This file is indexed.

/usr/include/openturns/FFT.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//                                               -*- C++ -*-
/**
 *  @brief  This class is enables to launch an FFT transformation /inverse transformation
 *  This is the interface class
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_FFT_HXX
#define OPENTURNS_FFT_HXX

#include "openturns/PersistentObject.hxx"
#include "openturns/FFTImplementation.hxx"
#include "openturns/TypedInterfaceObject.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class FFT
 */

class OT_API FFT
  : public TypedInterfaceObject<FFTImplementation>
{

  CLASSNAME;

public:

  typedef Pointer<FFTImplementation>    Implementation;
  typedef Collection<Scalar>   ScalarCollection;
  typedef Collection<Complex>  ComplexCollection;

  /** Default onstructor */
  FFT();

  /** Copy constructors */
  FFT(const FFTImplementation & implementation);

  /** Constructor from implementation */
  FFT(const Implementation & p_implementation);

#ifndef SWIG
  /** Constructor from implementation pointer */
  FFT(FFTImplementation * p_implementation);
#endif

  /** FFT transformation on real
   * Given the real sequence X_n, compute the sequence Z_k such that:
   * Z_k = \sum_{n=0}^{N-1} X_n\exp(-\frac{2i\pi kn}{N})
   */
  ComplexCollection transform(const ScalarCollection & collection) const;

  /** FFT transformation on real - The transformation is applied on a part of the collection*/
  ComplexCollection transform(const ScalarCollection & collection,
                                       const UnsignedInteger first,
                                       const UnsignedInteger size) const;

  /** FFT transformation on real with a regular sequence of the collection (between first and last, by step = step)*/
  ComplexCollection transform(const ScalarCollection & collection,
                                       const UnsignedInteger first,
                                       const UnsignedInteger step,
                                       const UnsignedInteger last) const;

  /** FFT transformation on complex
   * Given the complex sequence Y_n, compute the sequence Z_k such that:
   * Z_k = \sum_{n=0}^{N-1} Y_n\exp(-\frac{2i\pi kn}{N})
   */
  ComplexCollection transform(const ComplexCollection & collection) const;

  /** FFT transformation on complex - For some FFT implementation, the transformation is applied on a part of the collection */
  ComplexCollection transform(const ComplexCollection & collection,
                                       const UnsignedInteger first,
                                       const UnsignedInteger size) const;

  /** FFT transformation on complex - For some FFT implementation, the need is to transform a regular sequence of the collection (between first and last, by step = step)*/
  ComplexCollection transform(const ComplexCollection & collection,
                                       const UnsignedInteger first,
                                       const UnsignedInteger step,
                                       const UnsignedInteger last) const;

  /** FFT 2D transformation on real
   * Given the real sequence X_n, compute the sequence Z_k such that:
   * Z_{k,l} = \sum_{m=0}^{M-1}\sum_{n=0}^{N-1} X_{m,n}\exp(-\frac{2i\pi km}{M}) \exp(-\frac{2i\pi ln}{N})
   */
  ComplexMatrix transform2D(const ComplexMatrix & matrix) const;

  /** FFT 2D transformation on complex */
  ComplexMatrix transform2D(const Matrix & matrix) const;

  /** FFT 2D transformation on complex */
  ComplexMatrix transform2D(const Sample & sample) const;

  /** FFT 3D transformation
   * Given the real sequence X, compute the sequence Z such that:
   * Z_{k,l,r} = \sum_{m=0}^{M-1}\sum_{n=0}^{N-1}\sum_{p=0}^{P-1} X_{m,n,p}\exp(-\frac{2i\pi km}{M}) \exp(-\frac{2i\pi ln}{N}) \exp(-\frac{2i\pi rp}{P})
   */
  ComplexTensor transform3D(const ComplexTensor & tensor) const;

  /** FFT 3D transformation on real data */
  ComplexTensor transform3D(const Tensor & tensor) const;


  /** FFT inverse transformation
   * Given the complex sequence Z_n, compute the sequence Y_k such that:
   * Y_k = \frac{1}{N}\sum_{n=0}^{N-1} Z_n\exp(\frac{2i\pi kn}{N})
   */
  /** FFT inverse transformation */
  ComplexCollection inverseTransform(const ScalarCollection & collection) const;

  /** FFT inverse transformation - The transformation is applied on a part of the collection */
  ComplexCollection inverseTransform(const ScalarCollection & collection,
      const UnsignedInteger first,
      const UnsignedInteger size) const;

  /** FFT inverse transformation on a regular sequence of the collection (between first and last, spearated  by step)*/
  ComplexCollection inverseTransform(const ScalarCollection & collection,
      const UnsignedInteger first,
      const UnsignedInteger step,
      const UnsignedInteger last) const;

  ComplexCollection inverseTransform(const ComplexCollection & collection) const;

  /** FFT inverse transformation - The transformation is applied on a part of the collection */
  ComplexCollection inverseTransform(const ComplexCollection & collection,
      const UnsignedInteger first,
      const UnsignedInteger size) const;

  /** FFT inverse transformation on a regular sequence of the collection (between first and last, by step = step)*/
  ComplexCollection inverseTransform(const ComplexCollection & collection,
      const UnsignedInteger first,
      const UnsignedInteger step,
      const UnsignedInteger last) const;

  /** FFT inverse transformation
   * Given the complex sequence Z_n, compute the sequence Y_k such that:
   * Y_{k,l} = \frac{1}{M.N}\sum_{m=0}^{M-1}\sum_{n=0}^{N-1} Z_{m,n}\exp(\frac{2i\pi km}{M} \exp(\frac{2i\pi ln}{N})
   */
  ComplexMatrix inverseTransform2D(const ComplexMatrix & matrix) const;

  /** IFFT 2D transformation on real matrix */
  ComplexMatrix inverseTransform2D(const Matrix & matrix) const;

  /** IFFT 2D transformation on sample */
  ComplexMatrix inverseTransform2D(const Sample & sample) const;

  /** FFT inverse transformation
   * Given the complex sequence Z, compute the sequence Y such that:
   * Y_{k,l,r} = \frac{1}{M.N.P}\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}\sum_{n=0}^{P-1} Z_{m,n,p}\exp(\frac{2i\pi km}{M} \exp(\frac{2i\pi ln}{N}) \exp(\frac{2i\pi rp}{P})
   */
  ComplexTensor inverseTransform3D(const ComplexTensor & tensor) const;

  /** IFFT 3D transformation on real tensors */
  ComplexTensor inverseTransform3D(const Tensor & tensor) const;

  /** String converter */
  String __repr__() const;

  /** String converter */
  String __str__(const String & offset = "") const;


} ; /* class FFT */

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_FFT_HXX */