This file is indexed.

/usr/include/openturns/Multinomial.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//                                               -*- C++ -*-
/**
 *  @brief The Multinomial distribution
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_MULTINOMIAL_HXX
#define OPENTURNS_MULTINOMIAL_HXX

#include "openturns/OTprivate.hxx"
#include "openturns/DiscreteDistribution.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class Multinomial
 *
 * The Multinomial distribution.
 */
class OT_API Multinomial
  : public DiscreteDistribution
{
  CLASSNAME;
public:

  /** Default constructor */
  Multinomial();


  /** Parameters constructor */
  Multinomial(const UnsignedInteger n,
              const Point & p);


  /** Comparison operator */
  Bool operator ==(const Multinomial & other) const;
protected:
  Bool equals(const DistributionImplementation & other) const;
public:

  /** String converter */
  String __repr__() const;
  String __str__(const String & offset = "") const;



  /* Interface inherited from Distribution */

  /** Virtual constructor */
  virtual Multinomial * clone() const;

  /** Get one realization of the distribution */
  Point getRealization() const;

  /** Get the PDF of the distribution */
  using DiscreteDistribution::computePDF;
  Scalar computePDF(const Point & point) const;

  /** Get the CDF of the distribution */
  using DiscreteDistribution::computeCDF;
  Scalar computeCDF(const Point & point) const;

  /** Compute the PDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  using DistributionImplementation::computeConditionalPDF;
  Scalar computeConditionalPDF(const Scalar x,
                               const Point & y) const;

  /** Compute the CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  using DistributionImplementation::computeConditionalCDF;
  Scalar computeConditionalCDF(const Scalar x,
                               const Point & y) const;

  /** Compute the quantile of Xi | X1, ..., Xi-1, i.e. x such that CDF(x|y) = q with x = Xi, y = (X1,...,Xi-1) */
  using DistributionImplementation::computeConditionalQuantile;
  Scalar computeConditionalQuantile(const Scalar q,
                                    const Point & y) const;

  /** Get the i-th marginal distribution */
  using DiscreteDistribution::getMarginal;
  Implementation getMarginal(const UnsignedInteger i) const;

  /** Get the distribution of the marginal distribution corresponding to indices dimensions */
  Implementation getMarginal(const Indices & indices) const;

  /** Get the support of a discrete distribution that intersect a given interval */
  using DistributionImplementation::getSupport;
  Sample getSupport(const Interval & interval) const;
  Sample getSupport() const;

  /** Parameters value and description accessor */
  PointWithDescriptionCollection getParametersCollection() const;

  /** Check if the distribution is elliptical */
  Bool isElliptical() const;

  /* Interface specific to Multinomial */

  /** P vector accessor */
  void setP(const Point & p);
  Point getP() const;

  /** N accessor */
  void setN(const UnsignedInteger n);
  UnsignedInteger getN() const;

  /** SmallA accessor */
  void setSmallA(const Scalar smallA);
  Scalar getSmallA() const;

  /** Eta accessor */
  void setEta(const Scalar eta);
  Scalar getEta() const;

  /** Method save() stores the object through the StorageManager */
  void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  void load(Advocate & adv);

protected:


private:

  /** Compute the numerical range of the distribution given the parameters values */
  void computeRange();

  /** Compute the generating function of a sum of truncated Poisson distributions as needed in the computeCDF() method */
  Complex computeGlobalPhi(const Complex & z,
                                    const Point & x) const;

  /** Compute the generating function of a truncated Poisson distributions as needed in the computeCDF() method */
  Complex computeLocalPhi(const Complex & z,
                                   const Scalar lambda,
                                   const Scalar a) const;

  /** Quantile computation for dimension=1 */
  Scalar computeScalarQuantile(const Scalar prob,
                               const Bool tail = false) const;

  /** Compute the mean of the distribution */
  void computeMean() const;

  /** Compute the covariance of the distribution */
  void computeCovariance() const;

  /** The range of the output */
  UnsignedInteger n_;

  /** The vector of probabilities of the Multinomial distribution */
  Point p_;

  /** The sum of probabilities of the Multinomial distribution */
  Scalar sumP_;

  /** Normalization factor for the CDF */
  Scalar normalizationCDF_;

  /** Radius of the discretization in Poisson's formula */
  Scalar r_;

  /** Threshold for the A parameter of the CDF algorithm */
  Scalar smallA_;

  /** Normalization for the CDF algorithm */
  Scalar eta_;

}; /* class Multinomial */


END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_MULTINOMIAL_HXX */