/usr/include/openturns/TriangularMatrix.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | // -*- C++ -*-
/**
* @brief TriangularMatrix implements the classical mathematical triangular matrix with values
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_TRIANGULARMATRIX_HXX
#define OPENTURNS_TRIANGULARMATRIX_HXX
#include "openturns/SquareMatrix.hxx"
#include "openturns/Collection.hxx"
BEGIN_NAMESPACE_OPENTURNS
class SymmetricMatrix;
class IdentityMatrix;
class SquareMatrix;
class Matrix;
class HermitianMatrix;
/**
* @class TriangularMatrix
*
* TriangularMatrix implements the classical mathematical triangular matrix with scalar values
* Default implementation is triangular lower
*/
class OT_API TriangularMatrix :
public SquareMatrix
{
CLASSNAME;
#ifndef SWIG
friend TriangularMatrix operator * (const Scalar s,
const TriangularMatrix & m);
#endif
public:
/** Default constructor */
TriangularMatrix();
/** Constructor with size (dim, which is the same for nbRows_ and nbColumns_) */
explicit TriangularMatrix(const UnsignedInteger dimension,
Bool isLower = true);
/** Constructor with implementation */
TriangularMatrix(const Implementation & i,
const Bool isLower = true);
/** Constructor with matrix implementation */
TriangularMatrix(const MatrixImplementation & i,
const Bool isLower = true);
/** Check if the internal representation is actually symmetric */
void checkTriangularity() const;
/** Test if the matrix is diagonal */
Bool isDiagonal() const;
/** String converter */
String __repr__() const;
String __str__(const String & offset = "") const;
/** Get the dimension of the matrix */
UnsignedInteger getDimension() const;
/** TriangularMatrix transpose */
TriangularMatrix transpose () const;
/** Check if the matrix is lower or upper */
Bool isLowerTriangular() const;
#ifndef SWIG
/** Operator () gives access to the elements of the matrix (to modify these elements) */
/** The element of the matrix is designated by its row number i and its column number j */
Scalar & operator ()(const UnsignedInteger i,
const UnsignedInteger j) ;
/** Operator () gives access to the elements of the matrix (read only) */
/** The element of the matrix is designated by its row number i and its column number j */
const Scalar & operator ()(const UnsignedInteger i,
const UnsignedInteger j) const;
#endif
/** TriangularMatrix additions : result is a square matrix */
SquareMatrix operator + (const TriangularMatrix & m) const;
/** Addition operator */
SquareMatrix operator + (const SquareMatrix & m) const;
/** Substraction operator with TriangularMatrix */
SquareMatrix operator - (const TriangularMatrix & m) const;
/** Substraction operator */
SquareMatrix operator - (const SquareMatrix & m) const;
/** Multiplication with a scalar */
TriangularMatrix operator * (const Scalar s) const ;
/** Matrix multiplications */
Matrix operator * (const Matrix & m) const;
/** SquareMatrix multiplications */
SquareMatrix operator * (const SquareMatrix & m) const;
/** TriangularMatrix multiplications */
SquareMatrix operator * (const TriangularMatrix & m) const;
/** Real SymmetricMatrix multiplications */
SquareMatrix operator * (const SymmetricMatrix & m) const;
/** IdentityMatrix multiplications */
TriangularMatrix operator * (const IdentityMatrix & m) const;
/** Multiplication with a ScalarCollection (must have consistent dimensions) */
ScalarCollection operator * (const ScalarCollection & p) const;
/** Multiplication with a Point (must have consistent dimensions) */
ScalarCollection operator * (const Point & p) const;
/** Division by a Scalar */
TriangularMatrix operator / (const Scalar s) const;
/** Resolution of a linear system */
Point solveLinearSystem(const Point & b,
const Bool keepIntact = true);
Matrix solveLinearSystem(const Matrix & b,
const Bool keepIntact = true);
private:
/** Boolean information : is the matrix triangular lower or upper? */
mutable Bool isLowerTriangular_;
/** Check if one needs to symmetrized the internal representation of the matrix */
mutable Bool hasBeenTriangularized_;
}; /* class TriangularMatrix */
inline TriangularMatrix operator * (const Scalar s,
const TriangularMatrix & m)
{
return m.operator * (s);
}
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_TRIANGULARMATRIX_HXX */
|