This file is indexed.

/usr/include/openturns/SpecFunc.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//                                               -*- C++ -*-
/**
 *  @brief OpenTURNS wrapper to a library of special functions
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_SPECFUNC_HXX
#define OPENTURNS_SPECFUNC_HXX

#include "openturns/OTprivate.hxx"

/* Many mathematical functions lack on Windows when using
   Microsoft or Intel compilers.  We use Boost to define
   them here, so that these definitions are not duplicated
   across many files.  */
#ifdef _MSC_VER
#include <boost/math/special_functions.hpp>
#include <boost/numeric/conversion/converter_policies.hpp>

using boost::math::asinh;
using boost::math::acosh;
using boost::math::atanh;
using boost::math::cbrt;
using boost::math::erf;
using boost::math::erfc;
using boost::math::lgamma;
using boost::math::tgamma;
using boost::math::log1p;
using boost::math::expm1;

using boost::math::trunc;
using boost::math::round;

/* log2 is not defined */
static inline double log2(double x)
{
  return log(x) / log(2.);
}
/* rint is not defined */
static inline double rint(double x)
{
  return boost::numeric::RoundEven<double>::nearbyint(x);
}
/* nearbyint is not defined */
static inline double nearbyint(double x)
{
  return boost::numeric::RoundEven<double>::nearbyint(x);
}

#endif /* _MSC_VER */

BEGIN_NAMESPACE_OPENTURNS

class OT_API SpecFunc
{

public:

  // 0.39894228040143267 = 1 / sqrt(2.pi)
  static const Scalar ISQRT2PI;
  // 2.5066282746310005024 = sqrt(2.pi)
  static const Scalar SQRT2PI;
  // 0.91893853320467274177 = log(sqrt(2.pi))
  static const Scalar LOGSQRT2PI;
  // 0.57721566490153286 = Euler constant gamma
  static const Scalar EulerConstant;
  // 1.64493406684822643 = pi^2 / 6
  static const Scalar PI2_6;
  // 1.28254983016118640 = pi / sqrt(6)
  static const Scalar PI_SQRT6;
  // 0.45005320754569466 = gamma * sqrt(6) / pi
  static const Scalar EULERSQRT6_PI;
  // 3.28986813369645287 = pi^2 / 3
  static const Scalar PI2_3;
  // 0.55132889542179204 = sqrt(3) / pi
  static const Scalar SQRT3_PI;
  // 1.81379936423421785 = pi / sqrt(3)
  static const Scalar PI_SQRT3;
  // 1.20205690315959429 = Zeta(3)
  static const Scalar ZETA3;
  // Maximum number of iterations for algorithms
  static const UnsignedInteger MaximumIteration;
  // Maximum precision for algorithms
  static const Scalar Precision;
  // Minimum positive real number
  static const Scalar MinScalar;
  static const Scalar LogMinScalar;
  // Maximum positive real number
  static const Scalar MaxScalar;
  static const Scalar LogMaxScalar;
  // Real number accuracy
  static const Scalar ScalarEpsilon;

  // @deprecated
  static const Scalar MinNumericalScalar;
  static const Scalar LogMinNumericalScalar;
  static const Scalar MaxNumericalScalar;
  static const Scalar LogMaxNumericalScalar;
  static const Scalar NumericalScalarEpsilon;

  // Some facilities for NaN and inf
  static Bool IsNaN(const Scalar value);
  static Bool IsInf(const Scalar value);
  static Bool IsNormal(const Scalar value);

  // Modified first kind Bessel function of order 0: BesselI0(x) = \sum_{m=0}\infty\frac{1}{m!^2}\left(\frac{x}{2}\right)^{2m}
private:
  static Scalar SmallCaseBesselI0(const Scalar x);
  static Scalar LargeCaseLogBesselI0(const Scalar x);
public:
  static Scalar BesselI0(const Scalar x);
  static Scalar LogBesselI0(const Scalar x);
  // Modified first kind Bessel function of order 1: BesselI1(x) = \sum_{m=0}\infty\frac{1}{m!(m+1)!}\left(\frac{x}{2}\right)^{2m+1}
private:
  static Scalar SmallCaseBesselI1(const Scalar x);
  static Scalar LargeCaseLogBesselI1(const Scalar x);
public:
  static Scalar BesselI1(const Scalar x);
  static Scalar LogBesselI1(const Scalar x);
  // Difference between the logarithms of BesselI1 and BesselI0:
  // DeltaLogBesselI10(x) = log(BesselI1(x)) - log(BesselI0(x))
private:
  static Scalar LargeCaseDeltaLogBesselI10(const Scalar x);
public:
  static Scalar DeltaLogBesselI10(const Scalar x);
  // Modified second kind Bessel function of order nu: BesselK(nu, x)=\frac{\pi}{2}\frac{I_{-\nu}(x)-I_[\nu}(x)}{\sin{\nu\pi}}
  static Scalar LogBesselK(const Scalar nu,
                           const Scalar x);
  static Scalar BesselK(const Scalar nu,
                        const Scalar x);
  static Scalar BesselKDerivative(const Scalar nu,
                                  const Scalar x);
  // Beta function: beta(a, b) = \int_0^1 t^{a-1}.(1-t)^{b-1} dt
  static Scalar Beta(const Scalar a,
                     const Scalar b);
  // Incomplete beta function: betaInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt
  static Scalar IncompleteBeta(const Scalar a,
                               const Scalar b,
                               const Scalar x,
                               const Bool tail = false);
  // Incomplete beta function inverse with respect to x
  static Scalar IncompleteBetaInverse(const Scalar a,
                                      const Scalar b,
                                      const Scalar x,
                                      const Bool tail = false);
  // Incomplete beta ratio function: betaRatioInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt / beta(a, b)
  static Scalar RegularizedIncompleteBeta(const Scalar a,
                                          const Scalar b,
                                          const Scalar x,
                                          const Bool tail = false);
  // Incomplete beta ratio function inverse with respect to x
  static Scalar RegularizedIncompleteBetaInverse(const Scalar a,
      const Scalar b,
      const Scalar x,
      const Bool tail = false);
  // Natural logarithm of the beta function
  static Scalar LnBeta(const Scalar a,
                       const Scalar b);
  static Scalar LogBeta(const Scalar a,
                        const Scalar b);
  // Dawson function: Dawson(x) = \exp(-x^2) * \int_0^x \exp(t^2) dt
  static Scalar Dawson(const Scalar x);
  static Complex Dawson(const Complex & z);
  // Debye function of order n: DebyeN(x, n) = n / x^n \int_0^x t^n/(\exp(t)-1) dt
  static Scalar Debye(const Scalar x,
                      const UnsignedInteger n);
  // DiLog function: Dilog(x) = -\int_0^x \log(1-t)/t dt
  static Scalar DiLog(const Scalar x);
  // Exponential integral function: Ei(x) = -\int_{-x}^{\infty}exp(-t)/t dt
  static Scalar Ei(const Scalar x);
  // Complex exponential integral function: Ei(z) = -\int_{-z}^{\infty}exp(-t)/t dt
  static Complex Ei(const Complex & z);
  // Complex Faddeeva function: Faddeeva(z) = exp(-z^2)\erfc(-I*z)
  static Complex Faddeeva(const Complex & z);
  // Imaginary part of the Faddeeva function: FaddeevaIm(z) = Im(Faddeeva(x))
  static Scalar FaddeevaIm(const Scalar x);
  // Gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
  static Scalar Gamma(const Scalar a);
  // igamma1pm1(a) = 1 / gamma(1 + a) - 1
  static Scalar IGamma1pm1(const Scalar a);
  // GammaCorrection(a) = LogGamma(a) - log(sqrt(2.Pi)) + a - (a - 1/2) log(a)
  static Scalar GammaCorrection(const Scalar a);
  // Complex gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
  static Complex Gamma(const Complex & a);
  // Natural logarithm of the gamma function
  static Scalar LnGamma(const Scalar a);
  static Scalar LogGamma(const Scalar a);
  static Scalar LogGamma1p(const Scalar a);
  static Complex LogGamma(const Complex & a);
  // Incomplete gamma function: gamma(a, x) = \int_0^x t^{a-1}\exp(-t) dt
  static Scalar IncompleteGamma(const Scalar a,
                                const Scalar x,
                                const Bool tail = false);
  // Incomplete gamma function inverse with respect to x
  static Scalar IncompleteGammaInverse(const Scalar a,
                                       const Scalar x,
                                       const Bool tail = false);
  // Regularized incomplete gamma function: gamma(a, x) = \int_0^x t^{a-1}\exp(-t) dt / \Gamma(a)
  static Scalar RegularizedIncompleteGamma(const Scalar a,
      const Scalar x,
      const Bool tail = false);
  // Regularized incomplete gamma function inverse with respect to x
  static Scalar RegularizedIncompleteGammaInverse(const Scalar a,
      const Scalar x,
      const Bool tail = false);
  // Digamma function: psi(x) = ((dgamma/dx) / gamma)(x)
  static Scalar DiGamma(const Scalar x);
  static Scalar Psi(const Scalar x);
  // Inverse of the DiGamma function
  static Scalar DiGammaInv(const Scalar a);
  // Trigamma function: TriGamma(x) = ((d^2gamma/dx^2) / gamma)(x)
  static Scalar TriGamma(const Scalar x);
  // Hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
  static Scalar HyperGeom_1_1(const Scalar p1,
                              const Scalar q1,
                              const Scalar x);
  // Complex hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
  static Complex HyperGeom_1_1(const Scalar p1,
                                        const Scalar q1,
                                        const Complex & x);
  // Hypergeometric function of type (2,1): hyperGeom_2_1(p1, p2, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k)] * x^n / n!
  static Scalar HyperGeom_2_1(const Scalar p1,
                              const Scalar p2,
                              const Scalar q1,
                              const Scalar x);
  // Hypergeometric function of type (2,2): hyperGeom_2_1(p1, p2, q1, q2, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k) / (q2 + k)] * x^n / n!
  static Scalar HyperGeom_2_2(const Scalar p1,
                              const Scalar p2,
                              const Scalar q1,
                              const Scalar q2,
                              const Scalar x);
  // Erf function erf(x) = 2 / \sqrt(\pi) . \int_0^x \exp(-t^2) dt
  static Scalar Erf(const Scalar x);
  static Complex Erf(const Complex & z);
  // Erf function erfi(x) = -i.erf(iz)
  static Scalar ErfI(const Scalar x);
  static Complex ErfI(const Complex & z);
  // Erf function erfc(x) = 1 - erf(x)
  static Scalar ErfC(const Scalar x);
  static Complex ErfC(const Complex & z);
  // Erf function erfcx(x) = exp(x^2).erfc(x)
  static Scalar ErfCX(const Scalar x);
  static Complex ErfCX(const Complex & z);
  // Inverse of the erf function
  static Scalar ErfInverse(const Scalar x);
  // Real branch of Lambert W function (principal or secndary)
  static Scalar LambertW(const Scalar x,
                         const Bool principal = true);
  // Accurate value of log(1+z) for |z|<<1
  static Complex Log1p(const Complex & z);
  // Accurate value of exp(z)-1 for |z|<<1
  static Complex Expm1(const Complex & z);
  // Accurate value of log(1-exp(-x)) for all x
  static Complex Log1MExp(const Scalar x);
  // MarcumQ- function
  //      static Scalar MarcumQFunction(const Scalar a,const Scalar b);

  // Next power of two
  static UnsignedInteger NextPowerOfTwo(const UnsignedInteger n);

  // Integer log2
  static UnsignedInteger Log2(const Unsigned64BitsInteger n);

  // Compute the number of bits sets to 1 in n
  // Best known algorithm for 64 bits n and fast multiply
  static UnsignedInteger BitCount(const Unsigned64BitsInteger n);

  // Missing functions in cmath wrt math.h as of C++98
  static Scalar Acosh(const Scalar x);
  static Scalar Asinh(const Scalar x);
  static Scalar Atanh(const Scalar x);
  static Scalar Cbrt(const Scalar x);

  // binomial coefficient C(n, k)
  static UnsignedInteger BinomialCoefficient(const UnsignedInteger n,
      const UnsignedInteger k);
}; /* class SpecFunc */

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_SPECFUNC_HXX */