/usr/include/openturns/IteratedQuadrature.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | // -*- C++ -*-
/**
* @brief This class allows to compute integrals of a function over a
* domain defined by functions
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_ITERATEDQUADRATURE_HXX
#define OPENTURNS_ITERATEDQUADRATURE_HXX
#include "openturns/IntegrationAlgorithmImplementation.hxx"
#include "openturns/IntegrationAlgorithm.hxx"
#include "openturns/SpecFunc.hxx"
#include "openturns/ParametricFunction.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class IteratedQuadrature
*/
class OT_API IteratedQuadrature
: public IntegrationAlgorithmImplementation
{
CLASSNAME;
public:
typedef Collection< Function > FunctionCollection;
/** Default constructor without parameters */
IteratedQuadrature();
/** Parameter constructor */
IteratedQuadrature(const IntegrationAlgorithm & algorithm);
/** Virtual copy constructor */
virtual IteratedQuadrature * clone() const;
/** Compute an approximation of \int_a^b\int_{L_1(x_1)}^{U_1(x_1)}\int_{L_1(x_1,x_2)}^{U_2(x_1,x_2)}\dots\int_{L_1(x_1,\dots,x_{n-1})}^{U_2(x_1,\dots,x_{n-1})} f(x_1,\dots,x_n)dx_1\dotsdx_n, where [a,b] is an 1D interval, L_k and U_k are functions from R^k into R.
*/
using IntegrationAlgorithmImplementation::integrate;
Point integrate(const Function & function,
const Interval & interval) const;
// This method allows to get the estimated integration error as a scalar
Point integrate(const Function & function,
const Scalar a,
const Scalar b,
const FunctionCollection & lowerBounds,
const FunctionCollection & upperBounds,
const Bool check = true) const;
/** String converter */
virtual String __repr__() const;
/** String converter */
virtual String __str__(const String & offset = "") const;
private:
// Class to compute in a recursive way a multidimensional integral
class PartialFunctionWrapper: public FunctionImplementation
{
public:
/* Default constructor */
PartialFunctionWrapper(const IteratedQuadrature & quadrature,
const Function & function,
const IteratedQuadrature::FunctionCollection & lowerBounds,
const IteratedQuadrature::FunctionCollection & upperBounds)
: FunctionImplementation()
, quadrature_(quadrature)
, function_(function)
, lowerBounds_(lowerBounds)
, upperBounds_(upperBounds)
{
// Nothing to do
}
Point operator()(const Point & point) const
{
// Create the arguments of the local integration problem
const Indices index(1, 0);
const ParametricFunction function(function_, index, point);
const UnsignedInteger size = lowerBounds_.getSize() - 1;
const Scalar a = lowerBounds_[0](point)[0];
const Scalar b = upperBounds_[0](point)[0];
IteratedQuadrature::FunctionCollection lowerBounds(size);
IteratedQuadrature::FunctionCollection upperBounds(size);
for (UnsignedInteger i = 0; i < size; ++i)
{
lowerBounds[i] = ParametricFunction(lowerBounds_[i + 1], index, point);
upperBounds[i] = ParametricFunction(upperBounds_[i + 1], index, point);
}
const Point value(quadrature_.integrate(function, a, b, lowerBounds, upperBounds, false));
for (UnsignedInteger i = 0; i < value.getDimension(); ++i)
if (!SpecFunc::IsNormal(value[i])) throw InternalException(HERE) << "Error: NaN or Inf produced for x=" << point << " while integrating " << function;
return value;
}
Sample operator()(const Sample & sample) const
{
const UnsignedInteger sampleSize = sample.getSize();
const UnsignedInteger outputDimension = function_.getOutputDimension();
const UnsignedInteger size = lowerBounds_.getSize() - 1;
IteratedQuadrature::FunctionCollection lowerBounds(size);
IteratedQuadrature::FunctionCollection upperBounds(size);
Sample result(sampleSize, outputDimension);
const Indices index(1, 0);
const Sample sampleA(lowerBounds_[0](sample));
const Sample sampleB(upperBounds_[0](sample));
for (UnsignedInteger k = 0; k < sampleSize; ++k)
{
const Point x(sample[k]);
// Create the arguments of the local integration problem
const ParametricFunction function(function_, index, x);
const Scalar a = sampleA[k][0];
const Scalar b = sampleB[k][0];
for (UnsignedInteger i = 0; i < size; ++i)
{
lowerBounds[i] = ParametricFunction(lowerBounds_[i + 1], index, x);
upperBounds[i] = ParametricFunction(upperBounds_[i + 1], index, x);
} // Loop over bound functions
result[k] = quadrature_.integrate(function, a, b, lowerBounds, upperBounds, false);
for (UnsignedInteger i = 0; i < outputDimension; ++i)
if (!SpecFunc::IsNormal(result[k][i])) throw InternalException(HERE) << "Error: NaN or Inf produced for x=" << x << " while integrating " << function;
} // Loop over sample points
return result;
}
PartialFunctionWrapper * clone() const
{
return new PartialFunctionWrapper(*this);
}
UnsignedInteger getInputDimension() const
{
return 1;
}
UnsignedInteger getOutputDimension() const
{
return function_.getOutputDimension();
}
Description getInputDescription() const
{
return Description(1, "t");
}
Description getOutputDescription() const
{
return function_.getOutputDescription();
}
private:
const IteratedQuadrature & quadrature_;
const Function & function_;
const IteratedQuadrature::FunctionCollection & lowerBounds_;
const IteratedQuadrature::FunctionCollection & upperBounds_;
}; // class PartialFunctionWrapper
/* Underlying integration algorithm */
IntegrationAlgorithm algorithm_;
} ; /* class IteratedQuadrature */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_ITERATEDQUADRATURE_HXX */
|