/usr/include/openturns/SpecFunc.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | // -*- C++ -*-
/**
* @brief OpenTURNS wrapper to a library of special functions
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_SPECFUNC_HXX
#define OPENTURNS_SPECFUNC_HXX
#include "openturns/OTprivate.hxx"
/* Many mathematical functions lack on Windows when using
Microsoft or Intel compilers. We use Boost to define
them here, so that these definitions are not duplicated
across many files. */
#ifdef _MSC_VER
#include <boost/math/special_functions.hpp>
#include <boost/numeric/conversion/converter_policies.hpp>
using boost::math::asinh;
using boost::math::acosh;
using boost::math::atanh;
using boost::math::cbrt;
using boost::math::erf;
using boost::math::erfc;
using boost::math::lgamma;
using boost::math::tgamma;
using boost::math::log1p;
using boost::math::expm1;
using boost::math::trunc;
using boost::math::round;
/* log2 is not defined */
static inline double log2(double x)
{
return log(x) / log(2.);
}
/* rint is not defined */
static inline double rint(double x)
{
return boost::numeric::RoundEven<double>::nearbyint(x);
}
/* nearbyint is not defined */
static inline double nearbyint(double x)
{
return boost::numeric::RoundEven<double>::nearbyint(x);
}
#endif /* _MSC_VER */
BEGIN_NAMESPACE_OPENTURNS
class OT_API SpecFunc
{
public:
// 0.39894228040143267 = 1 / sqrt(2.pi)
static const Scalar ISQRT2PI;
// 2.5066282746310005024 = sqrt(2.pi)
static const Scalar SQRT2PI;
// 0.91893853320467274177 = log(sqrt(2.pi))
static const Scalar LOGSQRT2PI;
// 0.57721566490153286 = Euler constant gamma
static const Scalar EulerConstant;
// 1.64493406684822643 = pi^2 / 6
static const Scalar PI2_6;
// 1.28254983016118640 = pi / sqrt(6)
static const Scalar PI_SQRT6;
// 0.45005320754569466 = gamma * sqrt(6) / pi
static const Scalar EULERSQRT6_PI;
// 3.28986813369645287 = pi^2 / 3
static const Scalar PI2_3;
// 0.55132889542179204 = sqrt(3) / pi
static const Scalar SQRT3_PI;
// 1.81379936423421785 = pi / sqrt(3)
static const Scalar PI_SQRT3;
// 1.20205690315959429 = Zeta(3)
static const Scalar ZETA3;
// Maximum number of iterations for algorithms
static const UnsignedInteger MaximumIteration;
// Maximum precision for algorithms
static const Scalar Precision;
// Minimum positive real number
static const Scalar MinScalar;
static const Scalar LogMinScalar;
// Maximum positive real number
static const Scalar MaxScalar;
static const Scalar LogMaxScalar;
// Real number accuracy
static const Scalar ScalarEpsilon;
// @deprecated
static const Scalar MinNumericalScalar;
static const Scalar LogMinNumericalScalar;
static const Scalar MaxNumericalScalar;
static const Scalar LogMaxNumericalScalar;
static const Scalar NumericalScalarEpsilon;
// Some facilities for NaN and inf
static Bool IsNaN(const Scalar value);
static Bool IsInf(const Scalar value);
static Bool IsNormal(const Scalar value);
// Modified first kind Bessel function of order 0: BesselI0(x) = \sum_{m=0}\infty\frac{1}{m!^2}\left(\frac{x}{2}\right)^{2m}
private:
static Scalar SmallCaseBesselI0(const Scalar x);
static Scalar LargeCaseLogBesselI0(const Scalar x);
public:
static Scalar BesselI0(const Scalar x);
static Scalar LogBesselI0(const Scalar x);
// Modified first kind Bessel function of order 1: BesselI1(x) = \sum_{m=0}\infty\frac{1}{m!(m+1)!}\left(\frac{x}{2}\right)^{2m+1}
private:
static Scalar SmallCaseBesselI1(const Scalar x);
static Scalar LargeCaseLogBesselI1(const Scalar x);
public:
static Scalar BesselI1(const Scalar x);
static Scalar LogBesselI1(const Scalar x);
// Difference between the logarithms of BesselI1 and BesselI0:
// DeltaLogBesselI10(x) = log(BesselI1(x)) - log(BesselI0(x))
private:
static Scalar LargeCaseDeltaLogBesselI10(const Scalar x);
public:
static Scalar DeltaLogBesselI10(const Scalar x);
// Modified second kind Bessel function of order nu: BesselK(nu, x)=\frac{\pi}{2}\frac{I_{-\nu}(x)-I_[\nu}(x)}{\sin{\nu\pi}}
static Scalar LogBesselK(const Scalar nu,
const Scalar x);
static Scalar BesselK(const Scalar nu,
const Scalar x);
static Scalar BesselKDerivative(const Scalar nu,
const Scalar x);
// Beta function: beta(a, b) = \int_0^1 t^{a-1}.(1-t)^{b-1} dt
static Scalar Beta(const Scalar a,
const Scalar b);
// Incomplete beta function: betaInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt
static Scalar IncompleteBeta(const Scalar a,
const Scalar b,
const Scalar x,
const Bool tail = false);
// Incomplete beta function inverse with respect to x
static Scalar IncompleteBetaInverse(const Scalar a,
const Scalar b,
const Scalar x,
const Bool tail = false);
// Incomplete beta ratio function: betaRatioInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt / beta(a, b)
static Scalar RegularizedIncompleteBeta(const Scalar a,
const Scalar b,
const Scalar x,
const Bool tail = false);
// Incomplete beta ratio function inverse with respect to x
static Scalar RegularizedIncompleteBetaInverse(const Scalar a,
const Scalar b,
const Scalar x,
const Bool tail = false);
// Natural logarithm of the beta function
static Scalar LnBeta(const Scalar a,
const Scalar b);
static Scalar LogBeta(const Scalar a,
const Scalar b);
// Dawson function: Dawson(x) = \exp(-x^2) * \int_0^x \exp(t^2) dt
static Scalar Dawson(const Scalar x);
static Complex Dawson(const Complex & z);
// Debye function of order n: DebyeN(x, n) = n / x^n \int_0^x t^n/(\exp(t)-1) dt
static Scalar Debye(const Scalar x,
const UnsignedInteger n);
// DiLog function: Dilog(x) = -\int_0^x \log(1-t)/t dt
static Scalar DiLog(const Scalar x);
// Exponential integral function: Ei(x) = -\int_{-x}^{\infty}exp(-t)/t dt
static Scalar Ei(const Scalar x);
// Complex exponential integral function: Ei(z) = -\int_{-z}^{\infty}exp(-t)/t dt
static Complex Ei(const Complex & z);
// Complex Faddeeva function: Faddeeva(z) = exp(-z^2)\erfc(-I*z)
static Complex Faddeeva(const Complex & z);
// Imaginary part of the Faddeeva function: FaddeevaIm(z) = Im(Faddeeva(x))
static Scalar FaddeevaIm(const Scalar x);
// Gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
static Scalar Gamma(const Scalar a);
// igamma1pm1(a) = 1 / gamma(1 + a) - 1
static Scalar IGamma1pm1(const Scalar a);
// GammaCorrection(a) = LogGamma(a) - log(sqrt(2.Pi)) + a - (a - 1/2) log(a)
static Scalar GammaCorrection(const Scalar a);
// Complex gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
static Complex Gamma(const Complex & a);
// Natural logarithm of the gamma function
static Scalar LnGamma(const Scalar a);
static Scalar LogGamma(const Scalar a);
static Scalar LogGamma1p(const Scalar a);
static Complex LogGamma(const Complex & a);
// Incomplete gamma function: gamma(a, x) = \int_0^x t^{a-1}\exp(-t) dt
static Scalar IncompleteGamma(const Scalar a,
const Scalar x,
const Bool tail = false);
// Incomplete gamma function inverse with respect to x
static Scalar IncompleteGammaInverse(const Scalar a,
const Scalar x,
const Bool tail = false);
// Regularized incomplete gamma function: gamma(a, x) = \int_0^x t^{a-1}\exp(-t) dt / \Gamma(a)
static Scalar RegularizedIncompleteGamma(const Scalar a,
const Scalar x,
const Bool tail = false);
// Regularized incomplete gamma function inverse with respect to x
static Scalar RegularizedIncompleteGammaInverse(const Scalar a,
const Scalar x,
const Bool tail = false);
// Digamma function: psi(x) = ((dgamma/dx) / gamma)(x)
static Scalar DiGamma(const Scalar x);
static Scalar Psi(const Scalar x);
// Inverse of the DiGamma function
static Scalar DiGammaInv(const Scalar a);
// Trigamma function: TriGamma(x) = ((d^2gamma/dx^2) / gamma)(x)
static Scalar TriGamma(const Scalar x);
// Hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
static Scalar HyperGeom_1_1(const Scalar p1,
const Scalar q1,
const Scalar x);
// Complex hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
static Complex HyperGeom_1_1(const Scalar p1,
const Scalar q1,
const Complex & x);
// Hypergeometric function of type (2,1): hyperGeom_2_1(p1, p2, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k)] * x^n / n!
static Scalar HyperGeom_2_1(const Scalar p1,
const Scalar p2,
const Scalar q1,
const Scalar x);
// Hypergeometric function of type (2,2): hyperGeom_2_1(p1, p2, q1, q2, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k) / (q2 + k)] * x^n / n!
static Scalar HyperGeom_2_2(const Scalar p1,
const Scalar p2,
const Scalar q1,
const Scalar q2,
const Scalar x);
// Erf function erf(x) = 2 / \sqrt(\pi) . \int_0^x \exp(-t^2) dt
static Scalar Erf(const Scalar x);
static Complex Erf(const Complex & z);
// Erf function erfi(x) = -i.erf(iz)
static Scalar ErfI(const Scalar x);
static Complex ErfI(const Complex & z);
// Erf function erfc(x) = 1 - erf(x)
static Scalar ErfC(const Scalar x);
static Complex ErfC(const Complex & z);
// Erf function erfcx(x) = exp(x^2).erfc(x)
static Scalar ErfCX(const Scalar x);
static Complex ErfCX(const Complex & z);
// Inverse of the erf function
static Scalar ErfInverse(const Scalar x);
// Real branch of Lambert W function (principal or secndary)
static Scalar LambertW(const Scalar x,
const Bool principal = true);
// Accurate value of log(1+z) for |z|<<1
static Complex Log1p(const Complex & z);
// Accurate value of exp(z)-1 for |z|<<1
static Complex Expm1(const Complex & z);
// Accurate value of log(1-exp(-x)) for all x
static Complex Log1MExp(const Scalar x);
// MarcumQ- function
// static Scalar MarcumQFunction(const Scalar a,const Scalar b);
// Next power of two
static UnsignedInteger NextPowerOfTwo(const UnsignedInteger n);
// Integer log2
static UnsignedInteger Log2(const Unsigned64BitsInteger n);
// Compute the number of bits sets to 1 in n
// Best known algorithm for 64 bits n and fast multiply
static UnsignedInteger BitCount(const Unsigned64BitsInteger n);
// Missing functions in cmath wrt math.h as of C++98
static Scalar Acosh(const Scalar x);
static Scalar Asinh(const Scalar x);
static Scalar Atanh(const Scalar x);
static Scalar Cbrt(const Scalar x);
// binomial coefficient C(n, k)
static UnsignedInteger BinomialCoefficient(const UnsignedInteger n,
const UnsignedInteger k);
}; /* class SpecFunc */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_SPECFUNC_HXX */
|