/usr/include/openturns/ProductDistribution.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | // -*- C++ -*-
/**
* @brief The ProductDistribution distribution
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_PRODUCTDISTRIBUTION_HXX
#define OPENTURNS_PRODUCTDISTRIBUTION_HXX
#include "openturns/ContinuousDistribution.hxx"
#include "openturns/Distribution.hxx"
#include "openturns/SpecFunc.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class ProductDistribution
*
* The ProductDistribution distribution.
*/
class OT_API ProductDistribution
: public ContinuousDistribution
{
CLASSNAME;
public:
/** Default constructor */
ProductDistribution();
/** Parameters constructor to use when the two bounds are finite */
ProductDistribution(const Distribution & left,
const Distribution & right);
/** Comparison operator */
Bool operator ==(const ProductDistribution & other) const;
protected:
Bool equals(const DistributionImplementation & other) const;
public:
/** String converter */
String __repr__() const;
String __str__(const String & offset = "") const;
/* Interface inherited from Distribution */
/** Virtual constructor */
virtual ProductDistribution * clone() const;
/** Get one realization of the distribution */
Point getRealization() const;
/** Get the PDF of the distribution */
using ContinuousDistribution::computePDF;
Scalar computePDF(const Point & point) const;
private:
Scalar computePDFQ1(const Scalar x,
const Scalar a,
const Scalar b,
const Scalar c,
const Scalar d) const;
Scalar computePDFQ2(const Scalar x,
const Scalar a,
const Scalar b,
const Scalar c,
const Scalar d) const;
Scalar computePDFQ3(const Scalar x,
const Scalar a,
const Scalar b,
const Scalar c,
const Scalar d) const;
Scalar computePDFQ4(const Scalar x,
const Scalar a,
const Scalar b,
const Scalar c,
const Scalar d) const;
public:
/** Get the CDF of the distribution */
using ContinuousDistribution::computeCDF;
Scalar computeCDF(const Point & point) const;
private:
Scalar computeCDFQ1(const Scalar x,
const Scalar a,
const Scalar b,
const Scalar c,
const Scalar d) const;
Scalar computeCDFQ2(const Scalar x,
const Scalar a,
const Scalar b,
const Scalar c,
const Scalar d) const;
Scalar computeCDFQ3(const Scalar x,
const Scalar a,
const Scalar b,
const Scalar c,
const Scalar d) const;
Scalar computeCDFQ4(const Scalar x,
const Scalar a,
const Scalar b,
const Scalar c,
const Scalar d) const;
public:
/** Get the probability content of an interval */
Scalar computeProbability(const Interval & interval) const;
/** Get the characteristic function of the distribution, i.e. phi(u) = E(exp(I*u*X)) */
Complex computeCharacteristicFunction(const Scalar x) const;
/** Parameters value accessors */
void setParameter(const Point & parameter);
Point getParameter() const;
/** Parameters description accessor */
Description getParameterDescription() const;
/** Check if the distribution is elliptical */
Bool isElliptical() const;
/* Interface specific to ProductDistribution */
/** Distribution accessor */
void setLeft(const Distribution & left);
Distribution getLeft() const;
/** Distribution accessor */
void setRight(const Distribution & right);
Distribution getRight() const;
/** Tell if the distribution is continuous */
Bool isContinuous() const;
/** Check if the distribution is discrete */
Bool isDiscrete() const;
/** Tell if the distribution is integer valued */
Bool isIntegral() const;
/** Get the PDF singularities inside of the range - 1D only */
Point getSingularities() const;
/** Method save() stores the object through the StorageManager */
void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
void load(Advocate & adv);
protected:
private:
// Structure used to wrap the kernel of the integral defining the PDF of the product
struct PDFKernelWrapper
{
const Distribution left_;
const Distribution right_;
const Scalar x_;
const Bool isZero_;
const Scalar pdf0_;
PDFKernelWrapper(const Distribution & left,
const Distribution & right,
const Scalar x):
left_(left), right_(right), x_(x), isZero_(std::abs(x) < ResourceMap::GetAsScalar("Distribution-DefaultQuantileEpsilon")), pdf0_(isZero_ ? right.computePDF(0.0) : 0.0) {};
Point eval(const Point & point) const
{
const Scalar value = left_.computePDF(point);
if (value == 0.0) return Point(1, 0.0);
const Scalar u = point[0];
const Scalar absU = std::abs(u);
// x_ == 0
if (isZero_)
{
if (pdf0_ == 0.0) return Point(1, 0.0);
if (absU == 0.0) return Point(1, SpecFunc::MaxScalar);
return Point(1, value * pdf0_ / absU);
}
// x_ != 0
if (absU == 0.0)
{
const Scalar epsilon = 1e-7;
return Point(1, value * 0.5 * (right_.computePDF(x_ / epsilon) + right_.computePDF(-x_ / epsilon)) / epsilon);
}
return Point(1, value * right_.computePDF(x_ / u) / absU);
};
}; // struct PDFKernelWrapper
// Structure used to wrap the kernel of the integral defining the CDF of the product
struct CDFKernelWrapper
{
const Distribution left_;
const Distribution right_;
const Scalar x_;
const Bool isZero_;
const Scalar cdf0_;
const Scalar ccdf0_;
CDFKernelWrapper(const Distribution & left,
const Distribution & right,
const Scalar x):
left_(left), right_(right), x_(x), isZero_(std::abs(x) == 0.0), cdf0_(isZero_ ? right.computeCDF(0.0) : 0.0), ccdf0_(isZero_ ? right.computeComplementaryCDF(0.0) : 0.0) {};
Point eval(const Point & point) const
{
const Scalar value = left_.computePDF(point);
if (value == 0.0) return Point(1, 0.0);
// x_ == 0
if (isZero_) return Point(1, value * cdf0_);
const Scalar u = point[0];
if (u == 0.0) return Point(1, x_ < 0.0 ? 0.0 : value);
return Point(1, value * right_.computeCDF(x_ / u));
};
Point evalComplementary(const Point & point) const
{
const Scalar value = left_.computePDF(point);
if (value == 0.0) return Point(1, 0.0);
// x_ == 0
if (isZero_) return Point(1, value * ccdf0_);
const Scalar u = point[0];
if (u == 0.0) return Point(1, x_ < 0.0 ? 0.0 : value);
return Point(1, value * right_.computeComplementaryCDF(x_ / u));
};
}; // struct CDFKernelWrapper
// Structure used to wrap the kernel of the integral defining the product
struct CFKernelWrapper
{
const Distribution left_;
const Distribution right_;
const Scalar x_;
CFKernelWrapper(const Distribution & left,
const Distribution & right,
const Scalar x):
left_(left), right_(right), x_(x) {};
Point eval(const Point & point) const
{
Point value(2);
const Scalar u = point[0];
const Complex phi(right_.computeCharacteristicFunction(u * x_));
const Scalar pdf = left_.computePDF(point);
value[0] = pdf * phi.real();
value[1] = pdf * phi.imag();
return value;
};
}; // struct CFKernelWrapper
/** Compute the mean of the distribution */
void computeMean() const;
/** Compute the covariance of the distribution */
void computeCovariance() const;
/** Compute the numerical range of the distribution given the parameters values */
void computeRange();
/** The main parameter set of the distribution */
Distribution left_;
Distribution right_;
}; /* class ProductDistribution */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_PRODUCTDISTRIBUTION_HXX */
|