/usr/include/openturns/GeneralLinearModelAlgorithm.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | // -*- C++ -*-
/**
* @brief The class builds generalized linear models
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_GENERALLINEARMODELALGORITHM_HXX
#define OPENTURNS_GENERALLINEARMODELALGORITHM_HXX
#include "openturns/MetaModelAlgorithm.hxx"
#include "openturns/Basis.hxx"
#include "openturns/CovarianceModel.hxx"
#include "openturns/KrigingResult.hxx"
#include "openturns/HMatrix.hxx"
#include "openturns/OptimizationAlgorithm.hxx"
#include "openturns/GeneralLinearModelResult.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class GeneralLinearModelAlgorithm
*
* The class building generalized linear model
*/
class OT_API GeneralLinearModelAlgorithm
: public MetaModelAlgorithm
{
CLASSNAME;
public:
typedef GeneralLinearModelResult::BasisCollection BasisCollection;
typedef GeneralLinearModelResult::BasisPersistentCollection BasisPersistentCollection;
/** Default constructor */
GeneralLinearModelAlgorithm();
/** Parameters constructor */
GeneralLinearModelAlgorithm (const Sample & inputSample,
const Sample & outputSample,
const CovarianceModel & covarianceModel,
const Bool normalize = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-NormalizeData"),
const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));
GeneralLinearModelAlgorithm (const Sample & inputSample,
const Sample & outputSample,
const CovarianceModel & covarianceModel,
const Basis & basis,
const Bool normalize = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-NormalizeData"),
const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));
/** Parameters constructor */
GeneralLinearModelAlgorithm (const Sample & inputSample,
const Function & inputTransformation,
const Sample & outputSample,
const CovarianceModel & covarianceModel,
const Basis & basis,
const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));
/** Parameters constructor */
GeneralLinearModelAlgorithm (const Sample & inputSample,
const Sample & outputSample,
const CovarianceModel & covarianceModel,
const BasisCollection & basisCollection,
const Bool normalize = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-NormalizeData"),
const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));
/** Parameters constructor */
GeneralLinearModelAlgorithm (const Sample & inputSample,
const Function & inputTransformation,
const Sample & outputSample,
const CovarianceModel & covarianceModel,
const BasisCollection & basisCollection,
const Bool keepCholeskyFactor = ResourceMap::GetAsBool("GeneralLinearModelAlgorithm-KeepCovariance"));
/** Virtual constructor */
GeneralLinearModelAlgorithm * clone() const;
/** String converter */
String __repr__() const;
/** Perform regression */
void run();
/** input transformation accessor */
void setInputTransformation(const Function & inputTransformation);
Function getInputTransformation() const;
/** Sample accessors */
Sample getInputSample() const;
Sample getOutputSample() const;
/** result accessor */
GeneralLinearModelResult getResult();
/** Objective function (reduced log-Likelihood) accessor */
Function getObjectiveFunction();
/** Optimization solver accessor */
OptimizationAlgorithm getOptimizationAlgorithm() const;
void setOptimizationAlgorithm(const OptimizationAlgorithm & solver);
// @deprecated
OptimizationAlgorithm getOptimizationSolver() const;
void setOptimizationSolver(const OptimizationAlgorithm & solver);
/** Optimization flag accessor */
Bool getOptimizeParameters() const;
void setOptimizeParameters(const Bool optimizeParameters);
/** Accessor to optimization bounds */
void setOptimizationBounds(const Interval & optimizationBounds);
Interval getOptimizationBounds() const;
/** Observation noise accessor */
void setNoise(const Point & noise);
Point getNoise() const;
/** Method save() stores the object through the StorageManager */
virtual void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
virtual void load(Advocate & adv);
protected:
// Maximize the reduced log-likelihood
Scalar maximizeReducedLogLikelihood();
// Compute the output log-likelihood function
Point computeReducedLogLikelihood(const Point & parameters) const;
Scalar computeLapackLogDeterminantCholesky() const;
Scalar computeHMatLogDeterminantCholesky() const;
// Compute the design matrix on the normalized input sample
void computeF();
// Normalize the input sample
void normalizeInputSample();
/** Method accessor (lapack/hmat) */
void initializeMethod();
void setMethod(const UnsignedInteger method);
// Initialize default optimization solver
void initializeDefaultOptimizationAlgorithm();
friend class Factory<GeneralLinearModelAlgorithm>;
friend class KrigingAlgorithm;
Point getRho() const;
private:
// Helper class to compute the reduced log-likelihood function of the model
class ReducedLogLikelihoodEvaluation: public EvaluationImplementation
{
public:
// Constructor from a GLM algorithm
ReducedLogLikelihoodEvaluation(GeneralLinearModelAlgorithm & algorithm)
: EvaluationImplementation()
, algorithm_(algorithm)
{
// Nothing to do
}
ReducedLogLikelihoodEvaluation * clone() const
{
return new ReducedLogLikelihoodEvaluation(*this);
}
// It is a simple call to the computeReducedLogLikelihood() of the algo
Point operator() (const Point & point) const
{
const Point value(algorithm_.computeReducedLogLikelihood(point));
return value;
}
UnsignedInteger getInputDimension() const
{
return algorithm_.getReducedCovarianceModel().getParameter().getDimension();
}
UnsignedInteger getOutputDimension() const
{
return 1;
}
Description getInputDescription() const
{
return algorithm_.getReducedCovarianceModel().getParameterDescription();
}
Description getOutputDescription() const
{
return Description(1, "ReducedLogLikelihood");
}
Description getDescription() const
{
Description description(getInputDescription());
description.add(getOutputDescription());
return description;
}
String __repr__() const
{
OSS oss;
// Don't print algorithm_ here as it will result in an infinite loop!
oss << "ReducedLogLikelihoodEvaluation";
return oss;
}
String __str__(const String & offset) const
{
// Don't print algorithm_ here as it will result in an infinite loop!
return __repr__();
}
private:
GeneralLinearModelAlgorithm & algorithm_;
}; // ReducedLogLikelihoodEvaluation
/** set sample method */
void setData(const Sample & inputSample,
const Sample & outputSample);
/** Covariance model accessor */
void setCovarianceModel(const CovarianceModel & covarianceModel);
CovarianceModel getCovarianceModel() const;
CovarianceModel getReducedCovarianceModel() const;
/** Set basis collection method */
void setBasisCollection(const BasisCollection & basisCollection);
/** check that sample is centered to precison eps */
void checkYCentered(const Sample & Y);
// The input data
Sample inputSample_;
// Standardized version of the input data
Sample normalizedInputSample_;
// Standardization function
Function inputTransformation_;
mutable Bool normalize_;
// The associated output data
Sample outputSample_;
// The covariance model parametric familly
CovarianceModel covarianceModel_;
mutable CovarianceModel reducedCovarianceModel_;
// The optimization algorithm used for the meta-parameters estimation
mutable OptimizationAlgorithm solver_;
// Bounds used for parameter optimization
Interval optimizationBounds_;
// The coefficients of the current output conditional expectation part
mutable Point beta_;
// Temporarly used to compute gamma
mutable Point rho_;
// The current output Gram matrix
mutable Matrix F_;
/** Result */
GeneralLinearModelResult result_;
/** BasisCollection */
BasisPersistentCollection basisCollection_;
/** Cholesky factor ==> TriangularMatrix */
mutable TriangularMatrix covarianceCholeskyFactor_;
/** Cholesky factor when using hmat-oss */
mutable HMatrix covarianceCholeskyFactorHMatrix_;
/** Boolean argument for keep covariance */
Bool keepCholeskyFactor_;
/** Method : 0 (lapack), 1 (hmat) */
UnsignedInteger method_;
/** Bool to tell if optimization has run */
mutable Bool hasRun_;
/** Flag to tell if the parameters of the covariance model
have to be optimized */
Bool optimizeParameters_;
/** Observation noise */
Point noise_;
/** Flag to tell if the amplitude parameters are estimated using an analytical derivation */
Bool analyticalAmplitude_;
/** Cache of the last computed reduced log-likelihood */
mutable Scalar lastReducedLogLikelihood_;
}; // class GeneralLinearModelAlgorithm
END_NAMESPACE_OPENTURNS
#endif
|