This file is indexed.

/usr/include/openvdb/math/BBox.h is in libopenvdb-dev 5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

#ifndef OPENVDB_MATH_BBOX_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_BBOX_HAS_BEEN_INCLUDED

#include "Math.h" // for math::isApproxEqual() and math::Tolerance()
#include "Vec3.h"
#include <algorithm> // for std::min(), std::max()
#include <cmath> // for std::abs()
#include <iostream>
#include <limits>
#include <type_traits>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {

/// @brief Axis-aligned bounding box
template<typename Vec3T>
class BBox
{
public:
    using Vec3Type = Vec3T;
    using ValueType = Vec3T;
    using VectorType = Vec3T;
    using ElementType = typename Vec3Type::ValueType;

    /// @brief The default constructor creates an invalid bounding box.
    BBox();
    /// @brief Construct a bounding box that exactly encloses the given
    /// minimum and maximum points.
    BBox(const Vec3T& xyzMin, const Vec3T& xyzMax);
    /// @brief Construct a bounding box that exactly encloses the given
    /// minimum and maximum points.
    /// @details If @a sorted is false, sort the points by their
    /// @e x, @e y and @e z components.
    BBox(const Vec3T& xyzMin, const Vec3T& xyzMax, bool sorted);
    /// @brief Contruct a cubical bounding box from a minimum coordinate
    /// and an edge length.
    /// @note Inclusive for integral <b>ElementType</b>s
    BBox(const Vec3T& xyzMin, const ElementType& length);

    /// @brief Construct a bounding box that exactly encloses two points,
    /// whose coordinates are given by an array of six values,
    /// <i>x<sub>1</sub></i>, <i>y<sub>1</sub></i>, <i>z<sub>1</sub></i>,
    /// <i>x<sub>2</sub></i>, <i>y<sub>2</sub></i> and <i>z<sub>2</sub></i>.
    /// @details If @a sorted is false, sort the points by their
    /// @e x, @e y and @e z components.
    explicit BBox(const ElementType* xyz, bool sorted = true);

    BBox(const BBox&) = default;
    BBox& operator=(const BBox&) = default;

    /// @brief Sort the mininum and maximum points of this bounding box
    /// by their @e x, @e y and @e z components.
    void sort();

    /// @brief Return a const reference to the minimum point of this bounding box.
    const Vec3T& min() const { return mMin; }
    /// @brief Return a const reference to the maximum point of this bounding box.
    const Vec3T& max() const { return mMax; }
    /// @brief Return a non-const reference to the minimum point of this bounding box.
    Vec3T& min() { return mMin; }
    /// @brief Return a non-const reference to the maximum point of this bounding box.
    Vec3T& max() { return mMax; }

    /// @brief Return @c true if this bounding box is identical to the given bounding box.
    bool operator==(const BBox& rhs) const;
    /// @brief Return @c true if this bounding box differs from the given bounding box.
    bool operator!=(const BBox& rhs) const { return !(*this == rhs); }

    /// @brief Return @c true if this bounding box is empty, i.e., it has no (positive) volume.
    bool empty() const;
    /// @brief Return @c true if this bounding box has (positive) volume.
    bool hasVolume() const { return !this->empty(); }
    /// @brief Return @c true if this bounding box has (positive) volume.
    operator bool() const { return !this->empty(); }

    /// @brief Return @c true if all components of the minimum point are less than
    /// or equal to the corresponding components of the maximum point.
    /// @details This is equivalent to testing whether this bounding box has nonnegative volume.
    /// @note For floating-point <b>ElementType</b>s a tolerance is used for this test.
    bool isSorted() const;

    /// @brief Return the center point of this bounding box.
    Vec3d getCenter() const;

    /// @brief Return the extents of this bounding box, i.e., the length along each axis.
    /// @note Inclusive for integral <b>ElementType</b>s
    Vec3T extents() const;
    /// @brief Return the index (0, 1 or 2) of the longest axis.
    size_t maxExtent() const { return MaxIndex(mMax - mMin); }
    /// @brief Return the index (0, 1 or 2) of the shortest axis.
    size_t minExtent() const { return MinIndex(mMax - mMin); }

    /// @brief Return the volume enclosed by this bounding box.
    ElementType volume() const { Vec3T e = this->extents(); return e[0] * e[1] * e[2]; }

    /// @brief Return @c true if the given point is inside this bounding box.
    bool isInside(const Vec3T& xyz) const;
    /// @brief Return @c true if the given bounding box is inside this bounding box.
    bool isInside(const BBox&) const;
    /// @brief Return @c true if the given bounding box overlaps with this bounding box.
    bool hasOverlap(const BBox&) const;
    /// @brief Return @c true if the given bounding box overlaps with this bounding box.
    bool intersects(const BBox& other) const { return hasOverlap(other); }

    /// @brief Pad this bounding box.
    void expand(ElementType padding);
    /// @brief Expand this bounding box to enclose the given point.
    void expand(const Vec3T& xyz);
    /// @brief Union this bounding box with the given bounding box.
    void expand(const BBox&);
    /// @brief Union this bounding box with the cubical bounding box with
    /// minimum point @a xyzMin and the given edge length.
    /// @note Inclusive for integral <b>ElementType</b>s
    void expand(const Vec3T& xyzMin, const ElementType& length);

    /// @brief Translate this bounding box by
    /// (<i>t<sub>x</sub></i>, <i>t<sub>y</sub></i>, <i>t<sub>z</sub></i>).
    void translate(const Vec3T& t);

    /// @brief Apply a map to this bounding box.
    template<typename MapType>
    BBox applyMap(const MapType& map) const;
     /// @brief Apply the inverse of a map to this bounding box
    template<typename MapType>
    BBox applyInverseMap(const MapType& map) const;

    /// @brief Unserialize this bounding box from the given stream.
    void read(std::istream& is) { mMin.read(is); mMax.read(is); }
    /// @brief Serialize this bounding box to the given stream.
    void write(std::ostream& os) const { mMin.write(os); mMax.write(os); }

private:
    Vec3T mMin, mMax;
}; // class BBox


////////////////////////////////////////


template<typename Vec3T>
inline
BBox<Vec3T>::BBox():
    mMin( std::numeric_limits<ElementType>::max()),
    mMax(-std::numeric_limits<ElementType>::max())
{
}

template<typename Vec3T>
inline
BBox<Vec3T>::BBox(const Vec3T& xyzMin, const Vec3T& xyzMax):
    mMin(xyzMin), mMax(xyzMax)
{
}

template<typename Vec3T>
inline
BBox<Vec3T>::BBox(const Vec3T& xyzMin, const Vec3T& xyzMax, bool sorted):
    mMin(xyzMin), mMax(xyzMax)
{
    if (!sorted) this->sort();
}

template<typename Vec3T>
inline
BBox<Vec3T>::BBox(const Vec3T& xyzMin, const ElementType& length):
    mMin(xyzMin), mMax(xyzMin)
{
    // min and max are inclusive for integral ElementType
    const ElementType size = std::is_integral<ElementType>::value ? length-1 : length;
    mMax[0] += size;
    mMax[1] += size;
    mMax[2] += size;
}

template<typename Vec3T>
inline
BBox<Vec3T>::BBox(const ElementType* xyz, bool sorted):
    mMin(xyz[0], xyz[1], xyz[2]),
    mMax(xyz[3], xyz[4], xyz[5])
{
    if (!sorted) this->sort();
}


////////////////////////////////////////


template<typename Vec3T>
inline bool
BBox<Vec3T>::empty() const
{
    if (std::is_integral<ElementType>::value) {
        // min and max are inclusive for integral ElementType
        return (mMin[0] > mMax[0] || mMin[1] > mMax[1] || mMin[2] > mMax[2]);
    }
    return mMin[0] >= mMax[0] || mMin[1] >= mMax[1] || mMin[2] >= mMax[2];
}


template<typename Vec3T>
inline bool
BBox<Vec3T>::operator==(const BBox& rhs) const
{
    if (std::is_integral<ElementType>::value) {
        return mMin == rhs.min() && mMax == rhs.max();
    } else {
        return math::isApproxEqual(mMin, rhs.min()) && math::isApproxEqual(mMax, rhs.max());
    }
}


template<typename Vec3T>
inline void
BBox<Vec3T>::sort()
{
    Vec3T tMin(mMin), tMax(mMax);
    for (int i = 0; i < 3; ++i) {
        mMin[i] = std::min(tMin[i], tMax[i]);
        mMax[i] = std::max(tMin[i], tMax[i]);
    }
}


template<typename Vec3T>
inline bool
BBox<Vec3T>::isSorted() const
{
    if (std::is_integral<ElementType>::value) {
        return (mMin[0] <= mMax[0] && mMin[1] <= mMax[1] && mMin[2] <= mMax[2]);
    } else {
        ElementType t = math::Tolerance<ElementType>::value();
        return (mMin[0] < (mMax[0] + t) && mMin[1] < (mMax[1] + t) && mMin[2] < (mMax[2] + t));
    }
}


template<typename Vec3T>
inline Vec3d
BBox<Vec3T>::getCenter() const
{
    return (Vec3d(mMin.asPointer()) + Vec3d(mMax.asPointer())) * 0.5;
}


template<typename Vec3T>
inline Vec3T
BBox<Vec3T>::extents() const
{
    if (std::is_integral<ElementType>::value) {
        return (mMax - mMin) + Vec3T(1, 1, 1);
    } else {
        return (mMax - mMin);
    }
}

////////////////////////////////////////


template<typename Vec3T>
inline bool
BBox<Vec3T>::isInside(const Vec3T& xyz) const
{
    if (std::is_integral<ElementType>::value) {
        return xyz[0] >= mMin[0] && xyz[0] <= mMax[0] &&
               xyz[1] >= mMin[1] && xyz[1] <= mMax[1] &&
               xyz[2] >= mMin[2] && xyz[2] <= mMax[2];
    } else {
        ElementType t = math::Tolerance<ElementType>::value();
        return xyz[0] > (mMin[0]-t) && xyz[0] < (mMax[0]+t) &&
               xyz[1] > (mMin[1]-t) && xyz[1] < (mMax[1]+t) &&
               xyz[2] > (mMin[2]-t) && xyz[2] < (mMax[2]+t);
    }
}


template<typename Vec3T>
inline bool
BBox<Vec3T>::isInside(const BBox& b) const
{
    if (std::is_integral<ElementType>::value) {
        return b.min()[0] >= mMin[0]  && b.max()[0] <= mMax[0] &&
               b.min()[1] >= mMin[1]  && b.max()[1] <= mMax[1] &&
               b.min()[2] >= mMin[2]  && b.max()[2] <= mMax[2];
    } else {
        ElementType t = math::Tolerance<ElementType>::value();
        return (b.min()[0]-t) > mMin[0]  && (b.max()[0]+t) < mMax[0] &&
               (b.min()[1]-t) > mMin[1]  && (b.max()[1]+t) < mMax[1] &&
               (b.min()[2]-t) > mMin[2]  && (b.max()[2]+t) < mMax[2];
    }
}


template<typename Vec3T>
inline bool
BBox<Vec3T>::hasOverlap(const BBox& b) const
{
    if (std::is_integral<ElementType>::value) {
        return mMax[0] >= b.min()[0] && mMin[0] <= b.max()[0] &&
               mMax[1] >= b.min()[1] && mMin[1] <= b.max()[1] &&
               mMax[2] >= b.min()[2] && mMin[2] <= b.max()[2];
    } else {
        ElementType t = math::Tolerance<ElementType>::value();
        return mMax[0] > (b.min()[0]-t) && mMin[0] < (b.max()[0]+t) &&
               mMax[1] > (b.min()[1]-t) && mMin[1] < (b.max()[1]+t) &&
               mMax[2] > (b.min()[2]-t) && mMin[2] < (b.max()[2]+t);
    }
}


////////////////////////////////////////


template<typename Vec3T>
inline void
BBox<Vec3T>::expand(ElementType dx)
{
    dx = std::abs(dx);
    for (int i = 0; i < 3; ++i) {
        mMin[i] -= dx;
        mMax[i] += dx;
    }
}


template<typename Vec3T>
inline void
BBox<Vec3T>::expand(const Vec3T& xyz)
{
    for (int i = 0; i < 3; ++i) {
        mMin[i] = std::min(mMin[i], xyz[i]);
        mMax[i] = std::max(mMax[i], xyz[i]);
    }
}


template<typename Vec3T>
inline void
BBox<Vec3T>::expand(const BBox& b)
{
    for (int i = 0; i < 3; ++i) {
        mMin[i] = std::min(mMin[i], b.min()[i]);
        mMax[i] = std::max(mMax[i], b.max()[i]);
    }
}

template<typename Vec3T>
inline void
BBox<Vec3T>::expand(const Vec3T& xyzMin, const ElementType& length)
{
    const ElementType size = std::is_integral<ElementType>::value ? length-1 : length;
    for (int i = 0; i < 3; ++i) {
        mMin[i] = std::min(mMin[i], xyzMin[i]);
        mMax[i] = std::max(mMax[i], xyzMin[i] + size);
    }
}


template<typename Vec3T>
inline void
BBox<Vec3T>::translate(const Vec3T& dx)
{
    mMin += dx;
    mMax += dx;
}

template<typename Vec3T>
template<typename MapType>
inline BBox<Vec3T>
BBox<Vec3T>::applyMap(const MapType& map) const
{
    using Vec3R = Vec3<double>;
    BBox<Vec3T> bbox;
    bbox.expand(map.applyMap(Vec3R(mMin[0], mMin[1], mMin[2])));
    bbox.expand(map.applyMap(Vec3R(mMin[0], mMin[1], mMax[2])));
    bbox.expand(map.applyMap(Vec3R(mMin[0], mMax[1], mMin[2])));
    bbox.expand(map.applyMap(Vec3R(mMax[0], mMin[1], mMin[2])));
    bbox.expand(map.applyMap(Vec3R(mMax[0], mMax[1], mMin[2])));
    bbox.expand(map.applyMap(Vec3R(mMax[0], mMin[1], mMax[2])));
    bbox.expand(map.applyMap(Vec3R(mMin[0], mMax[1], mMax[2])));
    bbox.expand(map.applyMap(Vec3R(mMax[0], mMax[1], mMax[2])));
    return bbox;
}

template<typename Vec3T>
template<typename MapType>
inline BBox<Vec3T>
BBox<Vec3T>::applyInverseMap(const MapType& map) const
{
    using Vec3R = Vec3<double>;
    BBox<Vec3T> bbox;
    bbox.expand(map.applyInverseMap(Vec3R(mMin[0], mMin[1], mMin[2])));
    bbox.expand(map.applyInverseMap(Vec3R(mMin[0], mMin[1], mMax[2])));
    bbox.expand(map.applyInverseMap(Vec3R(mMin[0], mMax[1], mMin[2])));
    bbox.expand(map.applyInverseMap(Vec3R(mMax[0], mMin[1], mMin[2])));
    bbox.expand(map.applyInverseMap(Vec3R(mMax[0], mMax[1], mMin[2])));
    bbox.expand(map.applyInverseMap(Vec3R(mMax[0], mMin[1], mMax[2])));
    bbox.expand(map.applyInverseMap(Vec3R(mMin[0], mMax[1], mMax[2])));
    bbox.expand(map.applyInverseMap(Vec3R(mMax[0], mMax[1], mMax[2])));
    return bbox;
}

////////////////////////////////////////


template<typename Vec3T>
inline std::ostream&
operator<<(std::ostream& os, const BBox<Vec3T>& b)
{
    os << b.min() << " -> " << b.max();
    return os;
}

} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_MATH_BBOX_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )