This file is indexed.

/usr/include/openturns/IteratedQuadrature.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
//                                               -*- C++ -*-
/**
 *  @brief This class allows to compute integrals of a function over a
 *         domain defined by functions
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_ITERATEDQUADRATURE_HXX
#define OPENTURNS_ITERATEDQUADRATURE_HXX

#include "openturns/IntegrationAlgorithmImplementation.hxx"
#include "openturns/IntegrationAlgorithm.hxx"
#include "openturns/SpecFunc.hxx"
#include "openturns/ParametricFunction.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class IteratedQuadrature
 */

class OT_API IteratedQuadrature
  : public IntegrationAlgorithmImplementation
{

  CLASSNAME;

public:

  typedef Collection< Function > FunctionCollection;

  /** Default constructor without parameters */
  IteratedQuadrature();

  /** Parameter constructor */
  IteratedQuadrature(const IntegrationAlgorithm & algorithm);

  /** Virtual copy constructor */
  virtual IteratedQuadrature * clone() const;

  /** Compute an approximation of \int_a^b\int_{L_1(x_1)}^{U_1(x_1)}\int_{L_1(x_1,x_2)}^{U_2(x_1,x_2)}\dots\int_{L_1(x_1,\dots,x_{n-1})}^{U_2(x_1,\dots,x_{n-1})} f(x_1,\dots,x_n)dx_1\dotsdx_n, where [a,b] is an 1D interval, L_k and U_k are functions from R^k into R.
   */
  using IntegrationAlgorithmImplementation::integrate;
  Point integrate(const Function & function,
                  const Interval & interval) const;

  // This method allows to get the estimated integration error as a scalar
  Point integrate(const Function & function,
                  const Scalar a,
                  const Scalar b,
                  const FunctionCollection & lowerBounds,
                  const FunctionCollection & upperBounds,
                  const Bool check = true) const;

  /** String converter */
  virtual String __repr__() const;

  /** String converter */
  virtual String __str__(const String & offset = "") const;

private:

  // Class to compute in a recursive way a multidimensional integral
  class PartialFunctionWrapper: public FunctionImplementation
  {
  public:
    /* Default constructor */
    PartialFunctionWrapper(const IteratedQuadrature & quadrature,
                           const Function & function,
                           const IteratedQuadrature::FunctionCollection & lowerBounds,
                           const IteratedQuadrature::FunctionCollection & upperBounds)
      : FunctionImplementation()
      , quadrature_(quadrature)
      , function_(function)
      , lowerBounds_(lowerBounds)
      , upperBounds_(upperBounds)
    {
      // Nothing to do
    }

    Point operator()(const Point & point) const
    {
      // Create the arguments of the local integration problem
      const Indices index(1, 0);
      const ParametricFunction function(function_, index, point);
      const UnsignedInteger size = lowerBounds_.getSize() - 1;
      const Scalar a = lowerBounds_[0](point)[0];
      const Scalar b = upperBounds_[0](point)[0];
      IteratedQuadrature::FunctionCollection lowerBounds(size);
      IteratedQuadrature::FunctionCollection upperBounds(size);
      for (UnsignedInteger i = 0; i < size; ++i)
      {
        lowerBounds[i] = ParametricFunction(lowerBounds_[i + 1], index, point);
        upperBounds[i] = ParametricFunction(upperBounds_[i + 1], index, point);
      }
      const Point value(quadrature_.integrate(function, a, b, lowerBounds, upperBounds, false));
      for (UnsignedInteger i = 0; i < value.getDimension(); ++i)
        if (!SpecFunc::IsNormal(value[i])) throw InternalException(HERE) << "Error: NaN or Inf produced for x=" << point << " while integrating " << function;
      return value;
    }

    Sample operator()(const Sample & sample) const
    {
      const UnsignedInteger sampleSize = sample.getSize();
      const UnsignedInteger outputDimension = function_.getOutputDimension();
      const UnsignedInteger size = lowerBounds_.getSize() - 1;
      IteratedQuadrature::FunctionCollection lowerBounds(size);
      IteratedQuadrature::FunctionCollection upperBounds(size);
      Sample result(sampleSize, outputDimension);
      const Indices index(1, 0);
      const Sample sampleA(lowerBounds_[0](sample));
      const Sample sampleB(upperBounds_[0](sample));
      for (UnsignedInteger k = 0; k < sampleSize; ++k)
      {
        const Point x(sample[k]);
        // Create the arguments of the local integration problem
        const ParametricFunction function(function_, index, x);
        const Scalar a = sampleA[k][0];
        const Scalar b = sampleB[k][0];
        for (UnsignedInteger i = 0; i < size; ++i)
        {
          lowerBounds[i] = ParametricFunction(lowerBounds_[i + 1], index, x);
          upperBounds[i] = ParametricFunction(upperBounds_[i + 1], index, x);
        } // Loop over bound functions
        result[k] = quadrature_.integrate(function, a, b, lowerBounds, upperBounds, false);
        for (UnsignedInteger i = 0; i < outputDimension; ++i)
          if (!SpecFunc::IsNormal(result[k][i])) throw InternalException(HERE) << "Error: NaN or Inf produced for x=" << x << " while integrating " << function;
      } // Loop over sample points
      return result;
    }

    PartialFunctionWrapper * clone() const
    {
      return new PartialFunctionWrapper(*this);
    }

    UnsignedInteger getInputDimension() const
    {
      return 1;
    }

    UnsignedInteger getOutputDimension() const
    {
      return function_.getOutputDimension();
    }

    Description getInputDescription() const
    {
      return Description(1, "t");
    }

    Description getOutputDescription() const
    {
      return function_.getOutputDescription();
    }

  private:
    const IteratedQuadrature & quadrature_;
    const Function & function_;
    const IteratedQuadrature::FunctionCollection & lowerBounds_;
    const IteratedQuadrature::FunctionCollection & upperBounds_;
  }; // class PartialFunctionWrapper

  /* Underlying integration algorithm */
  IntegrationAlgorithm algorithm_;

} ; /* class IteratedQuadrature */

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_ITERATEDQUADRATURE_HXX */