This file is indexed.

/usr/include/openvdb/math/Coord.h is in libopenvdb-dev 5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

#ifndef OPENVDB_MATH_COORD_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_COORD_HAS_BEEN_INCLUDED

#include <algorithm> // for std::min(), std::max()
#include <array> // for std::array
#include <iostream>
#include <limits>
#include <openvdb/Platform.h>
#include "Math.h"
#include "Vec3.h"

namespace tbb { class split; } // forward declaration


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {

/// @brief Signed (x, y, z) 32-bit integer coordinates
class Coord
{
public:
    using Int32 = int32_t;
    using Index32 = uint32_t;
    using Vec3i = Vec3<Int32>;
    using Vec3I = Vec3<Index32>;

    using ValueType = Int32;
    using Limits = std::numeric_limits<ValueType>;

    Coord(): mVec{{0, 0, 0}} {}
    explicit Coord(Int32 xyz): mVec{{xyz, xyz, xyz}} {}
    Coord(Int32 x, Int32 y, Int32 z): mVec{{x, y, z}} {}
    explicit Coord(const Vec3i& v): mVec{{v[0], v[1], v[2]}} {}
    explicit Coord(const Vec3I& v): mVec{{Int32(v[0]), Int32(v[1]), Int32(v[2])}} {}
    explicit Coord(const Int32* v): mVec{{v[0], v[1], v[2]}} {}

    /// @brief Return the smallest possible coordinate
    static Coord min() { return Coord(Limits::min()); }

    /// @brief Return the largest possible coordinate
    static Coord max() { return Coord(Limits::max()); }

    /// @brief Return @a xyz rounded to the closest integer coordinates
    /// (cell centered conversion).
    template<typename T> static Coord round(const Vec3<T>& xyz)
    {
        return Coord(Int32(Round(xyz[0])), Int32(Round(xyz[1])), Int32(Round(xyz[2])));
    }
    /// @brief Return the largest integer coordinates that are not greater
    /// than @a xyz (node centered conversion).
    template<typename T> static Coord floor(const Vec3<T>& xyz)
    {
        return Coord(Int32(Floor(xyz[0])), Int32(Floor(xyz[1])), Int32(Floor(xyz[2])));
    }

    /// @brief Return the largest integer coordinates that are not greater
    /// than @a xyz+1 (node centered conversion).
    template<typename T> static Coord ceil(const Vec3<T>& xyz)
    {
        return Coord(Int32(Ceil(xyz[0])), Int32(Ceil(xyz[1])), Int32(Ceil(xyz[2])));
    }

    /// @brief Reset all three coordinates with the specified arguments
    Coord& reset(Int32 x, Int32 y, Int32 z)
    {
        mVec[0] = x;
        mVec[1] = y;
        mVec[2] = z;
        return *this;
    }
    /// @brief Reset all three coordinates with the same specified argument
    Coord& reset(Int32 xyz) { return this->reset(xyz, xyz, xyz); }

    Coord& setX(Int32 x) { mVec[0] = x; return *this; }
    Coord& setY(Int32 y) { mVec[1] = y; return *this; }
    Coord& setZ(Int32 z) { mVec[2] = z; return *this; }

    Coord& offset(Int32 dx, Int32 dy, Int32 dz)
    {
        mVec[0] += dx;
        mVec[1] += dy;
        mVec[2] += dz;
        return *this;
    }
    Coord& offset(Int32 n) { return this->offset(n, n, n); }
    Coord offsetBy(Int32 dx, Int32 dy, Int32 dz) const
    {
        return Coord(mVec[0] + dx, mVec[1] + dy, mVec[2] + dz);
    }
    Coord offsetBy(Int32 n) const { return offsetBy(n, n, n); }

    Coord& operator+=(const Coord& rhs)
    {
        mVec[0] += rhs[0];
        mVec[1] += rhs[1];
        mVec[2] += rhs[2];
        return *this;
    }
    Coord& operator-=(const Coord& rhs)
    {
        mVec[0] -= rhs[0];
        mVec[1] -= rhs[1];
        mVec[2] -= rhs[2];
        return *this;
    }
    Coord operator+(const Coord& rhs) const
    {
        return Coord(mVec[0] + rhs[0], mVec[1] + rhs[1], mVec[2] + rhs[2]);
    }
    Coord operator-(const Coord& rhs) const
    {
        return Coord(mVec[0] - rhs[0], mVec[1] - rhs[1], mVec[2] - rhs[2]);
    }
    Coord operator-() const { return Coord(-mVec[0], -mVec[1], -mVec[2]); }

    Coord  operator>> (size_t n) const { return Coord(mVec[0]>>n, mVec[1]>>n, mVec[2]>>n); }
    Coord  operator<< (size_t n) const { return Coord(mVec[0]<<n, mVec[1]<<n, mVec[2]<<n); }
    Coord& operator<<=(size_t n) { mVec[0]<<=n; mVec[1]<<=n; mVec[2]<<=n; return *this; }
    Coord& operator>>=(size_t n) { mVec[0]>>=n; mVec[1]>>=n; mVec[2]>>=n; return *this; }
    Coord  operator&  (Int32 n) const { return Coord(mVec[0] & n, mVec[1] & n, mVec[2] & n); }
    Coord  operator|  (Int32 n) const { return Coord(mVec[0] | n, mVec[1] | n, mVec[2] | n); }
    Coord& operator&= (Int32 n) { mVec[0]&=n; mVec[1]&=n; mVec[2]&=n; return *this; }
    Coord& operator|= (Int32 n) { mVec[0]|=n; mVec[1]|=n; mVec[2]|=n; return *this; }

    Int32 x() const { return mVec[0]; }
    Int32 y() const { return mVec[1]; }
    Int32 z() const { return mVec[2]; }
    Int32 operator[](size_t i) const { assert(i < 3); return mVec[i]; }
    Int32& x() { return mVec[0]; }
    Int32& y() { return mVec[1]; }
    Int32& z() { return mVec[2]; }
    Int32& operator[](size_t i) { assert(i < 3); return mVec[i]; }

    const Int32* data() const { return mVec.data(); }
    Int32* data() { return mVec.data(); }
    const Int32* asPointer() const { return mVec.data(); }
    Int32* asPointer() { return mVec.data(); }
    Vec3d asVec3d() const { return Vec3d(double(mVec[0]), double(mVec[1]), double(mVec[2])); }
    Vec3s asVec3s() const { return Vec3s(float(mVec[0]), float(mVec[1]), float(mVec[2])); }
    Vec3i asVec3i() const { return Vec3i(mVec.data()); }
    Vec3I asVec3I() const { return Vec3I(Index32(mVec[0]), Index32(mVec[1]), Index32(mVec[2])); }
    void asXYZ(Int32& x, Int32& y, Int32& z) const { x = mVec[0]; y = mVec[1]; z = mVec[2]; }

    bool operator==(const Coord& rhs) const
    {
        return (mVec[0] == rhs.mVec[0] && mVec[1] == rhs.mVec[1] && mVec[2] == rhs.mVec[2]);
    }
    bool operator!=(const Coord& rhs) const { return !(*this == rhs); }

    /// Lexicographic less than
    bool operator<(const Coord& rhs) const
    {
        return this->x() < rhs.x() ? true : this->x() > rhs.x() ? false
             : this->y() < rhs.y() ? true : this->y() > rhs.y() ? false
             : this->z() < rhs.z() ? true : false;
    }
    /// Lexicographic less than or equal to
    bool operator<=(const Coord& rhs) const
    {
        return this->x() < rhs.x() ? true : this->x() > rhs.x() ? false
             : this->y() < rhs.y() ? true : this->y() > rhs.y() ? false
             : this->z() <=rhs.z() ? true : false;
    }
    /// Lexicographic greater than
    bool operator>(const Coord& rhs) const { return !(*this <= rhs); }
    /// Lexicographic greater than or equal to
    bool operator>=(const Coord& rhs) const { return !(*this < rhs); }

    /// Perform a component-wise minimum with the other Coord.
    void minComponent(const Coord& other)
    {
        mVec[0] = std::min(mVec[0], other.mVec[0]);
        mVec[1] = std::min(mVec[1], other.mVec[1]);
        mVec[2] = std::min(mVec[2], other.mVec[2]);
    }

    /// Perform a component-wise maximum with the other Coord.
    void maxComponent(const Coord& other)
    {
        mVec[0] = std::max(mVec[0], other.mVec[0]);
        mVec[1] = std::max(mVec[1], other.mVec[1]);
        mVec[2] = std::max(mVec[2], other.mVec[2]);
    }

    /// Return the component-wise minimum of the two Coords.
    static inline Coord minComponent(const Coord& lhs, const Coord& rhs)
    {
        return Coord(std::min(lhs.x(), rhs.x()),
                     std::min(lhs.y(), rhs.y()),
                     std::min(lhs.z(), rhs.z()));
    }

    /// Return the component-wise maximum of the two Coords.
    static inline Coord maxComponent(const Coord& lhs, const Coord& rhs)
    {
        return Coord(std::max(lhs.x(), rhs.x()),
                     std::max(lhs.y(), rhs.y()),
                     std::max(lhs.z(), rhs.z()));
    }

    /// Return true if any of the components of @a a are smaller than the
    /// corresponding components of @a b.
    static inline bool lessThan(const Coord& a, const Coord& b)
    {
            return (a[0] < b[0] || a[1] < b[1] || a[2] < b[2]);
    }

    /// @brief Return the index (0, 1 or 2) with the smallest value.
    size_t minIndex() const { return MinIndex(mVec); }

    /// @brief Return the index (0, 1 or 2) with the largest value.
    size_t maxIndex() const { return MaxIndex(mVec); }

    void read(std::istream& is) { is.read(reinterpret_cast<char*>(mVec.data()), sizeof(mVec)); }
    void write(std::ostream& os) const
    {
        os.write(reinterpret_cast<const char*>(mVec.data()), sizeof(mVec));
    }

private:
    std::array<Int32, 3> mVec;
}; // class Coord


////////////////////////////////////////


/// @brief Axis-aligned bounding box of signed integer coordinates
/// @note The range of the integer coordinates, [min, max], is inclusive.
/// Thus, a bounding box with min = max is not empty but rather encloses
/// a single coordinate.
class CoordBBox
{
public:
    using Index64 = uint64_t;
    using ValueType = Coord::ValueType;

    /// @brief Iterator over the Coord domain covered by a CoordBBox
    /// @note If ZYXOrder is @c true, @e z is the fastest-moving coordinate,
    /// otherwise the traversal is in XYZ order (i.e., @e x is fastest-moving).
    template<bool ZYXOrder>
    class Iterator
    {
    public:
        /// @brief C-tor from a bounding box
        Iterator(const CoordBBox& b): mPos(b.min()), mMin(b.min()), mMax(b.max()) {}
        /// @brief Increment the iterator to point to the next coordinate.
        /// @details Iteration stops one past the maximum coordinate
        /// along the axis determined by the template parameter.
        Iterator& operator++() { ZYXOrder ? next<2,1,0>() : next<0,1,2>(); return *this; }
        /// @brief Return @c true if the iterator still points to a valid coordinate.
        operator bool() const { return ZYXOrder ? (mPos[0] <= mMax[0]) : (mPos[2] <= mMax[2]); }
        /// @brief Return a const reference to the coordinate currently pointed to.
        const Coord& operator*() const { return mPos; }
        /// Return @c true if this iterator and the given iterator point to the same coordinate.
        bool operator==(const Iterator& other) const
        {
            return ((mPos == other.mPos) && (mMin == other.mMin) && (mMax == other.mMax));
        }
        /// Return @c true if this iterator and the given iterator point to different coordinates.
        bool operator!=(const Iterator& other) const { return !(*this == other); }
    private:
        template<size_t a, size_t b, size_t c>
        void next()
        {
            if (mPos[a] < mMax[a]) { ++mPos[a]; } // this is the most common case
            else if (mPos[b] < mMax[b]) { mPos[a] = mMin[a]; ++mPos[b]; }
            else if (mPos[c] <= mMax[c]) { mPos[a] = mMin[a]; mPos[b] = mMin[b]; ++mPos[c]; }
        }
        Coord mPos, mMin, mMax;
        friend class CoordBBox; // for CoordBBox::end()
    };// CoordBBox::Iterator

    using ZYXIterator = Iterator</*ZYX=*/true>;
    using XYZIterator = Iterator</*ZYX=*/false>;

    /// @brief The default constructor produces an empty bounding box.
    CoordBBox(): mMin(Coord::max()), mMax(Coord::min()) {}
    /// @brief Construct a bounding box with the given @a min and @a max bounds.
    CoordBBox(const Coord& min, const Coord& max): mMin(min), mMax(max) {}
    /// @brief Construct from individual components of the min and max bounds.
    CoordBBox(ValueType xMin, ValueType yMin, ValueType zMin,
              ValueType xMax, ValueType yMax, ValueType zMax)
        : mMin(xMin, yMin, zMin), mMax(xMax, yMax, zMax)
    {
    }
    /// @brief Splitting constructor for use in TBB ranges
    /// @note The other bounding box is assumed to be divisible.
    CoordBBox(CoordBBox& other, const tbb::split&): mMin(other.mMin), mMax(other.mMax)
    {
        assert(this->is_divisible());
        const size_t n = this->maxExtent();
        mMax[n] = (mMin[n] + mMax[n]) >> 1;
        other.mMin[n] = mMax[n] + 1;
    }

    static CoordBBox createCube(const Coord& min, ValueType dim)
    {
        return CoordBBox(min, min.offsetBy(dim - 1));
    }

    /// Return an "infinite" bounding box, as defined by the Coord value range.
    static CoordBBox inf() { return CoordBBox(Coord::min(), Coord::max()); }

    const Coord& min() const { return mMin; }
    const Coord& max() const { return mMax; }

    Coord& min() { return mMin; }
    Coord& max() { return mMax; }

    void reset() { mMin = Coord::max(); mMax = Coord::min(); }
    void reset(const Coord& min, const Coord& max) { mMin = min; mMax = max; }
    void resetToCube(const Coord& min, ValueType dim) { mMin = min; mMax = min.offsetBy(dim - 1); }

    /// @brief Return the minimum coordinate.
    /// @note The start coordinate is inclusive.
    Coord getStart() const { return mMin; }
    /// @brief Return the maximum coordinate plus one.
    /// @note This end coordinate is exclusive.
    Coord getEnd() const { return mMax.offsetBy(1); }

    /// @brief Return a ZYX-order iterator that points to the minimum coordinate.
    ZYXIterator begin() const { return ZYXIterator{*this}; }
    /// @brief Return a ZYX-order iterator that points to the minimum coordinate.
    ZYXIterator beginZYX() const { return ZYXIterator{*this}; }
    /// @brief Return an XYZ-order iterator that points to the minimum coordinate.
    XYZIterator beginXYZ() const { return XYZIterator{*this}; }

    /// @brief Return a ZYX-order iterator that points past the maximum coordinate.
    ZYXIterator end() const { ZYXIterator it{*this}; it.mPos[0] = mMax[0] + 1; return it; }
    /// @brief Return a ZYX-order iterator that points past the maximum coordinate.
    ZYXIterator endZYX() const { return end(); }
    /// @brief Return an XYZ-order iterator that points past the maximum coordinate.
    XYZIterator endXYZ() const { XYZIterator it{*this}; it.mPos[2] = mMax[2] + 1; return it; }

    bool operator==(const CoordBBox& rhs) const { return mMin == rhs.mMin && mMax == rhs.mMax; }
    bool operator!=(const CoordBBox& rhs) const { return !(*this == rhs); }

    /// @brief Return @c true if this bounding box is empty (i.e., encloses no coordinates).
    bool empty() const { return (mMin[0] > mMax[0] || mMin[1] > mMax[1] || mMin[2] > mMax[2]); }
    /// Return @c true if this bounding box is nonempty (i.e., encloses at least one coordinate).
    operator bool() const { return !this->empty(); }
    /// Return @c true if this bounding box is nonempty (i.e., encloses at least one coordinate).
    bool hasVolume() const { return !this->empty(); }

    /// Return the floating-point position of the center of this bounding box.
    Vec3d getCenter() const { return 0.5 * Vec3d((mMin + mMax).asPointer()); }

    /// @brief Return the dimensions of the coordinates spanned by this bounding box.
    /// @note Since coordinates are inclusive, a bounding box with min = max
    /// has dimensions of (1, 1, 1).
    Coord dim() const { return mMax.offsetBy(1) - mMin; }
    /// @todo deprecate - use dim instead
    Coord extents() const { return this->dim(); }
    /// @brief Return the integer volume of coordinates spanned by this bounding box.
    /// @note Since coordinates are inclusive, a bounding box with min = max has volume one.
    Index64 volume() const
    {
        const Coord d = this->dim();
        return Index64(d[0]) * Index64(d[1]) * Index64(d[2]);
    }
    /// Return @c true if this bounding box can be subdivided [mainly for use by TBB].
    bool is_divisible() const { return mMin[0]<mMax[0] && mMin[1]<mMax[1] && mMin[2]<mMax[2]; }

    /// @brief Return the index (0, 1 or 2) of the shortest axis.
    size_t minExtent() const { return this->dim().minIndex(); }

    /// @brief Return the index (0, 1 or 2) of the longest axis.
    size_t maxExtent() const { return this->dim().maxIndex(); }

    /// Return @c true if point (x, y, z) is inside this bounding box.
    bool isInside(const Coord& xyz) const
    {
        return !(Coord::lessThan(xyz,mMin) || Coord::lessThan(mMax,xyz));
    }

    /// Return @c true if the given bounding box is inside this bounding box.
    bool isInside(const CoordBBox& b) const
    {
        return !(Coord::lessThan(b.mMin,mMin) || Coord::lessThan(mMax,b.mMax));
    }

    /// Return @c true if the given bounding box overlaps with this bounding box.
    bool hasOverlap(const CoordBBox& b) const
    {
        return !(Coord::lessThan(mMax,b.mMin) || Coord::lessThan(b.mMax,mMin));
    }

    /// Pad this bounding box with the specified padding.
    void expand(ValueType padding)
    {
        mMin.offset(-padding);
        mMax.offset( padding);
    }

    /// Return a new instance that is expanded by the specified padding.
    CoordBBox expandBy(ValueType padding) const
    {
        return CoordBBox(mMin.offsetBy(-padding),mMax.offsetBy(padding));
    }

    /// Expand this bounding box to enclose point (x, y, z).
    void expand(const Coord& xyz)
    {
        mMin.minComponent(xyz);
        mMax.maxComponent(xyz);
    }

    /// Union this bounding box with the given bounding box.
    void expand(const CoordBBox& bbox)
    {
          mMin.minComponent(bbox.min());
          mMax.maxComponent(bbox.max());
    }
    /// Intersect this bounding box with the given bounding box.
    void intersect(const CoordBBox& bbox)
    {
        mMin.maxComponent(bbox.min());
        mMax.minComponent(bbox.max());
    }
    /// @brief Union this bounding box with the cubical bounding box
    /// of the given size and with the given minimum coordinates.
    void expand(const Coord& min, Coord::ValueType dim)
    {
        mMin.minComponent(min);
        mMax.maxComponent(min.offsetBy(dim-1));
    }
    /// Translate this bounding box by
    /// (<i>t<sub>x</sub></i>, <i>t<sub>y</sub></i>, <i>t<sub>z</sub></i>).
    void translate(const Coord& t) { mMin += t; mMax += t; }

    /// @brief Populates an array with the eight corner points of this bounding box.
    /// @details The ordering of the corner points is lexicographic.
    /// @warning It is assumed that the pointer can be incremented at
    /// least seven times, i.e. has storage for eight Coord elements!
    void getCornerPoints(Coord *p) const
    {
        assert(p != nullptr);
        p->reset(mMin.x(), mMin.y(), mMin.z()); ++p;
        p->reset(mMin.x(), mMin.y(), mMax.z()); ++p;
        p->reset(mMin.x(), mMax.y(), mMin.z()); ++p;
        p->reset(mMin.x(), mMax.y(), mMax.z()); ++p;
        p->reset(mMax.x(), mMin.y(), mMin.z()); ++p;
        p->reset(mMax.x(), mMin.y(), mMax.z()); ++p;
        p->reset(mMax.x(), mMax.y(), mMin.z()); ++p;
        p->reset(mMax.x(), mMax.y(), mMax.z());
    }

    //@{
    /// @brief Bit-wise operations performed on both the min and max members
    CoordBBox  operator>> (size_t n) const { return CoordBBox(mMin>>n, mMax>>n); }
    CoordBBox  operator<< (size_t n) const { return CoordBBox(mMin<<n, mMax<<n); }
    CoordBBox& operator<<=(size_t n) { mMin <<= n; mMax <<= n; return *this; }
    CoordBBox& operator>>=(size_t n) { mMin >>= n; mMax >>= n; return *this; }
    CoordBBox  operator&  (Coord::Int32 n) const { return CoordBBox(mMin & n, mMax & n); }
    CoordBBox  operator|  (Coord::Int32 n) const { return CoordBBox(mMin | n, mMax | n); }
    CoordBBox& operator&= (Coord::Int32 n) { mMin &= n; mMax &= n; return *this; }
    CoordBBox& operator|= (Coord::Int32 n) { mMin |= n; mMax |= n; return *this; }
    //@}

    /// Unserialize this bounding box from the given stream.
    void read(std::istream& is) { mMin.read(is); mMax.read(is); }
    /// Serialize this bounding box to the given stream.
    void write(std::ostream& os) const { mMin.write(os); mMax.write(os); }

private:
    Coord mMin, mMax;
}; // class CoordBBox


////////////////////////////////////////


inline std::ostream& operator<<(std::ostream& os, const Coord& xyz)
{
    os << xyz.asVec3i(); return os;
}


inline Coord
Abs(const Coord& xyz)
{
    return Coord(Abs(xyz[0]), Abs(xyz[1]), Abs(xyz[2]));
}


//@{
/// Allow a Coord to be added to or subtracted from a Vec3.
template<typename T>
inline Vec3<typename promote<T, typename Coord::ValueType>::type>
operator+(const Vec3<T>& v0, const Coord& v1)
{
    Vec3<typename promote<T, typename Coord::ValueType>::type> result(v0);
    result[0] += v1[0];
    result[1] += v1[1];
    result[2] += v1[2];
    return result;
}

template<typename T>
inline Vec3<typename promote<T, typename Coord::ValueType>::type>
operator+(const Coord& v1, const Vec3<T>& v0)
{
    Vec3<typename promote<T, typename Coord::ValueType>::type> result(v0);
    result[0] += v1[0];
    result[1] += v1[1];
    result[2] += v1[2];
    return result;
}
//@}


//@{
/// Allow a Coord to be subtracted from a Vec3.
template <typename T>
inline Vec3<typename promote<T, Coord::ValueType>::type>
operator-(const Vec3<T>& v0, const Coord& v1)
{
    Vec3<typename promote<T, Coord::ValueType>::type> result(v0);
    result[0] -= v1[0];
    result[1] -= v1[1];
    result[2] -= v1[2];
    return result;
}

template <typename T>
inline Vec3<typename promote<T, Coord::ValueType>::type>
operator-(const Coord& v1, const Vec3<T>& v0)
{
    Vec3<typename promote<T, Coord::ValueType>::type> result(v0);
    result[0] -= v1[0];
    result[1] -= v1[1];
    result[2] -= v1[2];
    return -result;
}
//@}

inline std::ostream&
operator<<(std::ostream& os, const CoordBBox& b)
{
    os << b.min() << " -> " << b.max();
    return os;
}

} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_MATH_COORD_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )