const;
  virtual Scalar computeSurvivalFunction(const Point & point) const;
  virtual Point computeInverseSurvivalFunction(const Scalar point) const;
#ifndef SWIG
  virtual Point computeInverseSurvivalFunction(const Scalar prob,
      Scalar & marginalProb) const;
#endif
protected:
  virtual Sample computeCDFSequential(const Sample & sample) const;
  virtual Sample computeCDFParallel(const Sample & sample) const;
public:
  virtual Sample computeCDF(const Sample & sample) const;
protected:
  virtual Sample computeSurvivalFunctionSequential(const Sample & sample) const;
  virtual Sample computeSurvivalFunctionParallel(const Sample & sample) const;
public:
  virtual Sample computeSurvivalFunction(const Sample & sample) const;
protected:
  virtual Sample computeComplementaryCDFSequential(const Sample & sample) const;
  virtual Sample computeComplementaryCDFParallel(const Sample & sample) const;
public:
  virtual Sample computeComplementaryCDF(const Sample & sample) const;

  /** Compute the CDF of 1D distributions over a regular grid */
  virtual Sample computeCDF(const Scalar xMin,
                            const Scalar xMax,
                            const UnsignedInteger pointNumber,
                            Sample & grid) const;

  /** Compute the CDF of nD distributions over a regular grid */
  virtual Sample computeCDF(const Point & xMin,
                            const Point & xMax,
                            const Indices & pointNumber,
                            Sample & grid) const;

  virtual Sample computeComplementaryCDF(const Scalar xMin,
                                         const Scalar xMax,
                                         const UnsignedInteger pointNumber,
                                         Sample & grid) const;

  /** Get the probability content of an interval */
  virtual Scalar computeProbability(const Interval & interval) const;
protected:
  /** Generic implementation for continuous distributions */
  virtual Scalar computeProbabilityContinuous(const Interval & interval) const;
  /** Generic implementation for discrete distributions */
  virtual Scalar computeProbabilityDiscrete(const Interval & interval) const;
  /** Generic implementation for general distributions */
  virtual Scalar computeProbabilityGeneral(const Interval & interval) const;
public:

  /** Get the characteristic function of the distribution, i.e. phi(u) = E(exp(I*u*X)) */
  virtual Complex computeCharacteristicFunction(const Scalar x) const;
  virtual Complex computeCharacteristicFunction(const Point & x) const;
  virtual Complex computeLogCharacteristicFunction(const Scalar x) const;
  virtual Complex computeLogCharacteristicFunction(const Point & x) const;

  /** Compute the generating function, i.e. psi(z) = E(z^X) */
  virtual Scalar computeGeneratingFunction(const Scalar z) const;
  virtual Scalar computeLogGeneratingFunction(const Scalar z) const;

  virtual Complex computeGeneratingFunction(const Complex & z) const;
  virtual Complex computeLogGeneratingFunction(const Complex & z) const;

  /** Get the PDF gradient of the distribution */
  virtual Point computePDFGradient(const Point & point) const;
  virtual Sample computePDFGradient(const Sample & inSample) const;

  /** Get the logPDF gradient of the distribution */
  virtual Point computeLogPDFGradient(const Point & point) const;
  virtual Sample computeLogPDFGradient(const Sample & inSample) const;

protected:
  virtual Sample computeLogPDFGradientSequential(const Sample & sample) const;
  virtual Sample computeLogPDFGradientParallel(const Sample & sample) const;

public:
  /** Get the CDF gradient of the distribution */
  virtual Point computeCDFGradient(const Point & point) const;
  virtual Sample computeCDFGradient(const Sample & inSample) const;
public:

  /** Get the quantile of the distribution */
  virtual Point computeQuantile(const Scalar prob,
                                const Bool tail = false) const;
#ifndef SWIG
  virtual Point computeQuantile(const Scalar prob,
                                const Bool tail,
                                Scalar & marginalProb) const;
#endif
  /** Get the quantile over a provided grid */
protected:
  virtual Sample computeQuantileSequential(const Point & prob,
      const Bool tail = false) const;
  virtual Sample computeQuantileParallel(const Point & prob,
                                         const Bool tail = false) const;
public:
  virtual Sample computeQuantile(const Point & prob,
                                 const Bool tail = false) const;

  /** Compute the quantile over a regular grid */
  virtual Sample computeQuantile(const Scalar qMin,
                                 const Scalar qMax,
                                 const UnsignedInteger pointNumber,
                                 const Bool tail = false) const;

  virtual Sample computeQuantile(const Scalar qMin,
                                 const Scalar qMax,
                                 const UnsignedInteger pointNumber,
                                 Sample & grid,
                                 const Bool tail = false) const;

  /** Get the product minimum volume interval containing a given probability of the distribution */
  virtual Interval computeMinimumVolumeInterval(const Scalar prob) const;
  virtual Interval computeMinimumVolumeIntervalWithMarginalProbability(const Scalar prob, Scalar & marginalProb) const;

protected:
  Interval computeUnivariateMinimumVolumeIntervalByOptimization(const Scalar prob,
      Scalar & marginalProb) const;
  Interval computeUnivariateMinimumVolumeIntervalByRootFinding(const Scalar prob,
      Scalar & marginalProb) const;

public:

  /** Get the product bilateral confidence interval containing a given probability of the distribution */
  virtual Interval computeBilateralConfidenceInterval(const Scalar prob) const;
  virtual Interval computeBilateralConfidenceIntervalWithMarginalProbability(const Scalar prob, Scalar & marginalProb) const;

  /** Get the product unilateral confidence interval containing a given probability of the distribution */
  virtual Interval computeUnilateralConfidenceInterval(const Scalar prob, const Bool tail = false) const;
  virtual Interval computeUnilateralConfidenceIntervalWithMarginalProbability(const Scalar prob, const Bool tail, Scalar & marginalProb) const;

  /** Get the minimum volume level set containing a given probability of the distribution */
  virtual LevelSet computeMinimumVolumeLevelSet(const Scalar prob) const;
  virtual LevelSet computeMinimumVolumeLevelSetWithThreshold(const Scalar prob, Scalar & threshold) const;

protected:
  virtual LevelSet computeUnivariateMinimumVolumeLevelSetByQMC(const Scalar prob,
      Scalar & threshold) const;

public:

  /** Get the mathematical and numerical range of the distribution.
      Its mathematical range is the smallest closed interval outside
      of which the PDF is zero, and the numerical range is the interval
      outside of which the PDF is rounded to zero in double precision */
  virtual Interval getRange() const;

protected:

  virtual void setRange(const Interval & range);

public:
  /** Get the roughness, i.e. the L2-norm of the PDF */
  virtual Scalar getRoughness() const;

  /** Get the mean of the distribution */
  virtual Point getMean() const;

  /** Get the standard deviation of the distribution */
  virtual Point getStandardDeviation() const;

  /** Get the skewness of the distribution */
  virtual Point getSkewness() const;

  /** Get the kurtosis of the distribution */
  virtual Point getKurtosis() const;

  /** Get the raw moments of the standardized distribution */
  virtual Point getStandardMoment(const UnsignedInteger n) const;

  /** Get the raw moments of the distribution */
  virtual Point getMoment(const UnsignedInteger n) const;

  /** Get the centered moments of the distribution */
  virtual Point getCenteredMoment(const UnsignedInteger n) const;

  /** Get the shifted moments of the distribution */
  virtual Point getShiftedMoment(const UnsignedInteger n,
                                 const Point & shift) const;

  /** Get the covariance of the distribution */
  virtual CovarianceMatrix getCovariance() const;

  /** Correlation matrix accessor */
  CorrelationMatrix getCorrelation() const;

  /** Get the linear correlation of the distribution */
  virtual CorrelationMatrix getLinearCorrelation() const;
  virtual CorrelationMatrix getPearsonCorrelation() const;

  /** Get the Spearman correlation of the distribution */
  virtual CorrelationMatrix getSpearmanCorrelation() const;

  /** Get the Kendall concordance of the distribution */
  virtual CorrelationMatrix getKendallTau() const;

  /** Get the shape matrix of the distribution, ie the correlation matrix
      of its copula if it is elliptical */
  virtual CorrelationMatrix getShapeMatrix() const;

  /** Cholesky factor of the covariance matrix accessor */
  TriangularMatrix getCholesky() const;

  /** Inverse of the Cholesky factor of the covariance matrix accessor */
  TriangularMatrix getInverseCholesky() const;

  /** Check if the distribution is a copula */
  virtual Bool isCopula() const;

  /** Check if the distribution is elliptical */
  virtual Bool isElliptical() const;

  /** Check if the distribution is continuous */
  virtual Bool isContinuous() const;

  /** Check if the distribution is discrete */
  virtual Bool isDiscrete() const;

  /** Tell if the distribution is integer valued */
  virtual Bool isIntegral() const;

  /** Tell if the distribution has elliptical copula */
  virtual Bool hasEllipticalCopula() const;

  /** Tell if the distribution has independent copula */
  virtual Bool hasIndependentCopula() const;

  /** Get the support of a distribution that intersect a given interval */
  virtual Sample getSupport(const Interval & interval) const;

  /** Get the support on the whole range */
  virtual Sample getSupport() const;

  /** Get the discrete probability levels */
  virtual Point getProbabilities() const;

  /** Get the PDF singularities inside of the range - 1D only */
  virtual Point getSingularities() const;

  /** Compute the density generator of the elliptical generator, i.e.
   *  the function phi such that the density of the distribution can
   *  be written as p(x) = phi(t(x-mu)R(x-mu))                      */
  virtual Scalar computeDensityGenerator(const Scalar betaSquare) const;

  /** Compute the derivative of the density generator */
  virtual Scalar computeDensityGeneratorDerivative(const Scalar betaSquare) const;

  /** Compute the seconde derivative of the density generator */
  virtual Scalar computeDensityGeneratorSecondDerivative(const Scalar betaSquare) const;

  /** Compute the radial distribution CDF */
  virtual Scalar computeRadialDistributionCDF(const Scalar radius,
      const Bool tail = false) const;

  /** Get the i-th marginal distribution */
  virtual Implementation getMarginal(const UnsignedInteger i) const;

  /** Get the distribution of the marginal distribution corresponding to indices dimensions */
  virtual Implementation getMarginal(const Indices & indices) const;

  /** Get the copula of a distribution */
  virtual Implementation getCopula() const;

  /** Compute the DDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  virtual Scalar computeConditionalDDF(const Scalar x,
                                       const Point & y) const;

  /** Compute the PDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  virtual Scalar computeConditionalPDF(const Scalar x,
                                       const Point & y) const;

  virtual Point computeConditionalPDF(const Point & x,
                                      const Sample & y) const;

  /** Compute the CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  virtual Scalar computeConditionalCDF(const Scalar x,
                                       const Point & y) const;

  virtual Point computeConditionalCDF(const Point & x,
                                      const Sample & y) const;

  /** Compute the quantile of Xi | X1, ..., Xi-1, i.e. x such that CDF(x|y) = q with x = Xi, y = (X1,...,Xi-1) */
  virtual Scalar computeConditionalQuantile(const Scalar q,
      const Point & y) const;

  virtual Point computeConditionalQuantile(const Point & q,
      const Sample & y) const;

  /** Get the isoprobabilist transformation */
  virtual IsoProbabilisticTransformation getIsoProbabilisticTransformation() const;

  /** Get the inverse isoprobabilist transformation */
  virtual InverseIsoProbabilisticTransformation getInverseIsoProbabilisticTransformation() const;

  /** Get the standard distribution */
  virtual Implementation getStandardDistribution() const;

  /** Get the standard representative in the parametric family, associated with the standard moments */
  virtual Implementation getStandardRepresentative() const;

  /** integrationNodesNumber accessors */
  UnsignedInteger getIntegrationNodesNumber() const;
  void setIntegrationNodesNumber(const UnsignedInteger integrationNodesNumber) const;

  /** Gauss nodes and weights accessor */
  Point getGaussNodesAndWeights(Point & weights) const;

  /** Draw the PDF of the distribution when its dimension is 1 or 2 */
  virtual Graph drawPDF() const;

  /** Draw the PDF of the distribution when its dimension is 1 */
  virtual Graph drawPDF(const Scalar xMin,
                        const Scalar xMax,
                        const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;

  virtual Graph drawPDF(const UnsignedInteger pointNumber) const;

  /** Draw the PDF of a 1D marginal */
  virtual Graph drawMarginal1DPDF(const UnsignedInteger marginalIndex,
                                  const Scalar xMin,
                                  const Scalar xMax,
                                  const UnsignedInteger pointNumber) const;

  /** Draw the PDF of the distribution when its dimension is 2 */
  virtual Graph drawPDF(const Point & xMin,
                        const Point & xMax,
                        const Indices & pointNumber) const;

  virtual Graph drawPDF(const Point & xMin,
                        const Point & xMax) const;

  virtual Graph drawPDF(const Indices & pointNumber) const;


  /** Draw the PDF of a 2D marginal */
  virtual Graph drawMarginal2DPDF(const UnsignedInteger firstMarginal,
                                  const UnsignedInteger secondMarginal,
                                  const Point & xMin,
                                  const Point & xMax,
                                  const Indices & pointNumber) const;

  /** Draw the log-PDF of the distribution when its dimension is 1 or 2 */
  virtual Graph drawLogPDF() const;

  /** Draw the log-PDF of the distribution when its dimension is 1 */
  virtual Graph drawLogPDF(const Scalar xMin,
                           const Scalar xMax,
                           const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;

  virtual Graph drawLogPDF(const UnsignedInteger pointNumber) const;

  /** Draw the log-PDF of a 1D marginal */
  virtual Graph drawMarginal1DLogPDF(const UnsignedInteger marginalIndex,
                                     const Scalar xMin,
                                     const Scalar xMax,
                                     const UnsignedInteger pointNumber) const;

  /** Draw the log-PDF of the distribution when its dimension is 2 */
  virtual Graph drawLogPDF(const Point & xMin,
                           const Point & xMax,
                           const Indices & pointNumber) const;

  virtual Graph drawLogPDF(const Point & xMin,
                           const Point & xMax) const;

  virtual Graph drawLogPDF(const Indices & pointNumber) const;


  /** Draw the PDF of a 2D marginal */
  virtual Graph drawMarginal2DLogPDF(const UnsignedInteger firstMarginal,
                                     const UnsignedInteger secondMarginal,
                                     const Point & xMin,
                                     const Point & xMax,
                                     const Indices & pointNumber) const;

  /** Draw the CDF of the distribution when its dimension is 1 or 2 */
  virtual Graph drawCDF() const;

  /** Draw the CDF of the distribution when its dimension is 1 */
  virtual Graph drawCDF(const Scalar xMin,
                        const Scalar xMax,
                        const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;

  virtual Graph drawCDF(const UnsignedInteger pointNumber) const;


  /** Draw the CDF of the distribution when its dimension is 2 */
  virtual Graph drawCDF(const Point & xMin,
                        const Point & xMax,
                        const Indices & pointNumber) const;

  virtual Graph drawCDF(const Point & xMin,
                        const Point & xMax) const;

  virtual Graph drawCDF(const Indices & pointNumber) const;


  /** Draw the CDF of a 1D marginal */
  virtual Graph drawMarginal1DCDF(const UnsignedInteger marginalIndex,
                                  const Scalar xMin,
                                  const Scalar xMax,
                                  const UnsignedInteger pointNumber) const;

  /** Draw the CDF of a 2D marginal */
  virtual Graph drawMarginal2DCDF(const UnsignedInteger firstMarginal,
                                  const UnsignedInteger secondMarginal,
                                  const Point & xMin,
                                  const Point & xMax,
                                  const Indices & pointNumber) const;

  /** Draw the quantile of the distribution when its dimension is 1 or 2 */
  virtual Graph drawQuantile(const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;

  virtual Graph drawQuantile(const Scalar qMin,
                             const Scalar qMax,
                             const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
protected:
  virtual Graph drawQuantile1D(const Scalar qMin,
                               const Scalar qMax,
                               const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;

  virtual Graph drawQuantile2D(const Scalar qMin,
                               const Scalar qMax,
                               const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
public:

  /** Parameters value and description accessor */
  virtual PointWithDescriptionCollection getParametersCollection() const;
  virtual void setParametersCollection(const PointWithDescriptionCollection & parametersCollection);
  virtual void setParametersCollection(const PointCollection & parametersCollection);

  /** Parameters value accessor */
  virtual Point getParameter() const;
  virtual void setParameter(const Point & parameters);

  /** Parameters description accessor */
  virtual Description getParameterDescription() const;

  /** Total number of parameters */
  virtual UnsignedInteger getParameterDimension() const;

  /** Description accessor */
  void setDescription(const Description & description);
  Description getDescription() const;

  /** Method save() stores the object through the StorageManager */
  virtual void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  virtual void load(Advocate & adv);

  /** Accessor to PDF computation precision */
  Scalar getPDFEpsilon() const;

  /** Accessor to CDF computation precision */
  Scalar getCDFEpsilon() const;

  /** Get a positon indicator for a 1D distribution */
  Scalar getPositionIndicator() const;

  /** Get a dispersion indicator for a 1D distribution */
  Scalar getDispersionIndicator() const;

  /** Is it safe to compute PDF/CDF etc in parallel? */
  Bool isParallel() const;
  void setParallel(const Bool flag);

protected:

  /** Draw the PDF of a discrete distribution */
  virtual Graph drawDiscretePDF(const Scalar xMin,
                                const Scalar xMax,
                                const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;

  /** Draw the log-PDF of a discrete distribution */
  virtual Graph drawDiscreteLogPDF(const Scalar xMin,
                                   const Scalar xMax,
                                   const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;

  /** Draw the CDF of a discrete distribution */
  Graph drawDiscreteCDF(const Scalar xMin,
                        const Scalar xMax,
                        const UnsignedInteger pointNumber) const;

  /** Compute the characteristic function of 1D distributions in a regular pattern with cache */
  virtual Complex computeCharacteristicFunction(const UnsignedInteger index,
      const Scalar step) const;
  virtual Complex computeLogCharacteristicFunction(const UnsignedInteger index,
      const Scalar step) const;
  virtual Complex computeCharacteristicFunction(const Indices & indices,
      const Point & step) const;
  virtual Complex computeLogCharacteristicFunction(const Indices & indices,
      const Point & step) const;

  /** Compute the mean of the distribution */
  virtual void computeMean() const;

  /** Compute the covariance of the distribution */
  virtual void computeCovariance() const;
  virtual void computeCovarianceContinuous() const;
  virtual void computeCovarianceDiscrete() const;
  virtual void computeCovarianceGeneral() const;

  /** Compute the shifted moments of the distribution */
  virtual Point computeShiftedMomentContinuous(const UnsignedInteger n,
      const Point & shift) const;
  virtual Point computeShiftedMomentDiscrete(const UnsignedInteger n,
      const Point & shift) const;
  virtual Point computeShiftedMomentGeneral(const UnsignedInteger n,
      const Point & shift) const;


  /** Compute the nodes and weights of the 1D gauss integration rule over [-1, 1] */
  virtual void computeGaussNodesAndWeights() const;

  /** Dimension accessor */
  void setDimension(UnsignedInteger dim);

  /** Quantile computation for dimension=1 */
  virtual Scalar computeScalarQuantile(const Scalar prob,
                                       const Bool tail = false) const;

  /** Compute the numerical range of the distribution given the parameters values */
  virtual void computeRange();
  virtual Point computeLowerBound() const;
  virtual Point computeUpperBound() const;

  /** Compute the standard distribution associated with the current distribution */
  virtual void computeStandardDistribution() const;

  /** Interpolate the PDF and CDF for smooth continuous distributions */
  virtual Collection<PiecewiseHermiteEvaluation> interpolatePDFCDF(const UnsignedInteger n);

  mutable Point mean_;
  mutable CovarianceMatrix covariance_;
  mutable Point gaussNodes_;
  mutable Point gaussWeights_;

  /** The integration nodes number for covariance computation */
  mutable UnsignedInteger integrationNodesNumber_;

  /** Flags to avoid redundant computations */
  mutable Bool isAlreadyComputedMean_;
  mutable Bool isAlreadyComputedCovariance_;
  mutable Bool isAlreadyComputedGaussNodesAndWeights_;

  /** Indicators for PDF and CDF absolute precision. By default, equals to DefaultPDFEpsilon, DefaultCDFEpsilon and DefaultQuantileEpsilon */
  mutable Scalar pdfEpsilon_;
  mutable Scalar cdfEpsilon_;
  mutable Scalar quantileEpsilon_;
  mutable UnsignedInteger quantileIterations_;

  /** Standard distribution */
  mutable Bool isAlreadyComputedStandardDistribution_;
  mutable Implementation p_standardDistribution_;

  /** Optimization for the generating function evaluation */
  mutable Bool isAlreadyCreatedGeneratingFunction_;
  mutable UniVariatePolynomial generatingFunction_;

#ifndef SWIG

  // Class used to wrap the computePDF() method for interpolation purpose
  class PDFWrapper: public FunctionImplementation
  {
  public:
    PDFWrapper(const DistributionImplementation * p_distribution)
      : FunctionImplementation()
      , p_distribution_(p_distribution)
    {
      // Nothing to do
    }

    PDFWrapper * clone() const
    {
      return new PDFWrapper(*this);
    }

    Point operator() (const Point & point) const
    {
      return Point(1, p_distribution_->computePDF(point));
    }

    Sample operator() (const Sample & sample) const
    {
      return p_distribution_->computePDF(sample);
    };

    UnsignedInteger getInputDimension() const
    {
      return p_distribution_->getDimension();
    }

    UnsignedInteger getOutputDimension() const
    {
      return 1;
    }

    Description getInputDescription() const
    {
      return p_distribution_->getDescription();
    }

    Description getOutputDescription() const
    {
      return Description(1, "pdf");
    }

    String __repr__() const
    {
      OSS oss;
      oss << "PDFWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

    String __str__(const String & offset) const
    {
      OSS oss;
      oss << offset << "PDFWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

  private:
    const DistributionImplementation * p_distribution_;
  };  // class PDFWrapper

  // Structure used to wrap the computeCDF() method for interpolation purpose
  struct CDFWrapper
  {
    CDFWrapper(const DistributionImplementation * p_distribution):
      p_distribution_(p_distribution) {};

    Point computeCDF(const Point & point) const
    {
      return Point(1, p_distribution_->computeCDF(point));
    };

    const DistributionImplementation * p_distribution_;
  }; // struct CDFWrapper

  // Structure used to implement the computeQuantile() method efficiently
  struct QuantileWrapper
  {
    QuantileWrapper(const Collection< Implementation > marginals,
                    const DistributionImplementation * p_distribution)
      : marginals_(marginals)
      , p_distribution_(p_distribution)
      , dimension_(p_distribution->getDimension())
    {
      // Nothing to do
    }

    Point computeDiagonal(const Point & u) const
    {
      const Scalar cdf = p_distribution_->computeCDF(diagonalToSpace(u[0]));
      LOGDEBUG(OSS(false) << "in DistributionImplementation::QuantileWrapper::computeDiagonal, u=" << u << ", cdf=" << cdf);
      return Point(1, cdf);
    }

    Point diagonalToSpace(const Scalar tau) const
    {
      Point x(dimension_);
      for (UnsignedInteger i = 0; i < dimension_; ++i) x[i] = marginals_[i]->computeQuantile(tau)[0];
      LOGDEBUG(OSS(false) << "in DistributionImplementation::QuantileWrapper::diagonalToSpace, tau=" << tau << ", x=" << x);
      return x;
    }

    const Collection< Implementation > marginals_;
    const DistributionImplementation * p_distribution_;
    const UnsignedInteger dimension_;
  }; // struct QuantileWrapper

  // Structure used to implement the computeInverseSurvivalFunction() method efficiently
  struct SurvivalFunctionWrapper
  {
    SurvivalFunctionWrapper(const Collection< Implementation > marginals,
                            const DistributionImplementation * p_distribution)
      : marginals_(marginals)
      , p_distribution_(p_distribution)
      , dimension_(p_distribution->getDimension())
    {
      // Nothing to do
    }

    Point computeDiagonal(const Point & u) const
    {
      const Scalar survival = p_distribution_->computeSurvivalFunction(diagonalToSpace(u[0]));
      LOGDEBUG(OSS(false) << "in DistributionImplementation::InverseSurvivalFunctionWrapper::computeDiagonal, u=" << u << ", survival=" << survival);
      return Point(1, survival);
    }

    Point diagonalToSpace(const Scalar tau) const
    {
      Point x(dimension_);
      for (UnsignedInteger i = 0; i < dimension_; ++i) x[i] = marginals_[i]->computeQuantile(tau, true)[0];
      LOGDEBUG(OSS(false) << "in DistributionImplementation::InverseSurvivalFunctionWrapper::diagonalToSpace, tau=" << tau << ", x=" << x);
      return x;
    }

    const Collection< Implementation > marginals_;
    const DistributionImplementation * p_distribution_;
    const UnsignedInteger dimension_;
  }; // struct SurvivalFunctionWrapper

  class MinimumVolumeLevelSetEvaluation: public EvaluationImplementation
  {
  public:
    // Here we use a smart pointer instead of a const C++ pointer because the life-cycle of the
    // object goes outside of the calling method
    MinimumVolumeLevelSetEvaluation(const DistributionImplementation::Implementation & p_distribution)
      : EvaluationImplementation()
      , p_distribution_(p_distribution)
    {
      // Nothing to do
    }

    MinimumVolumeLevelSetEvaluation * clone() const
    {
      return new MinimumVolumeLevelSetEvaluation(*this);
    }

    // The minimum volume level A(p) set is such that A(p)={x\in R^n | y(x) <= y_p}
    // where y(x)=-\log X and y_p is the p-quantile of Y=pdf(X)
    Point operator() (const Point & point) const
    {
      const Scalar value = -p_distribution_->computeLogPDF(point);
      return Point(1, value);
    }

    Sample operator() (const Sample & sample) const
    {
      return p_distribution_->computeLogPDF(sample) * (-1.0);
    }

    UnsignedInteger getInputDimension() const
    {
      return p_distribution_->getDimension();
    }

    UnsignedInteger getOutputDimension() const
    {
      return 1;
    }

    Description getInputDescription() const
    {
      return p_distribution_->getDescription();
    }

    Description getOutputDescription() const
    {
      return Description(1, "-logPDF");
    }

    Description getDescription() const
    {
      Description description(getInputDescription());
      description.add(getOutputDescription());
      return description;
    }

    String __repr__() const
    {
      OSS oss;
      oss << "MinimumVolumeLevelSetEvaluation(" << p_distribution_->__str__() << ")";
      return oss;
    }

    String __str__(const String & offset) const
    {
      OSS oss;
      oss << offset << "MinimumVolumeLevelSetEvaluation(" << p_distribution_->__str__() << ")";
      return oss;
    }

  private:
    const DistributionImplementation::Implementation p_distribution_;
  }; // class MinimumVolumeLevelSetEvaluation

  class MinimumVolumeLevelSetGradient: public GradientImplementation
  {
  public:
    // Here we use a smart pointer instead of a const C++ pointer because the life-cycle of the
    // object goes outside of the calling method
    MinimumVolumeLevelSetGradient(const DistributionImplementation::Implementation & p_distribution)
      : GradientImplementation()
      , p_distribution_(p_distribution)
    {
      // Nothing to do
    }

    MinimumVolumeLevelSetGradient * clone() const
    {
      return new MinimumVolumeLevelSetGradient(*this);
    }

    Matrix gradient(const Point & point) const
    {
      const Scalar pdf = p_distribution_->computePDF(point);
      if (pdf == 0) return Matrix(getInputDimension(), getOutputDimension());
      const Point value = p_distribution_->computeDDF(point) * (-1.0 / pdf);
      return MatrixImplementation(getInputDimension(), getOutputDimension(), value);
    }

    UnsignedInteger getInputDimension() const
    {
      return p_distribution_->getDimension();
    }

    UnsignedInteger getOutputDimension() const
    {
      return 1;
    }

    Description getInputDescription() const
    {
      return p_distribution_->getDescription();
    }

    Description getOutputDescription() const
    {
      return Description(1, "-logPDF");
    }

    Description getDescription() const
    {
      Description description(getInputDescription());
      description.add(getOutputDescription());
      return description;
    }

    String __repr__() const
    {
      OSS oss;
      oss << "MinimumVolumeLevelSetGradient(" << p_distribution_->__str__() << ")";
      return oss;
    }

    String __str__(const String & offset) const
    {
      OSS oss;
      oss << offset << "MinimumVolumeLevelSetGradient(" << p_distribution_->__str__() << ")";
      return oss;
    }

  private:
    const DistributionImplementation::Implementation p_distribution_;
  }; // class MinimumVolumeLevelSetGradient

  class CovarianceWrapper: public FunctionImplementation
  {
  public:
    CovarianceWrapper(const DistributionImplementation::Implementation & p_distribution,
                      const Scalar muI,
                      const Scalar muJ)
      : FunctionImplementation()
      , p_distribution_(p_distribution)
      , muI_(muI)
      , muJ_(muJ)
    {
      // Nothing to do
    }

    CovarianceWrapper * clone() const
    {
      return new CovarianceWrapper(*this);
    }

    Point operator() (const Point & point) const
    {
      return Point(1, (point[0] - muI_) * (point[1] - muJ_) * p_distribution_->computePDF(point));
    }

    Sample operator() (const Sample & sample) const
    {
      const UnsignedInteger size = sample.getSize();
      Sample result(p_distribution_->computePDF(sample));
      for (UnsignedInteger i = 0; i < size; ++i) result[i][0] *= (sample[i][0] - muI_) * (sample[i][1] - muJ_);
      return result;
    }

    UnsignedInteger getInputDimension() const
    {
      return 2;
    }

    UnsignedInteger getOutputDimension() const
    {
      return 1;
    }

    Description getInputDescription() const
    {
      return Description::BuildDefault(2, "x");
    }

    Description getOutputDescription() const
    {
      return Description(1, "c");
    }

    String __repr__() const
    {
      OSS oss;
      oss << "CovarianceWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

    String __str__(const String & offset) const
    {
      OSS oss;
      oss << offset << "CovarianceWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

  private:
    const DistributionImplementation::Implementation p_distribution_;
    const Scalar muI_;
    const Scalar muJ_;
  };  // class CovarianceWrapper

  // Class used to wrap the computeConditionalPDF() method for the computation of the conditional CDF
  class ShiftedMomentWrapper: public FunctionImplementation
  {
  public:
    ShiftedMomentWrapper(const UnsignedInteger n,
                         const Scalar shift,
                         const DistributionImplementation::Implementation & p_distribution)
      : FunctionImplementation()
      , n_(1.0 * n)
      , shift_(shift)
      , p_distribution_(p_distribution)
    {
      // Nothing to do
    };

    ShiftedMomentWrapper * clone() const
    {
      return new ShiftedMomentWrapper(*this);
    }

    Point operator() (const Point & point) const
    {
      const Scalar power = std::pow(point[0] - shift_, n_);
      const Scalar pdf = p_distribution_->computePDF(point);
      return Point(1, power * pdf);
    };

    Sample operator() (const Sample & sample) const
    {
      const UnsignedInteger size = sample.getSize();
      Sample result(size, 1);
      const Sample pdf(p_distribution_->computePDF(sample));
      for (UnsignedInteger i = 0; i < size; ++i)
        result[i][0] = std::pow(sample[i][0] - shift_, n_) * pdf[i][0];
      return result;
    };

    UnsignedInteger getInputDimension() const
    {
      return 1;
    }

    UnsignedInteger getOutputDimension() const
    {
      return 1;
    }

    String __repr__() const
    {
      OSS oss;
      oss << "ShiftedMomentWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

    String __str__(const String & offset) const
    {
      OSS oss;
      oss << offset << "ShiftedMomentWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

  private:
    const Scalar n_;
    const Scalar shift_;
    const DistributionImplementation::Implementation & p_distribution_;
  }; // class ShiftedMomentWrapper

  // Class used to wrap the computeConditionalPDF() method for the computation of the conditional CDF
  class ConditionalPDFWrapper: public FunctionImplementation
  {
  public:
    ConditionalPDFWrapper(const DistributionImplementation::Implementation p_distribution)
      : FunctionImplementation()
      , y_(0.0)
      , p_distribution_(p_distribution)
    {
      // Nothing to do
    };

    ConditionalPDFWrapper * clone() const
    {
      return new ConditionalPDFWrapper(*this);
    }

    Point operator() (const Point & point) const
    {
      Point z(y_);
      z.add(point[0]);
      return Point(1, p_distribution_->computePDF(z));
    };

    Sample operator() (const Sample & sample) const
    {
      const UnsignedInteger size = sample.getSize();
      Sample z(size, y_);
      z.stack(sample);
      return p_distribution_->computePDF(z);
    };

    void setParameter(const Point & parameters)
    {
      y_ = parameters;
    }

    Point getParameter() const
    {
      return y_;
    }

    UnsignedInteger getInputDimension() const
    {
      return 1;
    }

    UnsignedInteger getOutputDimension() const
    {
      return 1;
    }

    String __repr__() const
    {
      OSS oss;
      oss << "ConditionalPDFWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

    String __str__(const String & offset) const
    {
      OSS oss;
      oss << offset << "ConditionalPDFWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

  private:
    Point y_;
    const DistributionImplementation::Implementation p_distribution_;
  }; // class ConditionalPDFWrapper

  // Class used to wrap the computeConditionalCDF() method for the computation of the conditional quantile
  class ConditionalCDFWrapper: public FunctionImplementation
  {
  public:
    ConditionalCDFWrapper(const DistributionImplementation * p_distribution)
      : FunctionImplementation()
      , y_(0.0)
      , p_distribution_(p_distribution)
    {
      // Nothing to do
    };

    ConditionalCDFWrapper * clone() const
    {
      return new ConditionalCDFWrapper(*this);
    }

    Point operator() (const Point & point) const
    {
      return Point(1, p_distribution_->computeConditionalCDF(point[0], y_));
    };

    void setParameter(const Point & parameters)
    {
      y_ = parameters;
    }

    Point getParameter() const
    {
      return y_;
    }

    UnsignedInteger getInputDimension() const
    {
      return 1;
    }

    UnsignedInteger getOutputDimension() const
    {
      return 1;
    }

    String __repr__() const
    {
      OSS oss;
      oss << "ConditionalCDFWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

    String __str__(const String & offset) const
    {
      OSS oss;
      oss << offset << "ConditionalCDFWrapper(" << p_distribution_->__str__() << ")";
      return oss;
    }

  private:
    Point y_;
    const DistributionImplementation * p_distribution_;
  }; // class ConditionalCDFWrapper

#endif

  /** The dimension of the distribution */
  UnsignedInteger dimension_;

  /** The weight used ONLY by Mixture */
  Scalar weight_;

  /** Range of the distribution */
  Interval range_;

  /** Description of each component */
  Description description_;

  /** Use parallelism */
  Bool isParallel_;

  /** Flag to tell if the distribution is indeed a copula */
  Bool isCopula_;

  /** Data for characteristic function computation */
  mutable Bool isInitializedCF_;

  mutable Point pdfGrid_;

  /** Wrapper to compute conditional CDF */
  mutable Pointer<FunctionImplementation> p_conditionalPDFWrapper_;

  /** Wrapper to compute conditional quantile */
  mutable Pointer<FunctionImplementation> p_conditionalCDFWrapper_;

}; /* class DistributionImplementation */

#ifndef SWIG

/** Product operator */
OT_API DistributionImplementation::Implementation operator * (const Scalar,
    const DistributionImplementation & distribution);

OT_API DistributionImplementation::Implementation operator * (const Scalar,
    const DistributionImplementation::Implementation & p_distribution);

/** Division operator */
OT_API DistributionImplementation::Implementation operator / (const Scalar,
    const DistributionImplementation & distribution);

OT_API DistributionImplementation::Implementation operator / (const Scalar,
    const DistributionImplementation::Implementation & p_distribution);

/** Addition operator */
OT_API DistributionImplementation::Implementation operator + (const Scalar,
    const DistributionImplementation & distribution);

OT_API DistributionImplementation::Implementation operator + (const Scalar,
    const DistributionImplementation::Implementation & p_distribution);

/** Substraction operator */
OT_API DistributionImplementation::Implementation operator - (const Scalar,
    const DistributionImplementation & distribution);

OT_API DistributionImplementation::Implementation operator - (const Scalar,
    const DistributionImplementation::Implementation & p_distribution);

OT_API DistributionImplementation::Implementation operator - (const DistributionImplementation & distribution);

OT_API DistributionImplementation::Implementation operator - (const DistributionImplementation::Implementation & p_distribution);


#endif

OT_API DistributionImplementation::Implementation maximum(const DistributionImplementation::Implementation & p_left,
    const DistributionImplementation::Implementation & p_right);

OT_API DistributionImplementation::Implementation maximum(const DistributionImplementation & left,
    const DistributionImplementation::Implementation & p_right);

OT_API DistributionImplementation::Implementation maximum(const DistributionImplementation::Implementation & p_left,
    const DistributionImplementation & right);

OT_API DistributionImplementation::Implementation maximum(const DistributionImplementation & left,
    const DistributionImplementation & right);


END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX */