This file is indexed.

/usr/include/openturns/RandomMixture.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
//                                               -*- C++ -*-
/**
 *  @brief The class that implements randomMixtures
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_RANDOMMIXTURE_HXX
#define OPENTURNS_RANDOMMIXTURE_HXX

#include "openturns/Distribution.hxx"
#include "openturns/DistributionFactory.hxx"
#include "openturns/DistributionImplementation.hxx"
#include "openturns/Collection.hxx"
#include "openturns/PersistentCollection.hxx"
#include "openturns/SpecFunc.hxx"
#include "openturns/Normal.hxx"
#include "openturns/ResourceMap.hxx"
#include "openturns/SphereUniformNorm.hxx"
#include "openturns/Indices.hxx"
#include "openturns/FFT.hxx"
#include <limits>       // std::numeric_limits

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class RandomMixture
 *
 * The class describes the probabilistic concept of RandomMixture.
 */
class OT_API RandomMixture
  : public DistributionImplementation
{
  CLASSNAME;
public:

  typedef Collection<Distribution>               DistributionCollection;
  typedef PersistentCollection<Distribution>     DistributionPersistentCollection;
  typedef PersistentCollection<Complex> ComplexPersistentCollection;
  typedef Collection<DistributionFactory>        DistributionFactoryCollection;


  /** Parameter constructor - 1D */
  explicit RandomMixture(const DistributionCollection & coll,
                         const Scalar constant = 0.0);

  /** Parameter constructor - 1D */
  explicit RandomMixture(const DistributionCollection & coll,
                         const Point & weights,
                         const Scalar constant = 0.0);

  /** Parameter constructor - nD */
  RandomMixture(const DistributionCollection & coll,
                const Matrix & weights,
                const Point constant);

  /** Parameter constructor - nD */
  RandomMixture(const DistributionCollection & coll,
                const Matrix & weights);

  /** Parameter constructor - nD */
  RandomMixture(const DistributionCollection & coll,
                const Sample & weights,
                const Point constant);

  /** Parameter constructor - nD */
  RandomMixture(const DistributionCollection & coll,
                const Sample & weights);

  /** Comparison operator */
  Bool operator ==(const RandomMixture & other) const;
protected:
  Bool equals(const DistributionImplementation & other) const;
public:

  /** String converter */
  String __repr__() const;
  String __str__(const String & offset = "") const;


  /** Distribution collection accessor */
  const DistributionCollection & getDistributionCollection() const;

  /** FFT algorithm accessor */
  FFT getFFTAlgorithm() const;
  void setFFTAlgorithm(const FFT & fft);

  /** Constant accessor */
  void setConstant(const Point & constant);
  Point getConstant() const;



  /* Here is the interface that all derived class must implement */

  /** Virtual constructor */
  virtual RandomMixture * clone() const;

  /** Get one realization of the RandomMixture */
  Point getRealization() const;

  /** Get a sample of the RandomMixture */
  Sample getSample(const UnsignedInteger size) const;

protected:
  virtual Sample getSampleByQMC(const UnsignedInteger size) const;
public:

  /** Get the DDF of the RandomMixture */
  using DistributionImplementation::computeDDF;
  Point computeDDF(const Point & point) const;

  /** Get the PDF of the RandomMixture */
  using DistributionImplementation::computePDF;
  Scalar computePDF(const Point & point) const;

  /** Compute the PDF over a regular grid */
  Sample computePDF(const Scalar xMin,
                    const Scalar xMax,
                    const UnsignedInteger pointNumber,
                    Sample & grid) const;

  /* Compute the PDF of over a regular grid */
  Sample computePDF(const Point & xMin,
                    const Point & xMax,
                    const Indices & pointNumber,
                    Sample & grid) const;

  /** Get the i-th marginal distribution */
  Implementation getMarginal(const UnsignedInteger i) const;

  /** Get the distribution of the marginal distribution corresponding to indices dimensions */
  Implementation getMarginal(const Indices & indices) const;

protected:

private:

  /** Quantile computation for dimension=1 */
  Scalar computeScalarQuantile(const Scalar prob,
                               const Bool tail = false) const;

  /** Compute the characteristic function of 1D distributions by difference to a reference Normal distribution with the same mean and the same standard deviation in a regular pattern with cache */
  Complex computeDeltaCharacteristicFunction(const UnsignedInteger index) const;

  /** Compute the characteristic function of nD distributions by difference to a reference Normal distribution with the same mean and the same covariance */
  friend struct AddPDFOn1DGridPolicy;
  friend struct AddPDFOn2DGridPolicy;
  friend struct AddPDFOn3DGridPolicy;
  Complex computeDeltaCharacteristicFunction(const Point & x) const;

  /** Update cache of the characteristic function */
  void updateCacheDeltaCharacteristicFunction(const Sample & points) const;

  /** Contribution to computePDF on a 1D grid */
  void addPDFOn1DGrid(const Indices & pointNumber, const Point & h, const Point & tau, Sample & result) const;

  /** Contribution to computePDF on a 2D grid */
  void addPDFOn2DGrid(const Indices & pointNumber, const Point & h, const Point & tau, Sample & result) const;

  /** Contribution to computePDF on a 3D grid */
  void addPDFOn3DGrid(const Indices & pointNumber, const Point & h, const Point & tau, Sample & result) const;

public:
  /** Get the CDF of the RandomMixture */
  using DistributionImplementation::computeCDF;
  Scalar computeCDF(const Point & point) const;
  using DistributionImplementation::computeComplementaryCDF;
  Scalar computeComplementaryCDF(const Point & point) const;

  /** Compute the CDF over a regular grid */
  Sample computeCDF(const Scalar xMin,
                    const Scalar xMax,
                    const UnsignedInteger pointNumber,
                    Sample & grid) const;

  /** Get the probability content of an interval */
  Scalar computeProbability(const Interval & interval) const;

  /** Compute the quantile over a regular grid */
  using DistributionImplementation::computeQuantile;
  Sample computeQuantile(const Scalar qMin,
                         const Scalar qMax,
                         const UnsignedInteger pointNumber,
                         const Bool tail = false) const;

  /** Get the minimum volume level set containing a given probability of the distribution */
  virtual LevelSet computeMinimumVolumeLevelSetWithThreshold(const Scalar prob, Scalar & threshold) const;

  /** Get the characteristic function of the distribution, i.e. phi(u) = E(exp(I*u*X)) */
  using DistributionImplementation::computeCharacteristicFunction;
  Complex computeCharacteristicFunction(const Scalar x) const;
  Complex computeCharacteristicFunction(const Point & x) const;
  using DistributionImplementation::computeLogCharacteristicFunction;
  Complex computeLogCharacteristicFunction(const Scalar x) const;
  Complex computeLogCharacteristicFunction(const Point & x) const;

  /** Get the PDF gradient of the distribution */
  using DistributionImplementation::computePDFGradient;
  Point computePDFGradient(const Point & point) const;

  /** Get the CDF gradient of the distribution */
  using DistributionImplementation::computeCDFGradient;
  Point computeCDFGradient(const Point & point) const;

  /** Parameters value and description accessor */
  PointWithDescriptionCollection getParametersCollection() const;

  /** Weights distribution accessor */
protected:
  void setWeights(const Matrix & weights);
  void setDistributionCollection(const DistributionCollection & coll);

public:
  Matrix getWeights() const;

  /** Get a positon indicator for a 1D distribution */
  Scalar getPositionIndicator() const;

  /** Get a dispersion indicator for a 1D distribution */
  Scalar getDispersionIndicator() const;

  /** BlockMin accessor */
  void setBlockMin(const UnsignedInteger blockMin);
  UnsignedInteger getBlockMin() const;

  /** BlockMax accessor */
  void setBlockMax(const UnsignedInteger blockMax);
  UnsignedInteger getBlockMax() const;

  /** MaxSize accessor */
  void setMaxSize(const UnsignedInteger maxSize);
  UnsignedInteger getMaxSize() const;

  /** Alpha accessor */
  void setAlpha(const Scalar alpha);
  Scalar getAlpha() const;

  /** Beta accessor */
  void setBeta(const Scalar beta);
  Scalar getBeta() const;

  /** Reference bandwidth accessor */
  void setReferenceBandwidth(const Point & bandwidth);
  Point getReferenceBandwidth() const;

  /** PDF epsilon accessor. For other distributions, it is a read-only attribute. */
  void setPDFPrecision(const Scalar pdfPrecision);

  /** CDF epsilon accessor. For other distributions, it is a read-only attribute. */
  void setCDFPrecision(const Scalar cdfPrecision);

  /** Project a RandomMixture distribution over a collection of DistributionFactory by using sampling and Kolmogorov distance. */
  DistributionCollection project(const DistributionFactoryCollection & factoryCollection,
                                 Point & kolmogorovNorm,
                                 const UnsignedInteger size = ResourceMap::GetAsUnsignedInteger( "RandomMixture-ProjectionDefaultSize" )) const;

  /** Tell if the distribution has independent copula */
  Bool hasIndependentCopula() const;

  /** Tell if the distribution has elliptical copula */
  Bool hasEllipticalCopula() const;

  /** Check if the distribution is elliptical */
  Bool isElliptical() const;

  /** Check if the distribution is continuous */
  Bool isContinuous() const;

  /** Check if the distribution is discrete */
  Bool isDiscrete() const;

  /** Tell if the distribution is integer valued */
  Bool isIntegral() const;

  /** Get the support of a discrete distribution that intersect a given interval */
  using DistributionImplementation::getSupport;
  Sample getSupport(const Interval & interval) const;

  /** Method save() stores the object through the StorageManager */
  void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  void load(Advocate & adv);

private:

  class KolmogorovProjection
  {
  public:
    /** Constructor from a distribution and a data set */
    KolmogorovProjection(const Sample & dataX,
                         const Sample & dataY,
                         const DistributionFactory & factory):
      dataX_(dataX),
      dataY_(dataY),
      factory_(factory) {};

    /** Compute the Kolmogorov distance based on the given data, for a given parameter set */
    Point computeNorm(const Point & parameters) const
    {
      Scalar norm = 0.0;
      try
      {
        const Distribution candidate(factory_.build(PointCollection(1, parameters)));
        for (UnsignedInteger i = 0; i < dataX_.getSize(); ++i)
          norm += std::pow(candidate.computeCDF(dataX_[i][0]) - dataY_[i][0], 2);
        return Point(1, norm);
      }
      catch(...)
      {
        return Point(1, SpecFunc::MaxScalar);
      }
    }

    /** factory accessor */
    void setDistributionFactory(const DistributionFactory & factory)
    {
      factory_ = factory;
    }
  private:
    Sample dataX_;
    Sample dataY_;
    DistributionFactory factory_;
  };

protected:
  /** Compute the numerical range of the distribution given the parameters values */
  void computeRange();

  /** Default constructor for save/load mechanism */
  RandomMixture() {};
  friend class Factory<RandomMixture>;

  /** Get the mean of a randomMixture */
  void computeMean() const;

  /** Get the covariance of a randomMixture */
  void computeCovariance() const;

private:
  /** Compute the left-hand sum in Poisson's summation formula for the equivalent normal */
  Scalar computeEquivalentNormalPDFSum(const Scalar x) const;
  Scalar computeEquivalentNormalCDFSum(const Scalar s, const Scalar t) const;

  friend struct EquivalentNormalPDFSumPolicy;
  Scalar computeEquivalentNormalPDFSum(const Point & y, const Point & gridStep,
                                       UnsignedInteger imax, UnsignedInteger & levelMax) const;
public:
  /** Get the standard deviation of the distribution */
  Point getStandardDeviation() const;

  /** Get the skewness of the distribution */
  Point getSkewness() const;

  /** Get the kurtosis of the distribution */
  Point getKurtosis() const;

private:
  /** Compute the position indicator */
  void computePositionIndicator() const;

  /** Compute the dispersion indicator */
  void computeDispersionIndicator() const;

  /** Compute the reference bandwidth. It is defined as the maximum bandwidth
      that allow a precise computation of the PDF over the range
      [positionIndicator_ +/- beta * dispersionIndicator_] */
  void computeReferenceBandwidth();

  /** Compute the equivalent normal distribution, i.e. with the same mean and
      the same standard deviation */
  void computeEquivalentNormal();

  /** The collection of distribution of the randomMixture */
  DistributionPersistentCollection distributionCollection_;

  /** The constant term of the mixture */
  Point constant_;

  /** The Weight matrix */
  Matrix weights_;

  /** inverse weight matrix if defined */
  Matrix inverseWeights_;

  /** Determinant of inverse weights */
  Scalar detWeightsInverse_;

  /** FFT algorithm */
  FFT fftAlgorithm_;

  /** The RandomMixture is analytic if size of collection = dimension */
  Bool isAnalytical_;

  /** Position indicator */
  mutable Scalar positionIndicator_;
  mutable Bool isAlreadyComputedPositionIndicator_;

  /** Dispersion indicator */
  mutable Scalar dispersionIndicator_;
  mutable Bool isAlreadyComputedDispersionIndicator_;

  /** Minimum number of blocks to consider for PDF and CDF computation */
  UnsignedInteger blockMin_;

  /** Maximum number of blocks to consider for PDF and CDF computation */
  UnsignedInteger blockMax_;

  /** Reference bandwidth */
  Point referenceBandwidth_;

  /** Reference bandwidth factor */
  Scalar referenceBandwidthFactor_;

  /** Maximum size of the cache for the CharacteristicFunction values */
  UnsignedInteger maxSize_;

  /** Index of the top of the cache */
  mutable UnsignedInteger storedSize_;

  /** Cache for the characteristic function values */
  mutable ComplexPersistentCollection characteristicValuesCache_;

  /** A priori range of PDF and CDF argument expressed in dispersionIndicator units */
  Scalar alpha_;

  /** Distance from the boundary of the a priori range at which the PDF is negligible */
  Scalar beta_;

  /** Requested precision for PDF computation */
  mutable Scalar pdfPrecision_;

  /** Requested precision for CDF computation */
  mutable Scalar cdfPrecision_;

  /** Normal distribution with the same mean and standard deviation than the RandomMixture */
  Normal equivalentNormal_;

  /** Helper object to retrieve points on a regular grid */
  SphereUniformNorm gridMesher_;

}; /* class RandomMixture */


END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_RANDOMMIXTURE_HXX */