/usr/include/openturns/DistributionImplementation.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 | // -*- C++ -*-
/**
* @brief Abstract top-level class for all distributions
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX
#define OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX
#include "openturns/PersistentObject.hxx"
#include "openturns/Point.hxx"
#include "openturns/PointWithDescription.hxx"
#include "openturns/Sample.hxx"
#include "openturns/Indices.hxx"
#include "openturns/Interval.hxx"
#include "openturns/LevelSet.hxx"
#include "openturns/CorrelationMatrix.hxx"
#include "openturns/SquareMatrix.hxx"
#include "openturns/Graph.hxx"
#include "openturns/Description.hxx"
#include "openturns/EvaluationImplementation.hxx"
#include "openturns/GradientImplementation.hxx"
#include "openturns/PersistentCollection.hxx"
#include "openturns/UniVariatePolynomial.hxx"
#include "openturns/PiecewiseHermiteEvaluation.hxx"
#include "openturns/ResourceMap.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class DistributionImplementation
*
* The class describes the probabilistic concept of distribution.
* Instances of this class can produce samples following the
* distribution, can compute PDF or CDF, etc.
* They are the actual key component of RandomVectors.
*/
class OT_API DistributionImplementation
: public PersistentObject
{
CLASSNAME;
public:
typedef Pointer<DistributionImplementation> Implementation;
typedef Function IsoProbabilisticTransformation;
typedef IsoProbabilisticTransformation InverseIsoProbabilisticTransformation;
typedef Collection<Point> PointCollection;
typedef Collection<PointWithDescription> PointWithDescriptionCollection;
/** Default constructor */
DistributionImplementation();
/** Comparison operator */
Bool operator ==(const DistributionImplementation & other) const;
protected:
virtual Bool equals(const DistributionImplementation & other) const;
public:
Bool operator !=(const DistributionImplementation & other) const;
/** Addition operator */
Implementation operator + (const DistributionImplementation & other) const;
Implementation operator + (const Implementation & other) const;
Implementation operator + (const Scalar value) const;
/** Substraction operator */
Implementation operator - (const DistributionImplementation & other) const;
Implementation operator - (const Implementation & other) const;
Implementation operator - (const Scalar value) const;
/** Multiplication operator */
Implementation operator * (const DistributionImplementation & other) const;
Implementation operator * (const Implementation & other) const;
Implementation operator * (const Scalar value) const;
/** Division operator */
Implementation operator / (const DistributionImplementation & other) const;
Implementation operator / (const Implementation & other) const;
Implementation operator / (const Scalar value) const;
/** Methods to transform distributions by usual functions */
Implementation cos() const;
Implementation sin() const;
Implementation tan() const;
Implementation acos() const;
Implementation asin() const;
Implementation atan() const;
Implementation cosh() const;
Implementation sinh() const;
Implementation tanh() const;
Implementation acosh() const;
Implementation asinh() const;
Implementation atanh() const;
Implementation exp() const;
Implementation log() const;
Implementation ln() const;
Implementation pow(const SignedInteger exponent) const;
Implementation pow(const Scalar exponent) const;
Implementation inverse() const;
Implementation sqr() const;
Implementation sqrt() const;
Implementation cbrt() const;
Implementation abs() const;
/** String converter */
virtual String __repr__() const;
String __str__(const String & offset = "") const;
/** Weight accessor */
void setWeight(Scalar w);
Scalar getWeight() const;
/** Dimension accessor */
UnsignedInteger getDimension() const;
/* Here is the interface that all derived class must implement */
/** Virtual constructor */
virtual DistributionImplementation * clone() const;
/** Get one realization of the distribution */
virtual Point getRealization() const;
protected:
virtual Point getRealizationByInversion() const;
public:
/** Get a numerical sample whose elements follow the distributionImplementation */
virtual Sample getSample(const UnsignedInteger size) const;
protected:
virtual Sample getSampleByInversion(const UnsignedInteger size) const;
virtual Sample getSampleByQMC(const UnsignedInteger size) const;
public:
/** Get the DDF of the distribution */
virtual Scalar computeDDF(const Scalar scalar) const;
virtual Point computeDDF(const Point & point) const;
virtual Sample computeDDF(const Sample & sample) const;
protected:
virtual Sample computeDDFSequential(const Sample & sample) const;
virtual Sample computeDDFParallel(const Sample & sample) const;
public:
/** Get the PDF of the distribution */
virtual Scalar computePDF(const Scalar scalar) const;
virtual Scalar computePDF(const Point & point) const;
virtual Sample computePDF(const Sample & sample) const;
protected:
virtual Sample computePDFSequential(const Sample & sample) const;
virtual Sample computePDFParallel(const Sample & sample) const;
public:
virtual Scalar computeLogPDF(const Scalar scalar) const;
virtual Scalar computeLogPDF(const Point & point) const;
virtual Sample computeLogPDF(const Sample & sample) const;
protected:
virtual Sample computeLogPDFSequential(const Sample & sample) const;
virtual Sample computeLogPDFParallel(const Sample & sample) const;
public:
/** Compute the PDF of 1D distributions over a regular grid */
virtual Sample computePDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber,
Sample & grid) const;
/** Compute the PDF of nD distributions over a regular grid */
virtual Sample computePDF(const Point & xMin,
const Point & xMax,
const Indices & pointNumber,
Sample & grid) const;
/** Compute the log-PDF of 1D distributions over a regular grid */
virtual Sample computeLogPDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber,
Sample & grid) const;
/** Compute the log-PDF of nD distributions over a regular grid */
virtual Sample computeLogPDF(const Point & xMin,
const Point & xMax,
const Indices & pointNumber,
Sample & grid) const;
/** Get the CDF of the distribution */
virtual Scalar computeCDF(const Scalar scalar) const;
virtual Scalar computeComplementaryCDF(const Scalar scalar) const;
virtual Scalar computeSurvivalFunction(const Scalar scalar) const;
virtual Scalar computeCDF(const Point & point) const;
virtual Scalar computeComplementaryCDF(const Point & point) const;
virtual Scalar computeSurvivalFunction(const Point & point) const;
virtual Point computeInverseSurvivalFunction(const Scalar point) const;
#ifndef SWIG
virtual Point computeInverseSurvivalFunction(const Scalar prob,
Scalar & marginalProb) const;
#endif
protected:
virtual Sample computeCDFSequential(const Sample & sample) const;
virtual Sample computeCDFParallel(const Sample & sample) const;
public:
virtual Sample computeCDF(const Sample & sample) const;
protected:
virtual Sample computeSurvivalFunctionSequential(const Sample & sample) const;
virtual Sample computeSurvivalFunctionParallel(const Sample & sample) const;
public:
virtual Sample computeSurvivalFunction(const Sample & sample) const;
protected:
virtual Sample computeComplementaryCDFSequential(const Sample & sample) const;
virtual Sample computeComplementaryCDFParallel(const Sample & sample) const;
public:
virtual Sample computeComplementaryCDF(const Sample & sample) const;
/** Compute the CDF of 1D distributions over a regular grid */
virtual Sample computeCDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber,
Sample & grid) const;
/** Compute the CDF of nD distributions over a regular grid */
virtual Sample computeCDF(const Point & xMin,
const Point & xMax,
const Indices & pointNumber,
Sample & grid) const;
virtual Sample computeComplementaryCDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber,
Sample & grid) const;
/** Get the probability content of an interval */
virtual Scalar computeProbability(const Interval & interval) const;
protected:
/** Generic implementation for continuous distributions */
virtual Scalar computeProbabilityContinuous(const Interval & interval) const;
/** Generic implementation for discrete distributions */
virtual Scalar computeProbabilityDiscrete(const Interval & interval) const;
/** Generic implementation for general distributions */
virtual Scalar computeProbabilityGeneral(const Interval & interval) const;
public:
/** Get the characteristic function of the distribution, i.e. phi(u) = E(exp(I*u*X)) */
virtual Complex computeCharacteristicFunction(const Scalar x) const;
virtual Complex computeCharacteristicFunction(const Point & x) const;
virtual Complex computeLogCharacteristicFunction(const Scalar x) const;
virtual Complex computeLogCharacteristicFunction(const Point & x) const;
/** Compute the generating function, i.e. psi(z) = E(z^X) */
virtual Scalar computeGeneratingFunction(const Scalar z) const;
virtual Scalar computeLogGeneratingFunction(const Scalar z) const;
virtual Complex computeGeneratingFunction(const Complex & z) const;
virtual Complex computeLogGeneratingFunction(const Complex & z) const;
/** Get the PDF gradient of the distribution */
virtual Point computePDFGradient(const Point & point) const;
virtual Sample computePDFGradient(const Sample & inSample) const;
/** Get the logPDF gradient of the distribution */
virtual Point computeLogPDFGradient(const Point & point) const;
virtual Sample computeLogPDFGradient(const Sample & inSample) const;
protected:
virtual Sample computeLogPDFGradientSequential(const Sample & sample) const;
virtual Sample computeLogPDFGradientParallel(const Sample & sample) const;
public:
/** Get the CDF gradient of the distribution */
virtual Point computeCDFGradient(const Point & point) const;
virtual Sample computeCDFGradient(const Sample & inSample) const;
public:
/** Get the quantile of the distribution */
virtual Point computeQuantile(const Scalar prob,
const Bool tail = false) const;
#ifndef SWIG
virtual Point computeQuantile(const Scalar prob,
const Bool tail,
Scalar & marginalProb) const;
#endif
/** Get the quantile over a provided grid */
protected:
virtual Sample computeQuantileSequential(const Point & prob,
const Bool tail = false) const;
virtual Sample computeQuantileParallel(const Point & prob,
const Bool tail = false) const;
public:
virtual Sample computeQuantile(const Point & prob,
const Bool tail = false) const;
/** Compute the quantile over a regular grid */
virtual Sample computeQuantile(const Scalar qMin,
const Scalar qMax,
const UnsignedInteger pointNumber,
const Bool tail = false) const;
virtual Sample computeQuantile(const Scalar qMin,
const Scalar qMax,
const UnsignedInteger pointNumber,
Sample & grid,
const Bool tail = false) const;
/** Get the product minimum volume interval containing a given probability of the distribution */
virtual Interval computeMinimumVolumeInterval(const Scalar prob) const;
virtual Interval computeMinimumVolumeIntervalWithMarginalProbability(const Scalar prob, Scalar & marginalProb) const;
protected:
Interval computeUnivariateMinimumVolumeIntervalByOptimization(const Scalar prob,
Scalar & marginalProb) const;
Interval computeUnivariateMinimumVolumeIntervalByRootFinding(const Scalar prob,
Scalar & marginalProb) const;
public:
/** Get the product bilateral confidence interval containing a given probability of the distribution */
virtual Interval computeBilateralConfidenceInterval(const Scalar prob) const;
virtual Interval computeBilateralConfidenceIntervalWithMarginalProbability(const Scalar prob, Scalar & marginalProb) const;
/** Get the product unilateral confidence interval containing a given probability of the distribution */
virtual Interval computeUnilateralConfidenceInterval(const Scalar prob, const Bool tail = false) const;
virtual Interval computeUnilateralConfidenceIntervalWithMarginalProbability(const Scalar prob, const Bool tail, Scalar & marginalProb) const;
/** Get the minimum volume level set containing a given probability of the distribution */
virtual LevelSet computeMinimumVolumeLevelSet(const Scalar prob) const;
virtual LevelSet computeMinimumVolumeLevelSetWithThreshold(const Scalar prob, Scalar & threshold) const;
protected:
virtual LevelSet computeUnivariateMinimumVolumeLevelSetByQMC(const Scalar prob,
Scalar & threshold) const;
public:
/** Get the mathematical and numerical range of the distribution.
Its mathematical range is the smallest closed interval outside
of which the PDF is zero, and the numerical range is the interval
outside of which the PDF is rounded to zero in double precision */
virtual Interval getRange() const;
protected:
virtual void setRange(const Interval & range);
public:
/** Get the roughness, i.e. the L2-norm of the PDF */
virtual Scalar getRoughness() const;
/** Get the mean of the distribution */
virtual Point getMean() const;
/** Get the standard deviation of the distribution */
virtual Point getStandardDeviation() const;
/** Get the skewness of the distribution */
virtual Point getSkewness() const;
/** Get the kurtosis of the distribution */
virtual Point getKurtosis() const;
/** Get the raw moments of the standardized distribution */
virtual Point getStandardMoment(const UnsignedInteger n) const;
/** Get the raw moments of the distribution */
virtual Point getMoment(const UnsignedInteger n) const;
/** Get the centered moments of the distribution */
virtual Point getCenteredMoment(const UnsignedInteger n) const;
/** Get the shifted moments of the distribution */
virtual Point getShiftedMoment(const UnsignedInteger n,
const Point & shift) const;
/** Get the covariance of the distribution */
virtual CovarianceMatrix getCovariance() const;
/** Correlation matrix accessor */
CorrelationMatrix getCorrelation() const;
/** Get the linear correlation of the distribution */
virtual CorrelationMatrix getLinearCorrelation() const;
virtual CorrelationMatrix getPearsonCorrelation() const;
/** Get the Spearman correlation of the distribution */
virtual CorrelationMatrix getSpearmanCorrelation() const;
/** Get the Kendall concordance of the distribution */
virtual CorrelationMatrix getKendallTau() const;
/** Get the shape matrix of the distribution, ie the correlation matrix
of its copula if it is elliptical */
virtual CorrelationMatrix getShapeMatrix() const;
/** Cholesky factor of the covariance matrix accessor */
TriangularMatrix getCholesky() const;
/** Inverse of the Cholesky factor of the covariance matrix accessor */
TriangularMatrix getInverseCholesky() const;
/** Check if the distribution is a copula */
virtual Bool isCopula() const;
/** Check if the distribution is elliptical */
virtual Bool isElliptical() const;
/** Check if the distribution is continuous */
virtual Bool isContinuous() const;
/** Check if the distribution is discrete */
virtual Bool isDiscrete() const;
/** Tell if the distribution is integer valued */
virtual Bool isIntegral() const;
/** Tell if the distribution has elliptical copula */
virtual Bool hasEllipticalCopula() const;
/** Tell if the distribution has independent copula */
virtual Bool hasIndependentCopula() const;
/** Get the support of a distribution that intersect a given interval */
virtual Sample getSupport(const Interval & interval) const;
/** Get the support on the whole range */
virtual Sample getSupport() const;
/** Get the discrete probability levels */
virtual Point getProbabilities() const;
/** Get the PDF singularities inside of the range - 1D only */
virtual Point getSingularities() const;
/** Compute the density generator of the elliptical generator, i.e.
* the function phi such that the density of the distribution can
* be written as p(x) = phi(t(x-mu)R(x-mu)) */
virtual Scalar computeDensityGenerator(const Scalar betaSquare) const;
/** Compute the derivative of the density generator */
virtual Scalar computeDensityGeneratorDerivative(const Scalar betaSquare) const;
/** Compute the seconde derivative of the density generator */
virtual Scalar computeDensityGeneratorSecondDerivative(const Scalar betaSquare) const;
/** Compute the radial distribution CDF */
virtual Scalar computeRadialDistributionCDF(const Scalar radius,
const Bool tail = false) const;
/** Get the i-th marginal distribution */
virtual Implementation getMarginal(const UnsignedInteger i) const;
/** Get the distribution of the marginal distribution corresponding to indices dimensions */
virtual Implementation getMarginal(const Indices & indices) const;
/** Get the copula of a distribution */
virtual Implementation getCopula() const;
/** Compute the DDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
virtual Scalar computeConditionalDDF(const Scalar x,
const Point & y) const;
/** Compute the PDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
virtual Scalar computeConditionalPDF(const Scalar x,
const Point & y) const;
virtual Point computeConditionalPDF(const Point & x,
const Sample & y) const;
/** Compute the CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
virtual Scalar computeConditionalCDF(const Scalar x,
const Point & y) const;
virtual Point computeConditionalCDF(const Point & x,
const Sample & y) const;
/** Compute the quantile of Xi | X1, ..., Xi-1, i.e. x such that CDF(x|y) = q with x = Xi, y = (X1,...,Xi-1) */
virtual Scalar computeConditionalQuantile(const Scalar q,
const Point & y) const;
virtual Point computeConditionalQuantile(const Point & q,
const Sample & y) const;
/** Get the isoprobabilist transformation */
virtual IsoProbabilisticTransformation getIsoProbabilisticTransformation() const;
/** Get the inverse isoprobabilist transformation */
virtual InverseIsoProbabilisticTransformation getInverseIsoProbabilisticTransformation() const;
/** Get the standard distribution */
virtual Implementation getStandardDistribution() const;
/** Get the standard representative in the parametric family, associated with the standard moments */
virtual Implementation getStandardRepresentative() const;
/** integrationNodesNumber accessors */
UnsignedInteger getIntegrationNodesNumber() const;
void setIntegrationNodesNumber(const UnsignedInteger integrationNodesNumber) const;
/** Gauss nodes and weights accessor */
Point getGaussNodesAndWeights(Point & weights) const;
/** Draw the PDF of the distribution when its dimension is 1 or 2 */
virtual Graph drawPDF() const;
/** Draw the PDF of the distribution when its dimension is 1 */
virtual Graph drawPDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
virtual Graph drawPDF(const UnsignedInteger pointNumber) const;
/** Draw the PDF of a 1D marginal */
virtual Graph drawMarginal1DPDF(const UnsignedInteger marginalIndex,
const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber) const;
/** Draw the PDF of the distribution when its dimension is 2 */
virtual Graph drawPDF(const Point & xMin,
const Point & xMax,
const Indices & pointNumber) const;
virtual Graph drawPDF(const Point & xMin,
const Point & xMax) const;
virtual Graph drawPDF(const Indices & pointNumber) const;
/** Draw the PDF of a 2D marginal */
virtual Graph drawMarginal2DPDF(const UnsignedInteger firstMarginal,
const UnsignedInteger secondMarginal,
const Point & xMin,
const Point & xMax,
const Indices & pointNumber) const;
/** Draw the log-PDF of the distribution when its dimension is 1 or 2 */
virtual Graph drawLogPDF() const;
/** Draw the log-PDF of the distribution when its dimension is 1 */
virtual Graph drawLogPDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
virtual Graph drawLogPDF(const UnsignedInteger pointNumber) const;
/** Draw the log-PDF of a 1D marginal */
virtual Graph drawMarginal1DLogPDF(const UnsignedInteger marginalIndex,
const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber) const;
/** Draw the log-PDF of the distribution when its dimension is 2 */
virtual Graph drawLogPDF(const Point & xMin,
const Point & xMax,
const Indices & pointNumber) const;
virtual Graph drawLogPDF(const Point & xMin,
const Point & xMax) const;
virtual Graph drawLogPDF(const Indices & pointNumber) const;
/** Draw the PDF of a 2D marginal */
virtual Graph drawMarginal2DLogPDF(const UnsignedInteger firstMarginal,
const UnsignedInteger secondMarginal,
const Point & xMin,
const Point & xMax,
const Indices & pointNumber) const;
/** Draw the CDF of the distribution when its dimension is 1 or 2 */
virtual Graph drawCDF() const;
/** Draw the CDF of the distribution when its dimension is 1 */
virtual Graph drawCDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
virtual Graph drawCDF(const UnsignedInteger pointNumber) const;
/** Draw the CDF of the distribution when its dimension is 2 */
virtual Graph drawCDF(const Point & xMin,
const Point & xMax,
const Indices & pointNumber) const;
virtual Graph drawCDF(const Point & xMin,
const Point & xMax) const;
virtual Graph drawCDF(const Indices & pointNumber) const;
/** Draw the CDF of a 1D marginal */
virtual Graph drawMarginal1DCDF(const UnsignedInteger marginalIndex,
const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber) const;
/** Draw the CDF of a 2D marginal */
virtual Graph drawMarginal2DCDF(const UnsignedInteger firstMarginal,
const UnsignedInteger secondMarginal,
const Point & xMin,
const Point & xMax,
const Indices & pointNumber) const;
/** Draw the quantile of the distribution when its dimension is 1 or 2 */
virtual Graph drawQuantile(const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
virtual Graph drawQuantile(const Scalar qMin,
const Scalar qMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
protected:
virtual Graph drawQuantile1D(const Scalar qMin,
const Scalar qMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
virtual Graph drawQuantile2D(const Scalar qMin,
const Scalar qMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
public:
/** Parameters value and description accessor */
virtual PointWithDescriptionCollection getParametersCollection() const;
virtual void setParametersCollection(const PointWithDescriptionCollection & parametersCollection);
virtual void setParametersCollection(const PointCollection & parametersCollection);
/** Parameters value accessor */
virtual Point getParameter() const;
virtual void setParameter(const Point & parameters);
/** Parameters description accessor */
virtual Description getParameterDescription() const;
/** Total number of parameters */
virtual UnsignedInteger getParameterDimension() const;
/** Description accessor */
void setDescription(const Description & description);
Description getDescription() const;
/** Method save() stores the object through the StorageManager */
virtual void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
virtual void load(Advocate & adv);
/** Accessor to PDF computation precision */
Scalar getPDFEpsilon() const;
/** Accessor to CDF computation precision */
Scalar getCDFEpsilon() const;
/** Get a positon indicator for a 1D distribution */
Scalar getPositionIndicator() const;
/** Get a dispersion indicator for a 1D distribution */
Scalar getDispersionIndicator() const;
/** Is it safe to compute PDF/CDF etc in parallel? */
Bool isParallel() const;
void setParallel(const Bool flag);
protected:
/** Draw the PDF of a discrete distribution */
virtual Graph drawDiscretePDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
/** Draw the log-PDF of a discrete distribution */
virtual Graph drawDiscreteLogPDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("Distribution-DefaultPointNumber")) const;
/** Draw the CDF of a discrete distribution */
Graph drawDiscreteCDF(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber) const;
/** Compute the characteristic function of 1D distributions in a regular pattern with cache */
virtual Complex computeCharacteristicFunction(const UnsignedInteger index,
const Scalar step) const;
virtual Complex computeLogCharacteristicFunction(const UnsignedInteger index,
const Scalar step) const;
virtual Complex computeCharacteristicFunction(const Indices & indices,
const Point & step) const;
virtual Complex computeLogCharacteristicFunction(const Indices & indices,
const Point & step) const;
/** Compute the mean of the distribution */
virtual void computeMean() const;
/** Compute the covariance of the distribution */
virtual void computeCovariance() const;
virtual void computeCovarianceContinuous() const;
virtual void computeCovarianceDiscrete() const;
virtual void computeCovarianceGeneral() const;
/** Compute the shifted moments of the distribution */
virtual Point computeShiftedMomentContinuous(const UnsignedInteger n,
const Point & shift) const;
virtual Point computeShiftedMomentDiscrete(const UnsignedInteger n,
const Point & shift) const;
virtual Point computeShiftedMomentGeneral(const UnsignedInteger n,
const Point & shift) const;
/** Compute the nodes and weights of the 1D gauss integration rule over [-1, 1] */
virtual void computeGaussNodesAndWeights() const;
/** Dimension accessor */
void setDimension(UnsignedInteger dim);
/** Quantile computation for dimension=1 */
virtual Scalar computeScalarQuantile(const Scalar prob,
const Bool tail = false) const;
/** Compute the numerical range of the distribution given the parameters values */
virtual void computeRange();
virtual Point computeLowerBound() const;
virtual Point computeUpperBound() const;
/** Compute the standard distribution associated with the current distribution */
virtual void computeStandardDistribution() const;
/** Interpolate the PDF and CDF for smooth continuous distributions */
virtual Collection<PiecewiseHermiteEvaluation> interpolatePDFCDF(const UnsignedInteger n);
mutable Point mean_;
mutable CovarianceMatrix covariance_;
mutable Point gaussNodes_;
mutable Point gaussWeights_;
/** The integration nodes number for covariance computation */
mutable UnsignedInteger integrationNodesNumber_;
/** Flags to avoid redundant computations */
mutable Bool isAlreadyComputedMean_;
mutable Bool isAlreadyComputedCovariance_;
mutable Bool isAlreadyComputedGaussNodesAndWeights_;
/** Indicators for PDF and CDF absolute precision. By default, equals to DefaultPDFEpsilon, DefaultCDFEpsilon and DefaultQuantileEpsilon */
mutable Scalar pdfEpsilon_;
mutable Scalar cdfEpsilon_;
mutable Scalar quantileEpsilon_;
mutable UnsignedInteger quantileIterations_;
/** Standard distribution */
mutable Bool isAlreadyComputedStandardDistribution_;
mutable Implementation p_standardDistribution_;
/** Optimization for the generating function evaluation */
mutable Bool isAlreadyCreatedGeneratingFunction_;
mutable UniVariatePolynomial generatingFunction_;
#ifndef SWIG
// Class used to wrap the computePDF() method for interpolation purpose
class PDFWrapper: public FunctionImplementation
{
public:
PDFWrapper(const DistributionImplementation * p_distribution)
: FunctionImplementation()
, p_distribution_(p_distribution)
{
// Nothing to do
}
PDFWrapper * clone() const
{
return new PDFWrapper(*this);
}
Point operator() (const Point & point) const
{
return Point(1, p_distribution_->computePDF(point));
}
Sample operator() (const Sample & sample) const
{
return p_distribution_->computePDF(sample);
};
UnsignedInteger getInputDimension() const
{
return p_distribution_->getDimension();
}
UnsignedInteger getOutputDimension() const
{
return 1;
}
Description getInputDescription() const
{
return p_distribution_->getDescription();
}
Description getOutputDescription() const
{
return Description(1, "pdf");
}
String __repr__() const
{
OSS oss;
oss << "PDFWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
String __str__(const String & offset) const
{
OSS oss;
oss << offset << "PDFWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
private:
const DistributionImplementation * p_distribution_;
}; // class PDFWrapper
// Structure used to wrap the computeCDF() method for interpolation purpose
struct CDFWrapper
{
CDFWrapper(const DistributionImplementation * p_distribution):
p_distribution_(p_distribution) {};
Point computeCDF(const Point & point) const
{
return Point(1, p_distribution_->computeCDF(point));
};
const DistributionImplementation * p_distribution_;
}; // struct CDFWrapper
// Structure used to implement the computeQuantile() method efficiently
struct QuantileWrapper
{
QuantileWrapper(const Collection< Implementation > marginals,
const DistributionImplementation * p_distribution)
: marginals_(marginals)
, p_distribution_(p_distribution)
, dimension_(p_distribution->getDimension())
{
// Nothing to do
}
Point computeDiagonal(const Point & u) const
{
const Scalar cdf = p_distribution_->computeCDF(diagonalToSpace(u[0]));
LOGDEBUG(OSS(false) << "in DistributionImplementation::QuantileWrapper::computeDiagonal, u=" << u << ", cdf=" << cdf);
return Point(1, cdf);
}
Point diagonalToSpace(const Scalar tau) const
{
Point x(dimension_);
for (UnsignedInteger i = 0; i < dimension_; ++i) x[i] = marginals_[i]->computeQuantile(tau)[0];
LOGDEBUG(OSS(false) << "in DistributionImplementation::QuantileWrapper::diagonalToSpace, tau=" << tau << ", x=" << x);
return x;
}
const Collection< Implementation > marginals_;
const DistributionImplementation * p_distribution_;
const UnsignedInteger dimension_;
}; // struct QuantileWrapper
// Structure used to implement the computeInverseSurvivalFunction() method efficiently
struct SurvivalFunctionWrapper
{
SurvivalFunctionWrapper(const Collection< Implementation > marginals,
const DistributionImplementation * p_distribution)
: marginals_(marginals)
, p_distribution_(p_distribution)
, dimension_(p_distribution->getDimension())
{
// Nothing to do
}
Point computeDiagonal(const Point & u) const
{
const Scalar survival = p_distribution_->computeSurvivalFunction(diagonalToSpace(u[0]));
LOGDEBUG(OSS(false) << "in DistributionImplementation::InverseSurvivalFunctionWrapper::computeDiagonal, u=" << u << ", survival=" << survival);
return Point(1, survival);
}
Point diagonalToSpace(const Scalar tau) const
{
Point x(dimension_);
for (UnsignedInteger i = 0; i < dimension_; ++i) x[i] = marginals_[i]->computeQuantile(tau, true)[0];
LOGDEBUG(OSS(false) << "in DistributionImplementation::InverseSurvivalFunctionWrapper::diagonalToSpace, tau=" << tau << ", x=" << x);
return x;
}
const Collection< Implementation > marginals_;
const DistributionImplementation * p_distribution_;
const UnsignedInteger dimension_;
}; // struct SurvivalFunctionWrapper
class MinimumVolumeLevelSetEvaluation: public EvaluationImplementation
{
public:
// Here we use a smart pointer instead of a const C++ pointer because the life-cycle of the
// object goes outside of the calling method
MinimumVolumeLevelSetEvaluation(const DistributionImplementation::Implementation & p_distribution)
: EvaluationImplementation()
, p_distribution_(p_distribution)
{
// Nothing to do
}
MinimumVolumeLevelSetEvaluation * clone() const
{
return new MinimumVolumeLevelSetEvaluation(*this);
}
// The minimum volume level A(p) set is such that A(p)={x\in R^n | y(x) <= y_p}
// where y(x)=-\log X and y_p is the p-quantile of Y=pdf(X)
Point operator() (const Point & point) const
{
const Scalar value = -p_distribution_->computeLogPDF(point);
return Point(1, value);
}
Sample operator() (const Sample & sample) const
{
return p_distribution_->computeLogPDF(sample) * (-1.0);
}
UnsignedInteger getInputDimension() const
{
return p_distribution_->getDimension();
}
UnsignedInteger getOutputDimension() const
{
return 1;
}
Description getInputDescription() const
{
return p_distribution_->getDescription();
}
Description getOutputDescription() const
{
return Description(1, "-logPDF");
}
Description getDescription() const
{
Description description(getInputDescription());
description.add(getOutputDescription());
return description;
}
String __repr__() const
{
OSS oss;
oss << "MinimumVolumeLevelSetEvaluation(" << p_distribution_->__str__() << ")";
return oss;
}
String __str__(const String & offset) const
{
OSS oss;
oss << offset << "MinimumVolumeLevelSetEvaluation(" << p_distribution_->__str__() << ")";
return oss;
}
private:
const DistributionImplementation::Implementation p_distribution_;
}; // class MinimumVolumeLevelSetEvaluation
class MinimumVolumeLevelSetGradient: public GradientImplementation
{
public:
// Here we use a smart pointer instead of a const C++ pointer because the life-cycle of the
// object goes outside of the calling method
MinimumVolumeLevelSetGradient(const DistributionImplementation::Implementation & p_distribution)
: GradientImplementation()
, p_distribution_(p_distribution)
{
// Nothing to do
}
MinimumVolumeLevelSetGradient * clone() const
{
return new MinimumVolumeLevelSetGradient(*this);
}
Matrix gradient(const Point & point) const
{
const Scalar pdf = p_distribution_->computePDF(point);
if (pdf == 0) return Matrix(getInputDimension(), getOutputDimension());
const Point value = p_distribution_->computeDDF(point) * (-1.0 / pdf);
return MatrixImplementation(getInputDimension(), getOutputDimension(), value);
}
UnsignedInteger getInputDimension() const
{
return p_distribution_->getDimension();
}
UnsignedInteger getOutputDimension() const
{
return 1;
}
Description getInputDescription() const
{
return p_distribution_->getDescription();
}
Description getOutputDescription() const
{
return Description(1, "-logPDF");
}
Description getDescription() const
{
Description description(getInputDescription());
description.add(getOutputDescription());
return description;
}
String __repr__() const
{
OSS oss;
oss << "MinimumVolumeLevelSetGradient(" << p_distribution_->__str__() << ")";
return oss;
}
String __str__(const String & offset) const
{
OSS oss;
oss << offset << "MinimumVolumeLevelSetGradient(" << p_distribution_->__str__() << ")";
return oss;
}
private:
const DistributionImplementation::Implementation p_distribution_;
}; // class MinimumVolumeLevelSetGradient
class CovarianceWrapper: public FunctionImplementation
{
public:
CovarianceWrapper(const DistributionImplementation::Implementation & p_distribution,
const Scalar muI,
const Scalar muJ)
: FunctionImplementation()
, p_distribution_(p_distribution)
, muI_(muI)
, muJ_(muJ)
{
// Nothing to do
}
CovarianceWrapper * clone() const
{
return new CovarianceWrapper(*this);
}
Point operator() (const Point & point) const
{
return Point(1, (point[0] - muI_) * (point[1] - muJ_) * p_distribution_->computePDF(point));
}
Sample operator() (const Sample & sample) const
{
const UnsignedInteger size = sample.getSize();
Sample result(p_distribution_->computePDF(sample));
for (UnsignedInteger i = 0; i < size; ++i) result[i][0] *= (sample[i][0] - muI_) * (sample[i][1] - muJ_);
return result;
}
UnsignedInteger getInputDimension() const
{
return 2;
}
UnsignedInteger getOutputDimension() const
{
return 1;
}
Description getInputDescription() const
{
return Description::BuildDefault(2, "x");
}
Description getOutputDescription() const
{
return Description(1, "c");
}
String __repr__() const
{
OSS oss;
oss << "CovarianceWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
String __str__(const String & offset) const
{
OSS oss;
oss << offset << "CovarianceWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
private:
const DistributionImplementation::Implementation p_distribution_;
const Scalar muI_;
const Scalar muJ_;
}; // class CovarianceWrapper
// Class used to wrap the computeConditionalPDF() method for the computation of the conditional CDF
class ShiftedMomentWrapper: public FunctionImplementation
{
public:
ShiftedMomentWrapper(const UnsignedInteger n,
const Scalar shift,
const DistributionImplementation::Implementation & p_distribution)
: FunctionImplementation()
, n_(1.0 * n)
, shift_(shift)
, p_distribution_(p_distribution)
{
// Nothing to do
};
ShiftedMomentWrapper * clone() const
{
return new ShiftedMomentWrapper(*this);
}
Point operator() (const Point & point) const
{
const Scalar power = std::pow(point[0] - shift_, n_);
const Scalar pdf = p_distribution_->computePDF(point);
return Point(1, power * pdf);
};
Sample operator() (const Sample & sample) const
{
const UnsignedInteger size = sample.getSize();
Sample result(size, 1);
const Sample pdf(p_distribution_->computePDF(sample));
for (UnsignedInteger i = 0; i < size; ++i)
result[i][0] = std::pow(sample[i][0] - shift_, n_) * pdf[i][0];
return result;
};
UnsignedInteger getInputDimension() const
{
return 1;
}
UnsignedInteger getOutputDimension() const
{
return 1;
}
String __repr__() const
{
OSS oss;
oss << "ShiftedMomentWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
String __str__(const String & offset) const
{
OSS oss;
oss << offset << "ShiftedMomentWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
private:
const Scalar n_;
const Scalar shift_;
const DistributionImplementation::Implementation & p_distribution_;
}; // class ShiftedMomentWrapper
// Class used to wrap the computeConditionalPDF() method for the computation of the conditional CDF
class ConditionalPDFWrapper: public FunctionImplementation
{
public:
ConditionalPDFWrapper(const DistributionImplementation::Implementation p_distribution)
: FunctionImplementation()
, y_(0.0)
, p_distribution_(p_distribution)
{
// Nothing to do
};
ConditionalPDFWrapper * clone() const
{
return new ConditionalPDFWrapper(*this);
}
Point operator() (const Point & point) const
{
Point z(y_);
z.add(point[0]);
return Point(1, p_distribution_->computePDF(z));
};
Sample operator() (const Sample & sample) const
{
const UnsignedInteger size = sample.getSize();
Sample z(size, y_);
z.stack(sample);
return p_distribution_->computePDF(z);
};
void setParameter(const Point & parameters)
{
y_ = parameters;
}
Point getParameter() const
{
return y_;
}
UnsignedInteger getInputDimension() const
{
return 1;
}
UnsignedInteger getOutputDimension() const
{
return 1;
}
String __repr__() const
{
OSS oss;
oss << "ConditionalPDFWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
String __str__(const String & offset) const
{
OSS oss;
oss << offset << "ConditionalPDFWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
private:
Point y_;
const DistributionImplementation::Implementation p_distribution_;
}; // class ConditionalPDFWrapper
// Class used to wrap the computeConditionalCDF() method for the computation of the conditional quantile
class ConditionalCDFWrapper: public FunctionImplementation
{
public:
ConditionalCDFWrapper(const DistributionImplementation * p_distribution)
: FunctionImplementation()
, y_(0.0)
, p_distribution_(p_distribution)
{
// Nothing to do
};
ConditionalCDFWrapper * clone() const
{
return new ConditionalCDFWrapper(*this);
}
Point operator() (const Point & point) const
{
return Point(1, p_distribution_->computeConditionalCDF(point[0], y_));
};
void setParameter(const Point & parameters)
{
y_ = parameters;
}
Point getParameter() const
{
return y_;
}
UnsignedInteger getInputDimension() const
{
return 1;
}
UnsignedInteger getOutputDimension() const
{
return 1;
}
String __repr__() const
{
OSS oss;
oss << "ConditionalCDFWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
String __str__(const String & offset) const
{
OSS oss;
oss << offset << "ConditionalCDFWrapper(" << p_distribution_->__str__() << ")";
return oss;
}
private:
Point y_;
const DistributionImplementation * p_distribution_;
}; // class ConditionalCDFWrapper
#endif
/** The dimension of the distribution */
UnsignedInteger dimension_;
/** The weight used ONLY by Mixture */
Scalar weight_;
/** Range of the distribution */
Interval range_;
/** Description of each component */
Description description_;
/** Use parallelism */
Bool isParallel_;
/** Flag to tell if the distribution is indeed a copula */
Bool isCopula_;
/** Data for characteristic function computation */
mutable Bool isInitializedCF_;
mutable Point pdfGrid_;
/** Wrapper to compute conditional CDF */
mutable Pointer<FunctionImplementation> p_conditionalPDFWrapper_;
/** Wrapper to compute conditional quantile */
mutable Pointer<FunctionImplementation> p_conditionalCDFWrapper_;
}; /* class DistributionImplementation */
#ifndef SWIG
/** Product operator */
OT_API DistributionImplementation::Implementation operator * (const Scalar,
const DistributionImplementation & distribution);
OT_API DistributionImplementation::Implementation operator * (const Scalar,
const DistributionImplementation::Implementation & p_distribution);
/** Division operator */
OT_API DistributionImplementation::Implementation operator / (const Scalar,
const DistributionImplementation & distribution);
OT_API DistributionImplementation::Implementation operator / (const Scalar,
const DistributionImplementation::Implementation & p_distribution);
/** Addition operator */
OT_API DistributionImplementation::Implementation operator + (const Scalar,
const DistributionImplementation & distribution);
OT_API DistributionImplementation::Implementation operator + (const Scalar,
const DistributionImplementation::Implementation & p_distribution);
/** Substraction operator */
OT_API DistributionImplementation::Implementation operator - (const Scalar,
const DistributionImplementation & distribution);
OT_API DistributionImplementation::Implementation operator - (const Scalar,
const DistributionImplementation::Implementation & p_distribution);
OT_API DistributionImplementation::Implementation operator - (const DistributionImplementation & distribution);
OT_API DistributionImplementation::Implementation operator - (const DistributionImplementation::Implementation & p_distribution);
#endif
OT_API DistributionImplementation::Implementation maximum(const DistributionImplementation::Implementation & p_left,
const DistributionImplementation::Implementation & p_right);
OT_API DistributionImplementation::Implementation maximum(const DistributionImplementation & left,
const DistributionImplementation::Implementation & p_right);
OT_API DistributionImplementation::Implementation maximum(const DistributionImplementation::Implementation & p_left,
const DistributionImplementation & right);
OT_API DistributionImplementation::Implementation maximum(const DistributionImplementation & left,
const DistributionImplementation & right);
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX */
|