This file is indexed.

/usr/include/openturns/HMatrixImplementation.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//                                               -*- C++ -*-
/**
 *  @file  HMatrixImplementation.hxx
 *  @brief This file supplies support for HMat
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_HMATRIXIMPLEMENTATION_HXX
#define OPENTURNS_HMATRIXIMPLEMENTATION_HXX

#include "openturns/OTconfig.hxx"
#include "openturns/OTprivate.hxx"
#include "openturns/Point.hxx"
#include "openturns/Sample.hxx"
#include "openturns/CovarianceMatrix.hxx"
#include "openturns/CovarianceModel.hxx"

#ifdef OPENTURNS_HAVE_HMAT
# include <hmat/hmat.h>
#endif

BEGIN_NAMESPACE_OPENTURNS

// Forward declaration
class HMatrixFactory;

// In order to create an H-matrix, one has first to generate an interface with
// HMatrixFactory::build, then compute its coefficients, and after that, it is
// possible to factorize it, solve linear systems, etc.  As H-matrices are
// designed to solve very large systems, most operations are performed inplace,
// which is an unusual pattern in OpenTURNS.

// There are two ways to compute matrix coefficients:
//   1. The simplest solution is to provide a method which computes (i,j) coefficient.
//      This is what HMatrixRealAssemblyFunction is designed for, and such an object
//      is then passed to HMatrixImplementation::simpleAssemble.  But most of the time,
//      this involves heavy computations which could be reused when computing values
//      for different coefficients.
//   2. HMat provides a 2nd interface to compute tiled blocks.  But it is cumbersome,
//      so we defined a more intuitive interface which should be suited for our needs.
//      When dimension is greater than 1, HMatrixFactory::build duplicates input vertices
//      to have local d x d matrices, and HMatrixTensorRealAssemblyFunction is an interface
//      to compute all coefficients of this local matrix, which had already been allocated.
//      It will be automatically copied at the right place in HMatrixImplementation.

class OT_API HMatrixRealAssemblyFunction
{
public:
  virtual ~HMatrixRealAssemblyFunction() {}

  // Compute matrix coefficient for degrees of freedom i and j
  virtual Scalar operator() (UnsignedInteger i, UnsignedInteger j) const = 0;
};

class OT_API HMatrixTensorRealAssemblyFunction
{
public:
  virtual ~HMatrixTensorRealAssemblyFunction() {}

  HMatrixTensorRealAssemblyFunction(const UnsignedInteger outputDimension)
    : dimension_(outputDimension) {}

  UnsignedInteger getDimension() const
  {
    return dimension_;
  }
  // Compute local matrix for input vertices i and j
  virtual void compute(UnsignedInteger i, UnsignedInteger j, Matrix* localValues) const = 0;

protected:
  UnsignedInteger dimension_;
};

class OT_API HMatrixClusterTree
{
public:
  HMatrixClusterTree(void* ptr_cluster_tree, int size) : hmatClusterTree_(ptr_cluster_tree), size_(size) {}
  void* get()
  {
    return hmatClusterTree_;
  }
  int getSize()
  {
    return size_;
  }
  ~HMatrixClusterTree();
private:
  void* hmatClusterTree_;
  int size_;
};

// HMatrixImplementation is not persistent
class OT_API HMatrixImplementation
  : public PersistentObject
{
  friend class HMatrixFactory;

  CLASSNAME;

private:
  // Only visible from HMatrixFactory::build
  HMatrixImplementation(void* ptr_hmat_interface, void* ptr_cluster_tree, int cluster_size, void* ptr_hmatrix);

public:
  /** Default constructor */
  HMatrixImplementation();

  /** Copy constructor */
  HMatrixImplementation(const HMatrixImplementation& other);

  /** Virtual copy constructor */
  virtual HMatrixImplementation * clone() const;

  // Destructor
  virtual ~HMatrixImplementation();

  /** Get the dimensions of the matrix */
  /** Number of rows */
  UnsignedInteger getNbRows() const;
  /** Number of columns */
  UnsignedInteger getNbColumns() const;

  void assemble(const HMatrixRealAssemblyFunction& f, char symmetry);
  void assemble(const HMatrixTensorRealAssemblyFunction& f, char symmetry);
  void factorize(const String& method);

  /** Compute this <- alpha * this */
  void scale(Scalar alpha);

  /** Compute y <- alpha op(this) * x + beta * y */
  void gemv(char trans, Scalar alpha, const Point& x, Scalar beta, Point& y) const;

  /** Compute this <- alpha op(A) * p(B) + beta * this */
  void gemm(char transA, char transB, Scalar alpha, const HMatrixImplementation& a, const HMatrixImplementation& b, Scalar beta);

  /** Transpose matrix */
  void transpose();

  /** Get the Frobenius norm */
  Scalar norm() const;

  /** Get the diagonal */
  Point getDiagonal() const;

  /** Solve system op(A)*X = b */
  Point solve(const Point& b, Bool trans) const;

  /** Solve system op(A)*X = m */
  Matrix solve(const Matrix& m, Bool trans) const;

  /** Solve system op(L)*X = b */
  Point solveLower(const Point& b, Bool trans) const;

  /** Solve system op(L)*X = m */
  Matrix solveLower(const Matrix& m, Bool trans) const;

  /** Get number of HMatrix elements in compressed and uncompressed forms */
  std::pair<size_t, size_t> compressionRatio() const;

  /** Get number of HMatrix elements in full blocks and low rank blocks */
  std::pair<size_t, size_t> fullrkRatio() const;

  /** Dump HMatrix onto file */
  void dump(const String & name) const;

  /** Change HMatrix settings */
  Bool setKey(const String & name, const String & value);

  /** String converter */
  virtual String __repr__() const;

  /** String converter */
  virtual String __str__(const String & offset = "") const;

private:
  // DO NOT USE
  void * hmatInterface_;
  Pointer<HMatrixClusterTree> hmatClusterTree_;
  void * hmat_;

};

// First implementation, by using HMatrixRealAssemblyFunction
// This is going to be very slow, because each local
// covariance matrix of size 3x3 is computed, but a single
// coefficient is stored.
class CovarianceAssemblyFunction : public HMatrixRealAssemblyFunction
{
private:
  const CovarianceModel covarianceModel_;
  const Sample vertices_;
  const UnsignedInteger covarianceDimension_;
  const double epsilon_;

public:
  CovarianceAssemblyFunction(const CovarianceModel & covarianceModel, const Sample & vertices, double epsilon)
    : HMatrixRealAssemblyFunction()
    , covarianceModel_(covarianceModel)
    , vertices_(vertices)
    , covarianceDimension_(covarianceModel.getDimension())
    , epsilon_(epsilon) {}

  Scalar operator()(UnsignedInteger i, UnsignedInteger j) const
  {
    const UnsignedInteger rowIndex = i / covarianceDimension_;
    const UnsignedInteger columnIndex = j / covarianceDimension_;
    const CovarianceMatrix localCovarianceMatrix(covarianceModel_( vertices_[rowIndex],  vertices_[columnIndex] ));
    const UnsignedInteger rowIndexLocal = i % covarianceDimension_;
    const UnsignedInteger columnIndexLocal = j % covarianceDimension_;
    return localCovarianceMatrix(rowIndexLocal, columnIndexLocal) + (i != j ? 0.0 : epsilon_);
  }
};

// Second implementation, by using HMatrixTensorRealAssemblyFunction
// Each local covariance matrix is built only once, and its components
// are dispatched into the global covariance matrix
class CovarianceBlockAssemblyFunction : public HMatrixTensorRealAssemblyFunction
{
private:
  const CovarianceModel covarianceModel_;
  const Sample vertices_;
  const double epsilon_;
  CovarianceMatrix epsilonId_;

public:
  CovarianceBlockAssemblyFunction(const CovarianceModel & covarianceModel, const Sample & vertices, double epsilon)
    : HMatrixTensorRealAssemblyFunction(covarianceModel.getDimension())
    , covarianceModel_(covarianceModel)
    , vertices_(vertices)
    , epsilon_(epsilon)
  {
    Matrix eps = epsilon_ * IdentityMatrix(covarianceModel.getDimension());
    Pointer<MatrixImplementation> impl = eps.getImplementation();
    epsilonId_ = CovarianceMatrix(covarianceModel.getDimension(), *impl.get());
  }

  void compute(UnsignedInteger i, UnsignedInteger j, Matrix* localValues) const
  {
    CovarianceMatrix localResult(covarianceModel_( vertices_[i],  vertices_[j] ));
    if (i == j && epsilon_ != 0.0)
      localResult = localResult + epsilonId_;
    memcpy( &localValues->getImplementation()->operator[](0), &localResult.getImplementation()->operator[](0), dimension_ * dimension_ * sizeof(Scalar) );
  }
};

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_HMATRIXIMPLEMENTATION_HXX */