This file is indexed.

/usr/include/openturns/SubsetSampling.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
//                                               -*- C++ -*-
/**
 *  @brief Subset simulation method
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_SUBSETSAMPLING_HXX
#define OPENTURNS_SUBSETSAMPLING_HXX

#include "openturns/Simulation.hxx"
#include "openturns/StandardEvent.hxx"

BEGIN_NAMESPACE_OPENTURNS

class OT_API SubsetSampling
  : public Simulation
{
  CLASSNAME
public:

  /** Default Constructor */
  SubsetSampling();

  /** Constructor with parameters */
  SubsetSampling(const Event & event,
                 const Scalar proposalRange = ResourceMap::GetAsScalar("SubsetSampling-DefaultProposalRange"),
                 const Scalar conditionalProbability = ResourceMap::GetAsScalar("SubsetSampling-DefaultConditionalProbability"));

  /** Virtual constructor */
  virtual SubsetSampling * clone() const;

  /** The range of the uniform proposal pdf */
  void setProposalRange(Scalar proposalRange);
  Scalar getProposalRange() const;

  /** Ratio parameter */
  void setConditionalProbability(Scalar conditionalProbability);
  Scalar getConditionalProbability() const;

  /** Accessor to the achieved number of steps */
  UnsignedInteger getNumberOfSteps();

  /** Stepwise result accessors */
  Point getThresholdPerStep() const;
  Point getGammaPerStep() const;
  Point getCoefficientOfVariationPerStep() const;
  Point getProbabilityEstimatePerStep() const;

  /** Keep event sample */
  void setKeepEventSample(bool keepEventSample);

  /** Event input/output sample accessor */
  Sample getEventInputSample() const;
  Sample getEventOutputSample() const;

  /** i-subset */
  void setISubset(Bool iSubset);
  void setBetaMin(Scalar betaMin);

  /** Performs the actual computation. */
  void run();

  /** String converter */
  String __repr__() const;

  /** Method save() stores the object through the StorageManager */
  virtual void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  virtual void load(Advocate & adv);

private:
  /** Compute the block sample */
  Sample computeBlockSample();

  /** Compute the new threshold corresponding to the target failure probability */
  Scalar computeThreshold();

  /** compute probability estimate on the current sample */
  Scalar computeProbability(Scalar probabilityEstimate, Scalar threshold);

  /** Sort new seeds */
  void initializeSeed(Scalar threshold);

  /** Compute the correlation on markov chains at the current state of the algorithm */
  Scalar computeVarianceGamma(Scalar currentFailureProbability, Scalar threshold);

  /** Generate new points in the conditional failure domain */
  void generatePoints(Scalar threshold);

  // some parameters
  Scalar proposalRange_;// width of the proposal pdf
  Scalar conditionalProbability_;// target probability at each subset
  Bool iSubset_;// conditional pre-sampling
  Scalar betaMin_;// pre-sampling hypersphere exclusion radius
  Bool keepEventSample_;// do we keep the event sample ?

  // some results
  UnsignedInteger numberOfSteps_;// number of subset steps
  Point thresholdPerStep_;// intermediate thresholds
  Point gammaPerStep_;// intermediate gammas
  Point coefficientOfVariationPerStep_;// intermediate COVS
  Point probabilityEstimatePerStep_;// intermediate PFs
  Sample eventInputSample_;// event input sample
  Sample eventOutputSample_;// event output sample

  // attributes used for conveniency, not to be saved/loaded
  StandardEvent standardEvent_;// the algorithm happens in U
  UnsignedInteger dimension_;// input dimension
  Sample currentPointSample_;// X
  Sample currentLevelSample_;//f(X)
  UnsignedInteger seedNumber_;// number of seed points

} ; /* class SubsetSampling */

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_SUBSETSAMPLING_HXX */