This file is indexed.

/usr/include/openturns/SymmetricMatrix.hxx is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
//                                               -*- C++ -*-
/**
 *  @brief SymmetricMatrix implements the classical mathematical symmetric matrix
 *
 *  Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef OPENTURNS_SYMMETRICMATRIX_HXX
#define OPENTURNS_SYMMETRICMATRIX_HXX

#include "openturns/OTprivate.hxx"
#include "openturns/SquareMatrix.hxx"

BEGIN_NAMESPACE_OPENTURNS

class IdentityMatrix;

/**
 * @class SymmetricMatrix
 *
 * SymmetricMatrix implements the classical mathematical square matrix
 */

class OT_API SymmetricMatrix :
  public SquareMatrix
{
  CLASSNAME;

#ifndef SWIG
  friend SymmetricMatrix operator * (const Scalar & s,
                                     const SymmetricMatrix & m);
#endif

public:

  /** Default constructor */
  SymmetricMatrix();

  /** Constructor with implementation */
  SymmetricMatrix(const Implementation & i);

  /** Constructor with implementation */
  SymmetricMatrix(const MatrixImplementation & i);

  /** Copy constructor, added to solve glitches with inheritance */
  SymmetricMatrix(const SymmetricMatrix & s);

  /** Constructor with size (dim, which is the same for nbRows_ and nbColumns_) */
  explicit SymmetricMatrix(const UnsignedInteger dim);
#if 0
  /** Constructor from range of external collection */
  template <class InputIterator>
  SymmetricMatrix(const UnsignedInteger dim,
                  InputIterator first,
                  InputIterator last);
#endif

  /** Constructor from external collection */
  /** If the dimensions of the matrix and of the collection */
  /** do not correspond, either the collection is truncated */
  /** or the rest of the matrix is filled with zeros */
  SymmetricMatrix(const UnsignedInteger dim,
                  const ScalarCollection & elementsValues);

  /** Check if the internal representation is actually symmetric */
  void checkSymmetry() const;

  /** Test if the matrix is diagonal */
  Bool isDiagonal() const;

  /** Row extraction */
  const Matrix getRow(const UnsignedInteger rowIndex) const;
  /** Column extration */
  const Matrix getColumn(const UnsignedInteger columnIndex) const;

  /** String converter */
  String __repr__() const;
  String __str__(const String & offset = "") const;

#ifndef SWIG
  /** Operator () gives access to the elements of the matrix (to modify these elements) */
  /** The element of the matrix is designated by its row number i and its column number j */
  Scalar & operator () (const UnsignedInteger i,
                        const UnsignedInteger j);

  /** Operator () gives access to the elements of the matrix (read only) */
  /** The element of the matrix is designated by its row number i and its column number j */
  const Scalar & operator () (const UnsignedInteger i,
                              const UnsignedInteger j) const;
#endif

  /** SymmetricMatrix transpose */
  SymmetricMatrix transpose () const;

  /** SymmetricMatrix addition (must have the same dimensions) */
  Matrix operator + (const Matrix & m) const;
  SquareMatrix operator + (const SquareMatrix & m) const;
  SymmetricMatrix operator + (const SymmetricMatrix & m) const;

  /** SymmetricMatrix substraction (must have the same dimensions) */
  Matrix operator - (const Matrix & m) const;
  SquareMatrix operator - (const SquareMatrix & m) const;
  SymmetricMatrix operator - (const SymmetricMatrix & m) const;

  /** SymmetricMatrix multiplications (must have consistent dimensions) */
  Matrix operator * (const Matrix & m) const;
  SquareMatrix operator * (const SquareMatrix & m) const;
  SquareMatrix operator * (const SymmetricMatrix & m) const;
  SymmetricMatrix operator * (const IdentityMatrix & m) const;

  /** SymmetricMatrix integer power */
  SymmetricMatrix power(const UnsignedInteger n) const;

  /** Multiplication with a Point (must have consistent dimensions) */
  Point operator * (const Point & p) const;

  /** Multiplication with a Scalar */
  SymmetricMatrix operator * (const Scalar & s) const;

  /** Division by a Scalar*/
  SymmetricMatrix operator / (const Scalar & s) const;

  /** Resolution of a linear system */
  Point solveLinearSystem(const Point & b,
                          const Bool keepIntact = true);

  Matrix solveLinearSystem(const Matrix & b,
                           const Bool keepIntact = true);

  /** Compute determinant */
  Scalar computeLogAbsoluteDeterminant(Scalar & sign,
                                       const Bool keepIntact = true);
  Scalar computeDeterminant(const Bool keepIntact = true);

  /** Compute eigenvalues */
  Point computeEigenValues(const Bool keepIntact = true);
  Point computeEV(SquareMatrix & v,
                  const Bool keepIntact = true);

  /** Comparison operators */
  Bool operator == (const Matrix & rhs) const;

protected:


private:
  /** Check if one needs to symmetrized the internal representation of the matrix */
  mutable Bool hasBeenSymmetrized_;

}; /* class SymmetricMatrix */

inline SymmetricMatrix operator * (const Scalar & s,
                                   const SymmetricMatrix & m)
{
  return m.operator * (s);
}

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_MATRIX_HXX */