/usr/include/openturns/KrawtchoukFactory.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | // -*- C++ -*-
/**
* @brief Krawtchouk polynomial factory
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_KRAWTCHOUKFACTORY_HXX
#define OPENTURNS_KRAWTCHOUKFACTORY_HXX
#include "openturns/OrthogonalUniVariatePolynomialFactory.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class KrawtchoukFactory
*
* Krawtchouk polynomial factory
*/
class OT_API KrawtchoukFactory
: public OrthogonalUniVariatePolynomialFactory
{
CLASSNAME;
public:
/** Default constructor: (1, 0.5) order Krawtchouk polynomial associated with the default Binomial() = Binomial(1, 0.5) distribution which is equal to the Bernoulli(0.5) distribution */
KrawtchoukFactory();
/** Parameter constructor: (n, p) is the order of the Krawtchouk polynomial, associated with the Binomial(n, p) distribution */
KrawtchoukFactory(const UnsignedInteger n,
const Scalar p);
/** Virtual constructor */
virtual KrawtchoukFactory * clone() const;
/** Calculate the coefficients of recurrence a0n, a1n, a2n such that
Pn+1(x) = (a0n * x + a1n) * Pn(x) + a2n * Pn-1(x) */
Coefficients getRecurrenceCoefficients(const UnsignedInteger n) const;
/** N accessor */
UnsignedInteger getN() const;
/** P accessor */
Scalar getP() const;
/** String converter */
String __repr__() const;
/** Method save() stores the object through the StorageManager */
virtual void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
virtual void load(Advocate & adv);
private:
/* First parameter of the Krawtchouk polynomial */
UnsignedInteger n_;
/* Second parameter of the Krawtchouk polynomial */
Scalar p_;
} ; /* class KrawtchoukFactory */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_KRAWTCHOUKFACTORY_HXX */
|