/usr/include/openturns/FFT.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | // -*- C++ -*-
/**
* @brief This class is enables to launch an FFT transformation /inverse transformation
* This is the interface class
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_FFT_HXX
#define OPENTURNS_FFT_HXX
#include "openturns/PersistentObject.hxx"
#include "openturns/FFTImplementation.hxx"
#include "openturns/TypedInterfaceObject.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class FFT
*/
class OT_API FFT
: public TypedInterfaceObject<FFTImplementation>
{
CLASSNAME;
public:
typedef Pointer<FFTImplementation> Implementation;
typedef Collection<Scalar> ScalarCollection;
typedef Collection<Complex> ComplexCollection;
/** Default onstructor */
FFT();
/** Copy constructors */
FFT(const FFTImplementation & implementation);
/** Constructor from implementation */
FFT(const Implementation & p_implementation);
#ifndef SWIG
/** Constructor from implementation pointer */
FFT(FFTImplementation * p_implementation);
#endif
/** FFT transformation on real
* Given the real sequence X_n, compute the sequence Z_k such that:
* Z_k = \sum_{n=0}^{N-1} X_n\exp(-\frac{2i\pi kn}{N})
*/
ComplexCollection transform(const ScalarCollection & collection) const;
/** FFT transformation on real - The transformation is applied on a part of the collection*/
ComplexCollection transform(const ScalarCollection & collection,
const UnsignedInteger first,
const UnsignedInteger size) const;
/** FFT transformation on real with a regular sequence of the collection (between first and last, by step = step)*/
ComplexCollection transform(const ScalarCollection & collection,
const UnsignedInteger first,
const UnsignedInteger step,
const UnsignedInteger last) const;
/** FFT transformation on complex
* Given the complex sequence Y_n, compute the sequence Z_k such that:
* Z_k = \sum_{n=0}^{N-1} Y_n\exp(-\frac{2i\pi kn}{N})
*/
ComplexCollection transform(const ComplexCollection & collection) const;
/** FFT transformation on complex - For some FFT implementation, the transformation is applied on a part of the collection */
ComplexCollection transform(const ComplexCollection & collection,
const UnsignedInteger first,
const UnsignedInteger size) const;
/** FFT transformation on complex - For some FFT implementation, the need is to transform a regular sequence of the collection (between first and last, by step = step)*/
ComplexCollection transform(const ComplexCollection & collection,
const UnsignedInteger first,
const UnsignedInteger step,
const UnsignedInteger last) const;
/** FFT 2D transformation on real
* Given the real sequence X_n, compute the sequence Z_k such that:
* Z_{k,l} = \sum_{m=0}^{M-1}\sum_{n=0}^{N-1} X_{m,n}\exp(-\frac{2i\pi km}{M}) \exp(-\frac{2i\pi ln}{N})
*/
ComplexMatrix transform2D(const ComplexMatrix & matrix) const;
/** FFT 2D transformation on complex */
ComplexMatrix transform2D(const Matrix & matrix) const;
/** FFT 2D transformation on complex */
ComplexMatrix transform2D(const Sample & sample) const;
/** FFT 3D transformation
* Given the real sequence X, compute the sequence Z such that:
* Z_{k,l,r} = \sum_{m=0}^{M-1}\sum_{n=0}^{N-1}\sum_{p=0}^{P-1} X_{m,n,p}\exp(-\frac{2i\pi km}{M}) \exp(-\frac{2i\pi ln}{N}) \exp(-\frac{2i\pi rp}{P})
*/
ComplexTensor transform3D(const ComplexTensor & tensor) const;
/** FFT 3D transformation on real data */
ComplexTensor transform3D(const Tensor & tensor) const;
/** FFT inverse transformation
* Given the complex sequence Z_n, compute the sequence Y_k such that:
* Y_k = \frac{1}{N}\sum_{n=0}^{N-1} Z_n\exp(\frac{2i\pi kn}{N})
*/
/** FFT inverse transformation */
ComplexCollection inverseTransform(const ScalarCollection & collection) const;
/** FFT inverse transformation - The transformation is applied on a part of the collection */
ComplexCollection inverseTransform(const ScalarCollection & collection,
const UnsignedInteger first,
const UnsignedInteger size) const;
/** FFT inverse transformation on a regular sequence of the collection (between first and last, spearated by step)*/
ComplexCollection inverseTransform(const ScalarCollection & collection,
const UnsignedInteger first,
const UnsignedInteger step,
const UnsignedInteger last) const;
ComplexCollection inverseTransform(const ComplexCollection & collection) const;
/** FFT inverse transformation - The transformation is applied on a part of the collection */
ComplexCollection inverseTransform(const ComplexCollection & collection,
const UnsignedInteger first,
const UnsignedInteger size) const;
/** FFT inverse transformation on a regular sequence of the collection (between first and last, by step = step)*/
ComplexCollection inverseTransform(const ComplexCollection & collection,
const UnsignedInteger first,
const UnsignedInteger step,
const UnsignedInteger last) const;
/** FFT inverse transformation
* Given the complex sequence Z_n, compute the sequence Y_k such that:
* Y_{k,l} = \frac{1}{M.N}\sum_{m=0}^{M-1}\sum_{n=0}^{N-1} Z_{m,n}\exp(\frac{2i\pi km}{M} \exp(\frac{2i\pi ln}{N})
*/
ComplexMatrix inverseTransform2D(const ComplexMatrix & matrix) const;
/** IFFT 2D transformation on real matrix */
ComplexMatrix inverseTransform2D(const Matrix & matrix) const;
/** IFFT 2D transformation on sample */
ComplexMatrix inverseTransform2D(const Sample & sample) const;
/** FFT inverse transformation
* Given the complex sequence Z, compute the sequence Y such that:
* Y_{k,l,r} = \frac{1}{M.N.P}\sum_{m=0}^{M-1}\sum_{n=0}^{N-1}\sum_{n=0}^{P-1} Z_{m,n,p}\exp(\frac{2i\pi km}{M} \exp(\frac{2i\pi ln}{N}) \exp(\frac{2i\pi rp}{P})
*/
ComplexTensor inverseTransform3D(const ComplexTensor & tensor) const;
/** IFFT 3D transformation on real tensors */
ComplexTensor inverseTransform3D(const Tensor & tensor) const;
/** String converter */
String __repr__() const;
/** String converter */
String __str__(const String & offset = "") const;
} ; /* class FFT */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_FFT_HXX */
|