/usr/include/openturns/UniVariatePolynomialImplementation.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | // -*- C++ -*-
/**
* @brief This is a 1D polynomial
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_UNIVARIATEPOLYNOMIALIMPLEMENTATION_HXX
#define OPENTURNS_UNIVARIATEPOLYNOMIALIMPLEMENTATION_HXX
#include "openturns/OTprivate.hxx"
#include "openturns/Point.hxx"
#include "openturns/Matrix.hxx"
#include "openturns/Pointer.hxx"
#include "openturns/UniVariateFunctionImplementation.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class UniVariatePolynomialImplementation
*
* This is a 1D polynomial
*/
class OT_API UniVariatePolynomialImplementation
: public UniVariateFunctionImplementation
{
CLASSNAME;
public:
typedef Pointer<UniVariatePolynomialImplementation> Implementation;
typedef Matrix::ComplexCollection ComplexCollection;
typedef Point Coefficients;
/** Default constructor */
UniVariatePolynomialImplementation();
/** Constructor from coefficients */
UniVariatePolynomialImplementation(const Coefficients & coefficients);
/** Virtual constructor */
virtual UniVariatePolynomialImplementation * clone() const;
/** String converter */
virtual String __repr__() const;
virtual String __str__(const String & offset = "") const;
virtual String __str__(const String & variableName,
const String & offset) const;
/** UniVariatePolynomialImplementation are evaluated as functors */
virtual Scalar operator() (const Scalar x) const;
Complex operator() (const Complex z) const;
/** UniVariatePolynomialImplementation derivative */
virtual Scalar gradient(const Scalar x) const;
virtual Scalar hessian(const Scalar x) const;
/** Compute the derivative of the polynomial */
UniVariatePolynomialImplementation derivate() const;
/** Multiply the polynomial P by a Scalar */
UniVariatePolynomialImplementation operator * (const Scalar scalar) const;
/** Multiply the polynomial P by a polynomial Q */
UniVariatePolynomialImplementation operator * (const UniVariatePolynomialImplementation & uniVariatePolynomial) const;
/** Multiply the polynomial by (x to the power degree) */
UniVariatePolynomialImplementation incrementDegree (const UnsignedInteger degree = 1) const;
/** Sum of two polynomials of any degree */
UniVariatePolynomialImplementation operator + (const UniVariatePolynomialImplementation & uniVariatePolynomial) const;
/** Substraction of two polynomials of any degree */
UniVariatePolynomialImplementation operator - (const UniVariatePolynomialImplementation & uniVariatePolynomial) const;
/** Coefficients accessor */
void setCoefficients(const Coefficients & coefficients);
Coefficients getCoefficients() const;
/** Get the degree of the polynomial */
UnsignedInteger getDegree() const;
/** Root of the polynomial of degree n as the eigenvalues of the associated matrix */
ComplexCollection getRoots() const;
/** Method save() stores the object through the StorageManager */
virtual void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
virtual void load(Advocate & adv);
protected:
/** Remove null leading coefficients */
void compactCoefficients();
/** The table of polynomial coefficients in ascending order: P(X) = C0 + C1 * X + ... + Cn * X^n */
Coefficients coefficients_;
private:
} ; /* Class UniVariatePolynomialImplementation */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_UNIVARIATEPOLYNOMIALIMPLEMENTATION_HXX */
|