This file is indexed.

/usr/include/openturns/GeneralLinearModelAlgorithm.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
//                                               -*- C++ -*-
/**
 *  @brief The class builds generalized linear models
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_GENERALLINEARMODELALGORITHM_HXX
#define OPENTURNS_GENERALLINEARMODELALGORITHM_HXX

#include "openturns/MetaModelAlgorithm.hxx"
#include "openturns/Basis.hxx"
#include "openturns/CovarianceModel.hxx"
#include "openturns/KrigingResult.hxx"
#include "openturns/HMatrix.hxx"
#include "openturns/OptimizationAlgorithm.hxx"
#include "openturns/GeneralLinearModelResult.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class GeneralLinearModelAlgorithm
 *
 * The class building generalized linear model
 */

class OT_API GeneralLinearModelAlgorithm
  : public MetaModelAlgorithm
{
  CLASSNAME;

public:

  typedef GeneralLinearModelResult::BasisCollection BasisCollection;
  typedef GeneralLinearModelResult::BasisPersistentCollection BasisPersistentCollection;

  /** Default constructor */
  GeneralLinearModelAlgorithm();

  /** Parameters constructor */
  GeneralLinearModelAlgorithm (const Sample & inputSample,
                               const Sample & outputSample,
                               const CovarianceModel & covarianceModel,
                               const Bool normalize = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-NormalizeData"),
                               const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));

  GeneralLinearModelAlgorithm (const Sample & inputSample,
                               const Sample & outputSample,
                               const CovarianceModel & covarianceModel,
                               const Basis & basis,
                               const Bool normalize = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-NormalizeData"),
                               const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));

  /** Parameters constructor */
  GeneralLinearModelAlgorithm (const Sample & inputSample,
                               const Function & inputTransformation,
                               const Sample & outputSample,
                               const CovarianceModel & covarianceModel,
                               const Basis & basis,
                               const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));

  /** Parameters constructor */
  GeneralLinearModelAlgorithm (const Sample & inputSample,
                               const Sample & outputSample,
                               const CovarianceModel & covarianceModel,
                               const BasisCollection & basisCollection,
                               const Bool normalize = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-NormalizeData"),
                               const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));

  /** Parameters constructor */
  GeneralLinearModelAlgorithm (const Sample & inputSample,
                               const Function & inputTransformation,
                               const Sample & outputSample,
                               const CovarianceModel & covarianceModel,
                               const BasisCollection & basisCollection,
                               const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));

  /** Virtual constructor */
  GeneralLinearModelAlgorithm * clone() const;

  /** String converter */
  String __repr__() const;

  /** Perform regression */
  void run();

  /** input transformation accessor */
  void setInputTransformation(const Function & inputTransformation);
  Function getInputTransformation() const;

  /** Sample accessors */
  Sample getInputSample() const;
  Sample getOutputSample() const;

  /** result accessor */
  GeneralLinearModelResult getResult();

  /** Objective function (reduced log-Likelihood) accessor */
  Function getObjectiveFunction();

  /** Optimization solver accessor */
  OptimizationAlgorithm getOptimizationAlgorithm() const;
  void setOptimizationAlgorithm(const OptimizationAlgorithm & solver);

  // @deprecated
  OptimizationAlgorithm getOptimizationSolver() const;
  void setOptimizationSolver(const OptimizationAlgorithm & solver);

  /** Optimization flag accessor */
  Bool getOptimizeParameters() const;
  void setOptimizeParameters(const Bool optimizeParameters);

  /** Accessor to optimization bounds */
  void setOptimizationBounds(const Interval & optimizationBounds);
  Interval getOptimizationBounds() const;

  /** Observation noise accessor */
  void setNoise(const Point & noise);
  Point getNoise() const;

  /** Method save() stores the object through the StorageManager */
  virtual void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  virtual void load(Advocate & adv);

protected:
  // Maximize the reduced log-likelihood
  Scalar maximizeReducedLogLikelihood();

  // Compute the output log-likelihood function
  Point computeReducedLogLikelihood(const Point & parameters) const;
  Scalar computeLapackLogDeterminantCholesky() const;
  Scalar computeHMatLogDeterminantCholesky() const;

  // Compute the design matrix on the normalized input sample
  void computeF();

  // Normalize the input sample
  void normalizeInputSample();

  /** Method accessor (lapack/hmat) */
  void initializeMethod();
  void setMethod(const UnsignedInteger method);

  // Initialize default optimization solver
  void initializeDefaultOptimizationAlgorithm();
  friend class Factory<GeneralLinearModelAlgorithm>;


  friend class KrigingAlgorithm;
  Point getRho() const;

private:

  // Helper class to compute the reduced log-likelihood function of the model
  class ReducedLogLikelihoodEvaluation: public EvaluationImplementation
  {
  public:
    // Constructor from a GLM algorithm
    ReducedLogLikelihoodEvaluation(GeneralLinearModelAlgorithm & algorithm)
      : EvaluationImplementation()
      , algorithm_(algorithm)
    {
      // Nothing to do
    }

    ReducedLogLikelihoodEvaluation * clone() const
    {
      return new ReducedLogLikelihoodEvaluation(*this);
    }

    // It is a simple call to the computeReducedLogLikelihood() of the algo
    Point operator() (const Point & point) const
    {
      const Point value(algorithm_.computeReducedLogLikelihood(point));
      return value;
    }

    UnsignedInteger getInputDimension() const
    {
      return algorithm_.getReducedCovarianceModel().getParameter().getDimension();
    }

    UnsignedInteger getOutputDimension() const
    {
      return 1;
    }

    Description getInputDescription() const
    {
      return algorithm_.getReducedCovarianceModel().getParameterDescription();
    }

    Description getOutputDescription() const
    {
      return Description(1, "ReducedLogLikelihood");
    }

    Description getDescription() const
    {
      Description description(getInputDescription());
      description.add(getOutputDescription());
      return description;
    }

    String __repr__() const
    {
      OSS oss;
      // Don't print algorithm_ here as it will result in an infinite loop!
      oss << "ReducedLogLikelihoodEvaluation";
      return oss;
    }

    String __str__(const String & offset) const
    {
      // Don't print algorithm_ here as it will result in an infinite loop!
      return __repr__();
    }

  private:
    GeneralLinearModelAlgorithm & algorithm_;
  }; // ReducedLogLikelihoodEvaluation

  /** set sample  method */
  void setData(const Sample & inputSample,
               const Sample & outputSample);

  /** Covariance model accessor */
  void setCovarianceModel(const CovarianceModel & covarianceModel);
  CovarianceModel getCovarianceModel() const;
  CovarianceModel getReducedCovarianceModel() const;

  /** Set basis collection method */
  void setBasisCollection(const BasisCollection & basisCollection);

  /** check that sample is centered to precison eps */
  void checkYCentered(const Sample & Y);

  // The input data
  Sample inputSample_;

  // Standardized version of the input data
  Sample normalizedInputSample_;

  // Standardization function
  Function inputTransformation_;
  mutable Bool normalize_;

  // The associated output data
  Sample outputSample_;

  // The covariance model parametric familly
  CovarianceModel covarianceModel_;
  mutable CovarianceModel reducedCovarianceModel_;

  // The optimization algorithm used for the meta-parameters estimation
  mutable OptimizationAlgorithm solver_;

  // Bounds used for parameter optimization
  Interval optimizationBounds_;

  // The coefficients of the current output conditional expectation part
  mutable Point beta_;
  // Temporarly used to compute gamma
  mutable Point rho_;
  // The current output Gram matrix
  mutable Matrix F_;

  /** Result */
  GeneralLinearModelResult result_;

  /** BasisCollection */
  BasisPersistentCollection basisCollection_;

  /** Cholesky factor ==>  TriangularMatrix */
  mutable TriangularMatrix covarianceCholeskyFactor_;

  /** Cholesky factor when using hmat-oss */
  mutable HMatrix covarianceCholeskyFactorHMatrix_;

  /** Boolean argument for keep covariance */
  Bool keepCholeskyFactor_;

  /** Method : 0 (lapack), 1 (hmat) */
  UnsignedInteger method_;

  /** Bool to tell if optimization has run */
  mutable Bool hasRun_;

  /** Flag to tell if the parameters of the covariance model
      have to be optimized */
  Bool optimizeParameters_;

  /** Observation noise */
  Point noise_;

  /** Flag to tell if the amplitude parameters are estimated using an analytical derivation */
  Bool analyticalAmplitude_;

  /** Cache of the last computed reduced log-likelihood */
  mutable Scalar lastReducedLogLikelihood_;
}; // class GeneralLinearModelAlgorithm


END_NAMESPACE_OPENTURNS

#endif