/usr/include/openturns/FunctionImplementation.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | // -*- C++ -*-
/**
* @brief Abstract top-level class for all numerical math function implementations
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_FUNCTIONIMPLEMENTATION_HXX
#define OPENTURNS_FUNCTIONIMPLEMENTATION_HXX
#include "openturns/PersistentObject.hxx"
#include "openturns/Point.hxx"
#include "openturns/PointWithDescription.hxx"
#include "openturns/Sample.hxx"
#include "openturns/Field.hxx"
#include "openturns/Indices.hxx"
#include "openturns/Pointer.hxx"
#include "openturns/EvaluationImplementation.hxx"
#include "openturns/GradientImplementation.hxx"
#include "openturns/HessianImplementation.hxx"
#include "openturns/Description.hxx"
#include "openturns/Graph.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class FunctionImplementation
*
* The class that simulates a numerical math function,
* its gradient and its hessian. This class is just an interface
* to actual implementation objects that can be hot-replaced
* during computation. Each implementation object refers to
* the evaluation, the gradient or the hessian.
*/
class OT_API FunctionImplementation
: public PersistentObject
{
CLASSNAME;
public:
/* Some typedefs for easy reading */
typedef Pointer<FunctionImplementation> Implementation;
typedef EvaluationImplementation::Implementation EvaluationPointer;
typedef GradientImplementation::Implementation GradientPointer;
typedef HessianImplementation::Implementation HessianPointer;
public:
/** Static methods for documentation of analytical functions
* @deprecated */
static Description GetValidConstants();
static Description GetValidFunctions();
static Description GetValidOperators();
public:
/** Default constructor */
FunctionImplementation();
/** Analytical formula constructor */
FunctionImplementation(const Description & inputVariablesNames,
const Description & outputVariablesNames,
const Description & formulas);
/** Database constructor */
FunctionImplementation(const Sample & inputSample,
const Sample & outputSample);
/** Constructor from implementations */
FunctionImplementation(const EvaluationPointer & funcImpl,
const GradientPointer & gradImpl,
const HessianPointer & hessImpl);
/** Single function implementation constructor */
FunctionImplementation(const EvaluationPointer & evaluationImplementation);
/** Multiplication of two 1D output functions with the same input dimension */
virtual FunctionImplementation operator * (const FunctionImplementation & right) const;
/** Multiplication of two 1D output functions with the same input dimension */
virtual FunctionImplementation operator * (const Implementation & p_right) const;
/** Virtual constructor */
virtual FunctionImplementation * clone() const;
/** Comparison operator */
Bool operator ==(const FunctionImplementation & other) const;
/** String converter */
virtual String __repr__() const;
virtual String __str__(const String & offset = "") const;
/** @brief Enable the internal cache
*
* The cache stores previously computed output values, so calling the cache before processing the %Function
* can save much time and avoid useless computations. However, calling the cache can eat time if the computation is
* very short. So cache is disabled by default, except when the underlying implementation uses a wrapper.
*
* The reason is that building and linking to a wrapper is an extra burden that is valuable only if the computation
* code is long enough to justify it. Calling the cache in this case will save time for sure.
*/
void enableCache() const;
/** @brief Disable the internal cache
* @see enableCache()
*/
void disableCache() const;
/** @brief Test the internal cache activity
* @see enableCache()
*/
Bool isCacheEnabled() const;
/** @brief Returns the number of successful hits in the cache
*/
UnsignedInteger getCacheHits() const;
/** @brief Add some content to the cache
*/
void addCacheContent(const Sample & inSample, const Sample & outSample);
/** @brief Returns the cache input
*/
Sample getCacheInput() const;
/** @brief Returns the cache output
*/
Sample getCacheOutput() const;
void clearCache() const;
/** Enable or disable the input/output history
* The input and output strategies store input and output values of the function,
* in order to allow to retrieve these values e.g. after the execution of an algorithm
* for which the user has no access to the generated inputs and the corresponding output.
*/
void enableHistory() const;
/** @brief Disable the history mechanism
* @see enableHistory()
*/
void disableHistory() const;
/** @brief Test the history mechanism activity
* @see enableHistory()
*/
Bool isHistoryEnabled() const;
/** @brief Clear the history mechanism
* @see enableHistory()
*/
void clearHistory() const;
/** @brief Retrieve the history of the input values
* @see enableHistory()
*/
HistoryStrategy getHistoryInput() const;
/** @brief Retrieve the history of the output values
* @see enableHistory()
*/
HistoryStrategy getHistoryOutput() const;
/** Input point / parameter history accessor */
virtual Sample getInputPointHistory() const;
virtual Sample getInputParameterHistory() const;
/** Function implementation accessors */
void setEvaluation(const EvaluationPointer & evaluation);
const EvaluationPointer & getEvaluation() const;
/** Gradient implementation accessors */
void setGradient(const GradientPointer & gradient);
const GradientPointer & getGradient() const;
/** Hessian implementation accessors */
void setHessian(const HessianPointer & hessian);
const HessianPointer & getHessian() const;
/** Flag for default gradient accessors */
Bool getUseDefaultGradientImplementation() const;
void setUseDefaultGradientImplementation(const Bool gradientFlag);
/** Flag for default hessian accessors */
Bool getUseDefaultHessianImplementation() const;
void setUseDefaultHessianImplementation(const Bool hessianFlag);
/** Operator () */
virtual Point operator() (const Point & inP) const;
virtual Point operator()(const Point & inP,
const Point & parameter);
virtual Sample operator() (const Point & point,
const Sample & parameters);
virtual Sample operator() (const Sample & inS) const;
virtual Field operator() (const Field & inField) const;
/** Method gradient() returns the Jacobian transposed matrix of the function at point */
virtual Matrix gradient(const Point & inP) const;
virtual Matrix gradient(const Point & inP,
const Point & parameter);
/** Method hessian() returns the symmetric tensor of the function at point */
virtual SymmetricTensor hessian(const Point & inP) const;
virtual SymmetricTensor hessian(const Point & inP,
const Point & parameter);
/** Gradient according to the marginal parameters */
virtual Matrix parameterGradient(const Point & inP) const;
virtual Matrix parameterGradient(const Point & inP,
const Point & parameter);
/** Parameters value accessor */
virtual Point getParameter() const;
virtual void setParameter(const Point & parameter);
/** Parameters description accessor */
virtual Description getParameterDescription() const;
virtual void setParameterDescription(const Description & description);
/** Accessor for parameter dimension */
virtual UnsignedInteger getParameterDimension() const;
/** Accessor for input point dimension */
virtual UnsignedInteger getInputDimension() const;
/** Accessor for output point dimension */
virtual UnsignedInteger getOutputDimension() const;
/** Description Accessor, i.e. the names of the input and output parameters */
virtual void setDescription(const Description & description);
virtual Description getDescription() const;
/** Input description Accessor, i.e. the names of the input parameters */
virtual Description getInputDescription() const;
/** Output description Accessor, i.e. the names of the Output parameters */
virtual Description getOutputDescription() const;
/** Get the i-th marginal function */
virtual Implementation getMarginal(const UnsignedInteger i) const;
/** Get the function corresponding to indices components */
virtual Implementation getMarginal(const Indices & indices) const;
/** Number of calls to the evaluation */
virtual UnsignedInteger getEvaluationCallsNumber() const;
/** Number of calls to the gradient */
virtual UnsignedInteger getGradientCallsNumber() const;
/** Number of calls to the hessian */
virtual UnsignedInteger getHessianCallsNumber() const;
/** Draw the given 1D marginal output as a function of the given 1D marginal input around the given central point */
virtual Graph draw(const UnsignedInteger inputMarginal,
const UnsignedInteger outputMarginal,
const Point & centralPoint,
const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluation-DefaultPointNumber"),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Draw the given 1D marginal output as a function of the given 2D marginal input around the given central point */
virtual Graph draw(const UnsignedInteger firstInputMarginal,
const UnsignedInteger secondInputMarginal,
const UnsignedInteger outputMarginal,
const Point & centralPoint,
const Point & xMin,
const Point & xMax,
const Indices & pointNumber = Indices(2, ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluation-DefaultPointNumber")),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Draw the output of the function with respect to its input when the input and output dimensions are 1 */
virtual Graph draw(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluation-DefaultPointNumber"),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Draw the output of the function with respect to its input when the input dimension is 2 and the output dimension is 1 */
virtual Graph draw(const Point & xMin,
const Point & xMax,
const Indices & pointNumber = Indices(2, ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluation-DefaultPointNumber")),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Method save() stores the object through the StorageManager */
void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
void load(Advocate & adv);
private:
/** A pointer on the actual numerical math function implementation */
EvaluationPointer p_evaluationImplementation_;
/** A pointer on the actual numerical math gradient implementation */
GradientPointer p_gradientImplementation_;
/** A pointer on the actual numerical math hessian implementation */
HessianPointer p_hessianImplementation_;
protected:
/** Flag to tell if the current gradient is a default implementation */
mutable Bool useDefaultGradientImplementation_;
/** Flag to tell if the curren hessian is a default implementation */
mutable Bool useDefaultHessianImplementation_;
}; /* class FunctionImplementation */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_FUNCTIONIMPLEMENTATION_HXX */
|