/usr/include/openvdb/math/BBox.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_MATH_BBOX_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_BBOX_HAS_BEEN_INCLUDED
#include "Math.h" // for math::isApproxEqual() and math::Tolerance()
#include "Vec3.h"
#include <algorithm> // for std::min(), std::max()
#include <cmath> // for std::abs()
#include <iostream>
#include <limits>
#include <type_traits>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
/// @brief Axis-aligned bounding box
template<typename Vec3T>
class BBox
{
public:
using Vec3Type = Vec3T;
using ValueType = Vec3T;
using VectorType = Vec3T;
using ElementType = typename Vec3Type::ValueType;
/// @brief The default constructor creates an invalid bounding box.
BBox();
/// @brief Construct a bounding box that exactly encloses the given
/// minimum and maximum points.
BBox(const Vec3T& xyzMin, const Vec3T& xyzMax);
/// @brief Construct a bounding box that exactly encloses the given
/// minimum and maximum points.
/// @details If @a sorted is false, sort the points by their
/// @e x, @e y and @e z components.
BBox(const Vec3T& xyzMin, const Vec3T& xyzMax, bool sorted);
/// @brief Contruct a cubical bounding box from a minimum coordinate
/// and an edge length.
/// @note Inclusive for integral <b>ElementType</b>s
BBox(const Vec3T& xyzMin, const ElementType& length);
/// @brief Construct a bounding box that exactly encloses two points,
/// whose coordinates are given by an array of six values,
/// <i>x<sub>1</sub></i>, <i>y<sub>1</sub></i>, <i>z<sub>1</sub></i>,
/// <i>x<sub>2</sub></i>, <i>y<sub>2</sub></i> and <i>z<sub>2</sub></i>.
/// @details If @a sorted is false, sort the points by their
/// @e x, @e y and @e z components.
explicit BBox(const ElementType* xyz, bool sorted = true);
BBox(const BBox&) = default;
BBox& operator=(const BBox&) = default;
/// @brief Sort the mininum and maximum points of this bounding box
/// by their @e x, @e y and @e z components.
void sort();
/// @brief Return a const reference to the minimum point of this bounding box.
const Vec3T& min() const { return mMin; }
/// @brief Return a const reference to the maximum point of this bounding box.
const Vec3T& max() const { return mMax; }
/// @brief Return a non-const reference to the minimum point of this bounding box.
Vec3T& min() { return mMin; }
/// @brief Return a non-const reference to the maximum point of this bounding box.
Vec3T& max() { return mMax; }
/// @brief Return @c true if this bounding box is identical to the given bounding box.
bool operator==(const BBox& rhs) const;
/// @brief Return @c true if this bounding box differs from the given bounding box.
bool operator!=(const BBox& rhs) const { return !(*this == rhs); }
/// @brief Return @c true if this bounding box is empty, i.e., it has no (positive) volume.
bool empty() const;
/// @brief Return @c true if this bounding box has (positive) volume.
bool hasVolume() const { return !this->empty(); }
/// @brief Return @c true if this bounding box has (positive) volume.
operator bool() const { return !this->empty(); }
/// @brief Return @c true if all components of the minimum point are less than
/// or equal to the corresponding components of the maximum point.
/// @details This is equivalent to testing whether this bounding box has nonnegative volume.
/// @note For floating-point <b>ElementType</b>s a tolerance is used for this test.
bool isSorted() const;
/// @brief Return the center point of this bounding box.
Vec3d getCenter() const;
/// @brief Return the extents of this bounding box, i.e., the length along each axis.
/// @note Inclusive for integral <b>ElementType</b>s
Vec3T extents() const;
/// @brief Return the index (0, 1 or 2) of the longest axis.
size_t maxExtent() const { return MaxIndex(mMax - mMin); }
/// @brief Return the index (0, 1 or 2) of the shortest axis.
size_t minExtent() const { return MinIndex(mMax - mMin); }
/// @brief Return the volume enclosed by this bounding box.
ElementType volume() const { Vec3T e = this->extents(); return e[0] * e[1] * e[2]; }
/// @brief Return @c true if the given point is inside this bounding box.
bool isInside(const Vec3T& xyz) const;
/// @brief Return @c true if the given bounding box is inside this bounding box.
bool isInside(const BBox&) const;
/// @brief Return @c true if the given bounding box overlaps with this bounding box.
bool hasOverlap(const BBox&) const;
/// @brief Return @c true if the given bounding box overlaps with this bounding box.
bool intersects(const BBox& other) const { return hasOverlap(other); }
/// @brief Pad this bounding box.
void expand(ElementType padding);
/// @brief Expand this bounding box to enclose the given point.
void expand(const Vec3T& xyz);
/// @brief Union this bounding box with the given bounding box.
void expand(const BBox&);
/// @brief Union this bounding box with the cubical bounding box with
/// minimum point @a xyzMin and the given edge length.
/// @note Inclusive for integral <b>ElementType</b>s
void expand(const Vec3T& xyzMin, const ElementType& length);
/// @brief Translate this bounding box by
/// (<i>t<sub>x</sub></i>, <i>t<sub>y</sub></i>, <i>t<sub>z</sub></i>).
void translate(const Vec3T& t);
/// @brief Apply a map to this bounding box.
template<typename MapType>
BBox applyMap(const MapType& map) const;
/// @brief Apply the inverse of a map to this bounding box
template<typename MapType>
BBox applyInverseMap(const MapType& map) const;
/// @brief Unserialize this bounding box from the given stream.
void read(std::istream& is) { mMin.read(is); mMax.read(is); }
/// @brief Serialize this bounding box to the given stream.
void write(std::ostream& os) const { mMin.write(os); mMax.write(os); }
private:
Vec3T mMin, mMax;
}; // class BBox
////////////////////////////////////////
template<typename Vec3T>
inline
BBox<Vec3T>::BBox():
mMin( std::numeric_limits<ElementType>::max()),
mMax(-std::numeric_limits<ElementType>::max())
{
}
template<typename Vec3T>
inline
BBox<Vec3T>::BBox(const Vec3T& xyzMin, const Vec3T& xyzMax):
mMin(xyzMin), mMax(xyzMax)
{
}
template<typename Vec3T>
inline
BBox<Vec3T>::BBox(const Vec3T& xyzMin, const Vec3T& xyzMax, bool sorted):
mMin(xyzMin), mMax(xyzMax)
{
if (!sorted) this->sort();
}
template<typename Vec3T>
inline
BBox<Vec3T>::BBox(const Vec3T& xyzMin, const ElementType& length):
mMin(xyzMin), mMax(xyzMin)
{
// min and max are inclusive for integral ElementType
const ElementType size = std::is_integral<ElementType>::value ? length-1 : length;
mMax[0] += size;
mMax[1] += size;
mMax[2] += size;
}
template<typename Vec3T>
inline
BBox<Vec3T>::BBox(const ElementType* xyz, bool sorted):
mMin(xyz[0], xyz[1], xyz[2]),
mMax(xyz[3], xyz[4], xyz[5])
{
if (!sorted) this->sort();
}
////////////////////////////////////////
template<typename Vec3T>
inline bool
BBox<Vec3T>::empty() const
{
if (std::is_integral<ElementType>::value) {
// min and max are inclusive for integral ElementType
return (mMin[0] > mMax[0] || mMin[1] > mMax[1] || mMin[2] > mMax[2]);
}
return mMin[0] >= mMax[0] || mMin[1] >= mMax[1] || mMin[2] >= mMax[2];
}
template<typename Vec3T>
inline bool
BBox<Vec3T>::operator==(const BBox& rhs) const
{
if (std::is_integral<ElementType>::value) {
return mMin == rhs.min() && mMax == rhs.max();
} else {
return math::isApproxEqual(mMin, rhs.min()) && math::isApproxEqual(mMax, rhs.max());
}
}
template<typename Vec3T>
inline void
BBox<Vec3T>::sort()
{
Vec3T tMin(mMin), tMax(mMax);
for (int i = 0; i < 3; ++i) {
mMin[i] = std::min(tMin[i], tMax[i]);
mMax[i] = std::max(tMin[i], tMax[i]);
}
}
template<typename Vec3T>
inline bool
BBox<Vec3T>::isSorted() const
{
if (std::is_integral<ElementType>::value) {
return (mMin[0] <= mMax[0] && mMin[1] <= mMax[1] && mMin[2] <= mMax[2]);
} else {
ElementType t = math::Tolerance<ElementType>::value();
return (mMin[0] < (mMax[0] + t) && mMin[1] < (mMax[1] + t) && mMin[2] < (mMax[2] + t));
}
}
template<typename Vec3T>
inline Vec3d
BBox<Vec3T>::getCenter() const
{
return (Vec3d(mMin.asPointer()) + Vec3d(mMax.asPointer())) * 0.5;
}
template<typename Vec3T>
inline Vec3T
BBox<Vec3T>::extents() const
{
if (std::is_integral<ElementType>::value) {
return (mMax - mMin) + Vec3T(1, 1, 1);
} else {
return (mMax - mMin);
}
}
////////////////////////////////////////
template<typename Vec3T>
inline bool
BBox<Vec3T>::isInside(const Vec3T& xyz) const
{
if (std::is_integral<ElementType>::value) {
return xyz[0] >= mMin[0] && xyz[0] <= mMax[0] &&
xyz[1] >= mMin[1] && xyz[1] <= mMax[1] &&
xyz[2] >= mMin[2] && xyz[2] <= mMax[2];
} else {
ElementType t = math::Tolerance<ElementType>::value();
return xyz[0] > (mMin[0]-t) && xyz[0] < (mMax[0]+t) &&
xyz[1] > (mMin[1]-t) && xyz[1] < (mMax[1]+t) &&
xyz[2] > (mMin[2]-t) && xyz[2] < (mMax[2]+t);
}
}
template<typename Vec3T>
inline bool
BBox<Vec3T>::isInside(const BBox& b) const
{
if (std::is_integral<ElementType>::value) {
return b.min()[0] >= mMin[0] && b.max()[0] <= mMax[0] &&
b.min()[1] >= mMin[1] && b.max()[1] <= mMax[1] &&
b.min()[2] >= mMin[2] && b.max()[2] <= mMax[2];
} else {
ElementType t = math::Tolerance<ElementType>::value();
return (b.min()[0]-t) > mMin[0] && (b.max()[0]+t) < mMax[0] &&
(b.min()[1]-t) > mMin[1] && (b.max()[1]+t) < mMax[1] &&
(b.min()[2]-t) > mMin[2] && (b.max()[2]+t) < mMax[2];
}
}
template<typename Vec3T>
inline bool
BBox<Vec3T>::hasOverlap(const BBox& b) const
{
if (std::is_integral<ElementType>::value) {
return mMax[0] >= b.min()[0] && mMin[0] <= b.max()[0] &&
mMax[1] >= b.min()[1] && mMin[1] <= b.max()[1] &&
mMax[2] >= b.min()[2] && mMin[2] <= b.max()[2];
} else {
ElementType t = math::Tolerance<ElementType>::value();
return mMax[0] > (b.min()[0]-t) && mMin[0] < (b.max()[0]+t) &&
mMax[1] > (b.min()[1]-t) && mMin[1] < (b.max()[1]+t) &&
mMax[2] > (b.min()[2]-t) && mMin[2] < (b.max()[2]+t);
}
}
////////////////////////////////////////
template<typename Vec3T>
inline void
BBox<Vec3T>::expand(ElementType dx)
{
dx = std::abs(dx);
for (int i = 0; i < 3; ++i) {
mMin[i] -= dx;
mMax[i] += dx;
}
}
template<typename Vec3T>
inline void
BBox<Vec3T>::expand(const Vec3T& xyz)
{
for (int i = 0; i < 3; ++i) {
mMin[i] = std::min(mMin[i], xyz[i]);
mMax[i] = std::max(mMax[i], xyz[i]);
}
}
template<typename Vec3T>
inline void
BBox<Vec3T>::expand(const BBox& b)
{
for (int i = 0; i < 3; ++i) {
mMin[i] = std::min(mMin[i], b.min()[i]);
mMax[i] = std::max(mMax[i], b.max()[i]);
}
}
template<typename Vec3T>
inline void
BBox<Vec3T>::expand(const Vec3T& xyzMin, const ElementType& length)
{
const ElementType size = std::is_integral<ElementType>::value ? length-1 : length;
for (int i = 0; i < 3; ++i) {
mMin[i] = std::min(mMin[i], xyzMin[i]);
mMax[i] = std::max(mMax[i], xyzMin[i] + size);
}
}
template<typename Vec3T>
inline void
BBox<Vec3T>::translate(const Vec3T& dx)
{
mMin += dx;
mMax += dx;
}
template<typename Vec3T>
template<typename MapType>
inline BBox<Vec3T>
BBox<Vec3T>::applyMap(const MapType& map) const
{
using Vec3R = Vec3<double>;
BBox<Vec3T> bbox;
bbox.expand(map.applyMap(Vec3R(mMin[0], mMin[1], mMin[2])));
bbox.expand(map.applyMap(Vec3R(mMin[0], mMin[1], mMax[2])));
bbox.expand(map.applyMap(Vec3R(mMin[0], mMax[1], mMin[2])));
bbox.expand(map.applyMap(Vec3R(mMax[0], mMin[1], mMin[2])));
bbox.expand(map.applyMap(Vec3R(mMax[0], mMax[1], mMin[2])));
bbox.expand(map.applyMap(Vec3R(mMax[0], mMin[1], mMax[2])));
bbox.expand(map.applyMap(Vec3R(mMin[0], mMax[1], mMax[2])));
bbox.expand(map.applyMap(Vec3R(mMax[0], mMax[1], mMax[2])));
return bbox;
}
template<typename Vec3T>
template<typename MapType>
inline BBox<Vec3T>
BBox<Vec3T>::applyInverseMap(const MapType& map) const
{
using Vec3R = Vec3<double>;
BBox<Vec3T> bbox;
bbox.expand(map.applyInverseMap(Vec3R(mMin[0], mMin[1], mMin[2])));
bbox.expand(map.applyInverseMap(Vec3R(mMin[0], mMin[1], mMax[2])));
bbox.expand(map.applyInverseMap(Vec3R(mMin[0], mMax[1], mMin[2])));
bbox.expand(map.applyInverseMap(Vec3R(mMax[0], mMin[1], mMin[2])));
bbox.expand(map.applyInverseMap(Vec3R(mMax[0], mMax[1], mMin[2])));
bbox.expand(map.applyInverseMap(Vec3R(mMax[0], mMin[1], mMax[2])));
bbox.expand(map.applyInverseMap(Vec3R(mMin[0], mMax[1], mMax[2])));
bbox.expand(map.applyInverseMap(Vec3R(mMax[0], mMax[1], mMax[2])));
return bbox;
}
////////////////////////////////////////
template<typename Vec3T>
inline std::ostream&
operator<<(std::ostream& os, const BBox<Vec3T>& b)
{
os << b.min() << " -> " << b.max();
return os;
}
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_MATH_BBOX_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|