/usr/include/openturns/KarhunenLoeveP1Factory.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | // -*- C++ -*-
/**
* @brief This class implements the computation of the Karhunen-Loeve
* basis and eigenvalues of a given covariance model based on
* P1 Lagrange approximation.
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_KARHUNENLOEVEP1FACTORY_HXX
#define OPENTURNS_KARHUNENLOEVEP1FACTORY_HXX
#include "openturns/Mesh.hxx"
#include "openturns/CovarianceMatrix.hxx"
#include "openturns/CovarianceModel.hxx"
#include "openturns/Basis.hxx"
#include "openturns/Point.hxx"
#include "openturns/ProcessSample.hxx"
#include "openturns/PersistentObject.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class KarhunenLoeveP1Factory
*/
class OT_API KarhunenLoeveP1Factory
: public PersistentObject
{
CLASSNAME;
public:
/** Default constructor without parameters */
KarhunenLoeveP1Factory();
/** Default constructor without parameters */
KarhunenLoeveP1Factory(const Mesh & mesh,
const Scalar threshold);
/** Virtual copy constructor */
virtual KarhunenLoeveP1Factory * clone() const;
/** Solve the Fredholm eigenvalues problem:
* find (\phi_k, \lambda_k) such that
* \int_{D} C(s,t)\phi_k(s)ds=\lambda_k\phi_k(t)
* where C is a given covariance model, using P1 approximation
*/
Basis build(const CovarianceModel & covarianceModel,
Point & eigenvalues) const;
ProcessSample buildAsProcessSample(const CovarianceModel & covarianceModel,
Point & eigenvalues) const;
/** String converter */
virtual String __repr__() const;
/** String converter */
virtual String __str__(const String & offset = "") const;
/** Method save() stores the object through the StorageManager */
virtual void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
virtual void load(Advocate & adv);
private:
/** Underlying mesh */
Mesh mesh_;
/** Gram matrix of the mesh */
CovarianceMatrix gram_;
/** Threshold for eigenvalues selection */
Scalar threshold_;
} ; /* class KarhunenLoeveP1Factory */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_KARHUNENLOEVEP1FACTORY_HXX */
|