/usr/include/openvdb/math/Mat4.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_MATH_MAT4_H_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_MAT4_H_HAS_BEEN_INCLUDED
#include <openvdb/Exceptions.h>
#include <openvdb/Platform.h>
#include "Math.h"
#include "Mat3.h"
#include "Vec3.h"
#include "Vec4.h"
#include <algorithm> // for std::copy(), std::swap()
#include <cassert>
#include <iomanip>
#include <cmath>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
template<typename T> class Vec4;
/// @class Mat4 Mat4.h
/// @brief 4x4 -matrix class.
template<typename T>
class Mat4: public Mat<4, T>
{
public:
/// Data type held by the matrix.
using value_type = T;
using ValueType = T;
using MyBase = Mat<4, T>;
/// Trivial constructor, the matrix is NOT initialized
Mat4() {}
/// Constructor given array of elements, the ordering is in row major form:
/** @verbatim
a[ 0] a[1] a[ 2] a[ 3]
a[ 4] a[5] a[ 6] a[ 7]
a[ 8] a[9] a[10] a[11]
a[12] a[13] a[14] a[15]
@endverbatim */
template<typename Source>
Mat4(Source *a)
{
for (int i = 0; i < 16; i++) {
MyBase::mm[i] = a[i];
}
}
/// Constructor given array of elements, the ordering is in row major form:
/** @verbatim
a b c d
e f g h
i j k l
m n o p
@endverbatim */
template<typename Source>
Mat4(Source a, Source b, Source c, Source d,
Source e, Source f, Source g, Source h,
Source i, Source j, Source k, Source l,
Source m, Source n, Source o, Source p)
{
MyBase::mm[ 0] = T(a);
MyBase::mm[ 1] = T(b);
MyBase::mm[ 2] = T(c);
MyBase::mm[ 3] = T(d);
MyBase::mm[ 4] = T(e);
MyBase::mm[ 5] = T(f);
MyBase::mm[ 6] = T(g);
MyBase::mm[ 7] = T(h);
MyBase::mm[ 8] = T(i);
MyBase::mm[ 9] = T(j);
MyBase::mm[10] = T(k);
MyBase::mm[11] = T(l);
MyBase::mm[12] = T(m);
MyBase::mm[13] = T(n);
MyBase::mm[14] = T(o);
MyBase::mm[15] = T(p);
}
/// Construct matrix from rows or columns vectors (defaults to rows
/// for historical reasons)
template<typename Source>
Mat4(const Vec4<Source> &v1, const Vec4<Source> &v2,
const Vec4<Source> &v3, const Vec4<Source> &v4, bool rows = true)
{
if (rows) {
this->setRows(v1, v2, v3, v4);
} else {
this->setColumns(v1, v2, v3, v4);
}
}
/// Copy constructor
Mat4(const Mat<4, T> &m)
{
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
MyBase::mm[i*4 + j] = m[i][j];
}
}
}
/// Conversion constructor
template<typename Source>
explicit Mat4(const Mat4<Source> &m)
{
const Source *src = m.asPointer();
for (int i=0; i<16; ++i) {
MyBase::mm[i] = static_cast<T>(src[i]);
}
}
/// Predefined constant for identity matrix
static const Mat4<T>& identity() {
static const Mat4<T> sIdentity = Mat4<T>(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
);
return sIdentity;
}
/// Predefined constant for zero matrix
static const Mat4<T>& zero() {
static const Mat4<T> sZero = Mat4<T>(
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0
);
return sZero;
}
/// Set ith row to vector v
void setRow(int i, const Vec4<T> &v)
{
// assert(i>=0 && i<4);
int i4 = i * 4;
MyBase::mm[i4+0] = v[0];
MyBase::mm[i4+1] = v[1];
MyBase::mm[i4+2] = v[2];
MyBase::mm[i4+3] = v[3];
}
/// Get ith row, e.g. Vec4f v = m.row(1);
Vec4<T> row(int i) const
{
// assert(i>=0 && i<3);
return Vec4<T>((*this)(i,0), (*this)(i,1), (*this)(i,2), (*this)(i,3));
}
/// Set jth column to vector v
void setCol(int j, const Vec4<T>& v)
{
// assert(j>=0 && j<4);
MyBase::mm[ 0+j] = v[0];
MyBase::mm[ 4+j] = v[1];
MyBase::mm[ 8+j] = v[2];
MyBase::mm[12+j] = v[3];
}
/// Get jth column, e.g. Vec4f v = m.col(0);
Vec4<T> col(int j) const
{
// assert(j>=0 && j<4);
return Vec4<T>((*this)(0,j), (*this)(1,j), (*this)(2,j), (*this)(3,j));
}
//@{
/// Array style reference to ith row
/// e.g. m[1][3] = 4;
T* operator[](int i) { return &(MyBase::mm[i<<2]); }
const T* operator[](int i) const { return &(MyBase::mm[i<<2]); }
//@}
/// Direct access to the internal data
T* asPointer() {return MyBase::mm;}
const T* asPointer() const {return MyBase::mm;}
/// Alternative indexed reference to the elements
/// Note that the indices are row first and column second.
/// e.g. m(0,0) = 1;
T& operator()(int i, int j)
{
// assert(i>=0 && i<4);
// assert(j>=0 && j<4);
return MyBase::mm[4*i+j];
}
/// Alternative indexed constant reference to the elements,
/// Note that the indices are row first and column second.
/// e.g. float f = m(1,0);
T operator()(int i, int j) const
{
// assert(i>=0 && i<4);
// assert(j>=0 && j<4);
return MyBase::mm[4*i+j];
}
/// Set the rows of this matrix to the vectors v1, v2, v3, v4
void setRows(const Vec4<T> &v1, const Vec4<T> &v2,
const Vec4<T> &v3, const Vec4<T> &v4)
{
MyBase::mm[ 0] = v1[0];
MyBase::mm[ 1] = v1[1];
MyBase::mm[ 2] = v1[2];
MyBase::mm[ 3] = v1[3];
MyBase::mm[ 4] = v2[0];
MyBase::mm[ 5] = v2[1];
MyBase::mm[ 6] = v2[2];
MyBase::mm[ 7] = v2[3];
MyBase::mm[ 8] = v3[0];
MyBase::mm[ 9] = v3[1];
MyBase::mm[10] = v3[2];
MyBase::mm[11] = v3[3];
MyBase::mm[12] = v4[0];
MyBase::mm[13] = v4[1];
MyBase::mm[14] = v4[2];
MyBase::mm[15] = v4[3];
}
/// Set the columns of this matrix to the vectors v1, v2, v3, v4
void setColumns(const Vec4<T> &v1, const Vec4<T> &v2,
const Vec4<T> &v3, const Vec4<T> &v4)
{
MyBase::mm[ 0] = v1[0];
MyBase::mm[ 1] = v2[0];
MyBase::mm[ 2] = v3[0];
MyBase::mm[ 3] = v4[0];
MyBase::mm[ 4] = v1[1];
MyBase::mm[ 5] = v2[1];
MyBase::mm[ 6] = v3[1];
MyBase::mm[ 7] = v4[1];
MyBase::mm[ 8] = v1[2];
MyBase::mm[ 9] = v2[2];
MyBase::mm[10] = v3[2];
MyBase::mm[11] = v4[2];
MyBase::mm[12] = v1[3];
MyBase::mm[13] = v2[3];
MyBase::mm[14] = v3[3];
MyBase::mm[15] = v4[3];
}
// Set this matrix to zero
void setZero()
{
MyBase::mm[ 0] = 0;
MyBase::mm[ 1] = 0;
MyBase::mm[ 2] = 0;
MyBase::mm[ 3] = 0;
MyBase::mm[ 4] = 0;
MyBase::mm[ 5] = 0;
MyBase::mm[ 6] = 0;
MyBase::mm[ 7] = 0;
MyBase::mm[ 8] = 0;
MyBase::mm[ 9] = 0;
MyBase::mm[10] = 0;
MyBase::mm[11] = 0;
MyBase::mm[12] = 0;
MyBase::mm[13] = 0;
MyBase::mm[14] = 0;
MyBase::mm[15] = 0;
}
/// Set this matrix to identity
void setIdentity()
{
MyBase::mm[ 0] = 1;
MyBase::mm[ 1] = 0;
MyBase::mm[ 2] = 0;
MyBase::mm[ 3] = 0;
MyBase::mm[ 4] = 0;
MyBase::mm[ 5] = 1;
MyBase::mm[ 6] = 0;
MyBase::mm[ 7] = 0;
MyBase::mm[ 8] = 0;
MyBase::mm[ 9] = 0;
MyBase::mm[10] = 1;
MyBase::mm[11] = 0;
MyBase::mm[12] = 0;
MyBase::mm[13] = 0;
MyBase::mm[14] = 0;
MyBase::mm[15] = 1;
}
/// Set upper left to a Mat3
void setMat3(const Mat3<T> &m)
{
for (int i = 0; i < 3; i++)
for (int j=0; j < 3; j++)
MyBase::mm[i*4+j] = m[i][j];
}
Mat3<T> getMat3() const
{
Mat3<T> m;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
m[i][j] = MyBase::mm[i*4+j];
return m;
}
/// Return the translation component
Vec3<T> getTranslation() const
{
return Vec3<T>(MyBase::mm[12], MyBase::mm[13], MyBase::mm[14]);
}
void setTranslation(const Vec3<T> &t)
{
MyBase::mm[12] = t[0];
MyBase::mm[13] = t[1];
MyBase::mm[14] = t[2];
}
/// Assignment operator
template<typename Source>
const Mat4& operator=(const Mat4<Source> &m)
{
const Source *src = m.asPointer();
// don't suppress warnings when assigning from different numerical types
std::copy(src, (src + this->numElements()), MyBase::mm);
return *this;
}
/// Return @c true if this matrix is equivalent to @a m within a tolerance of @a eps.
bool eq(const Mat4 &m, T eps=1.0e-8) const
{
for (int i = 0; i < 16; i++) {
if (!isApproxEqual(MyBase::mm[i], m.mm[i], eps))
return false;
}
return true;
}
/// Negation operator, for e.g. m1 = -m2;
Mat4<T> operator-() const
{
return Mat4<T>(
-MyBase::mm[ 0], -MyBase::mm[ 1], -MyBase::mm[ 2], -MyBase::mm[ 3],
-MyBase::mm[ 4], -MyBase::mm[ 5], -MyBase::mm[ 6], -MyBase::mm[ 7],
-MyBase::mm[ 8], -MyBase::mm[ 9], -MyBase::mm[10], -MyBase::mm[11],
-MyBase::mm[12], -MyBase::mm[13], -MyBase::mm[14], -MyBase::mm[15]
);
} // trivial
/// Multiply each element of this matrix by @a scalar.
template <typename S>
const Mat4<T>& operator*=(S scalar)
{
MyBase::mm[ 0] *= scalar;
MyBase::mm[ 1] *= scalar;
MyBase::mm[ 2] *= scalar;
MyBase::mm[ 3] *= scalar;
MyBase::mm[ 4] *= scalar;
MyBase::mm[ 5] *= scalar;
MyBase::mm[ 6] *= scalar;
MyBase::mm[ 7] *= scalar;
MyBase::mm[ 8] *= scalar;
MyBase::mm[ 9] *= scalar;
MyBase::mm[10] *= scalar;
MyBase::mm[11] *= scalar;
MyBase::mm[12] *= scalar;
MyBase::mm[13] *= scalar;
MyBase::mm[14] *= scalar;
MyBase::mm[15] *= scalar;
return *this;
}
/// Add each element of the given matrix to the corresponding element of this matrix.
template <typename S>
const Mat4<T> &operator+=(const Mat4<S> &m1)
{
const S* s = m1.asPointer();
MyBase::mm[ 0] += s[ 0];
MyBase::mm[ 1] += s[ 1];
MyBase::mm[ 2] += s[ 2];
MyBase::mm[ 3] += s[ 3];
MyBase::mm[ 4] += s[ 4];
MyBase::mm[ 5] += s[ 5];
MyBase::mm[ 6] += s[ 6];
MyBase::mm[ 7] += s[ 7];
MyBase::mm[ 8] += s[ 8];
MyBase::mm[ 9] += s[ 9];
MyBase::mm[10] += s[10];
MyBase::mm[11] += s[11];
MyBase::mm[12] += s[12];
MyBase::mm[13] += s[13];
MyBase::mm[14] += s[14];
MyBase::mm[15] += s[15];
return *this;
}
/// Subtract each element of the given matrix from the corresponding element of this matrix.
template <typename S>
const Mat4<T> &operator-=(const Mat4<S> &m1)
{
const S* s = m1.asPointer();
MyBase::mm[ 0] -= s[ 0];
MyBase::mm[ 1] -= s[ 1];
MyBase::mm[ 2] -= s[ 2];
MyBase::mm[ 3] -= s[ 3];
MyBase::mm[ 4] -= s[ 4];
MyBase::mm[ 5] -= s[ 5];
MyBase::mm[ 6] -= s[ 6];
MyBase::mm[ 7] -= s[ 7];
MyBase::mm[ 8] -= s[ 8];
MyBase::mm[ 9] -= s[ 9];
MyBase::mm[10] -= s[10];
MyBase::mm[11] -= s[11];
MyBase::mm[12] -= s[12];
MyBase::mm[13] -= s[13];
MyBase::mm[14] -= s[14];
MyBase::mm[15] -= s[15];
return *this;
}
/// Multiply this matrix by the given matrix.
template <typename S>
const Mat4<T> &operator*=(const Mat4<S> &m1)
{
Mat4<T> m0(*this);
const T* s0 = m0.asPointer();
const S* s1 = m1.asPointer();
for (int i = 0; i < 4; i++) {
int i4 = 4 * i;
MyBase::mm[i4+0] = static_cast<T>(s0[i4+0] * s1[ 0] +
s0[i4+1] * s1[ 4] +
s0[i4+2] * s1[ 8] +
s0[i4+3] * s1[12]);
MyBase::mm[i4+1] = static_cast<T>(s0[i4+0] * s1[ 1] +
s0[i4+1] * s1[ 5] +
s0[i4+2] * s1[ 9] +
s0[i4+3] * s1[13]);
MyBase::mm[i4+2] = static_cast<T>(s0[i4+0] * s1[ 2] +
s0[i4+1] * s1[ 6] +
s0[i4+2] * s1[10] +
s0[i4+3] * s1[14]);
MyBase::mm[i4+3] = static_cast<T>(s0[i4+0] * s1[ 3] +
s0[i4+1] * s1[ 7] +
s0[i4+2] * s1[11] +
s0[i4+3] * s1[15]);
}
return *this;
}
/// @return transpose of this
Mat4 transpose() const
{
return Mat4<T>(
MyBase::mm[ 0], MyBase::mm[ 4], MyBase::mm[ 8], MyBase::mm[12],
MyBase::mm[ 1], MyBase::mm[ 5], MyBase::mm[ 9], MyBase::mm[13],
MyBase::mm[ 2], MyBase::mm[ 6], MyBase::mm[10], MyBase::mm[14],
MyBase::mm[ 3], MyBase::mm[ 7], MyBase::mm[11], MyBase::mm[15]
);
}
/// @return inverse of this
/// @throw ArithmeticError if singular
Mat4 inverse(T tolerance = 0) const
{
//
// inv [ A | b ] = [ E | f ] A: 3x3, b: 3x1, c': 1x3 d: 1x1
// [ c' | d ] [ g' | h ]
//
// If A is invertible use
//
// E = A^-1 + p*h*r
// p = A^-1 * b
// f = -p * h
// g' = -h * c'
// h = 1 / (d - c'*p)
// r' = c'*A^-1
//
// Otherwise use gauss-jordan elimination
//
//
// We create this alias to ourself so we can easily use own subscript
// operator.
const Mat4<T>& m(*this);
T m0011 = m[0][0] * m[1][1];
T m0012 = m[0][0] * m[1][2];
T m0110 = m[0][1] * m[1][0];
T m0210 = m[0][2] * m[1][0];
T m0120 = m[0][1] * m[2][0];
T m0220 = m[0][2] * m[2][0];
T detA = m0011 * m[2][2] - m0012 * m[2][1] - m0110 * m[2][2]
+ m0210 * m[2][1] + m0120 * m[1][2] - m0220 * m[1][1];
bool hasPerspective =
(!isExactlyEqual(m[0][3], T(0.0)) ||
!isExactlyEqual(m[1][3], T(0.0)) ||
!isExactlyEqual(m[2][3], T(0.0)) ||
!isExactlyEqual(m[3][3], T(1.0)));
T det;
if (hasPerspective) {
det = m[0][3] * det3(m, 1,2,3, 0,2,1)
+ m[1][3] * det3(m, 2,0,3, 0,2,1)
+ m[2][3] * det3(m, 3,0,1, 0,2,1)
+ m[3][3] * detA;
} else {
det = detA * m[3][3];
}
Mat4<T> inv;
bool invertible;
if (isApproxEqual(det,T(0.0),tolerance)) {
invertible = false;
} else if (isApproxEqual(detA,T(0.0),T(1e-8))) {
// det is too small to rely on inversion by subblocks
invertible = m.invert(inv, tolerance);
} else {
invertible = true;
detA = 1.0 / detA;
//
// Calculate A^-1
//
inv[0][0] = detA * ( m[1][1] * m[2][2] - m[1][2] * m[2][1]);
inv[0][1] = detA * (-m[0][1] * m[2][2] + m[0][2] * m[2][1]);
inv[0][2] = detA * ( m[0][1] * m[1][2] - m[0][2] * m[1][1]);
inv[1][0] = detA * (-m[1][0] * m[2][2] + m[1][2] * m[2][0]);
inv[1][1] = detA * ( m[0][0] * m[2][2] - m0220);
inv[1][2] = detA * ( m0210 - m0012);
inv[2][0] = detA * ( m[1][0] * m[2][1] - m[1][1] * m[2][0]);
inv[2][1] = detA * ( m0120 - m[0][0] * m[2][1]);
inv[2][2] = detA * ( m0011 - m0110);
if (hasPerspective) {
//
// Calculate r, p, and h
//
Vec3<T> r;
r[0] = m[3][0] * inv[0][0] + m[3][1] * inv[1][0]
+ m[3][2] * inv[2][0];
r[1] = m[3][0] * inv[0][1] + m[3][1] * inv[1][1]
+ m[3][2] * inv[2][1];
r[2] = m[3][0] * inv[0][2] + m[3][1] * inv[1][2]
+ m[3][2] * inv[2][2];
Vec3<T> p;
p[0] = inv[0][0] * m[0][3] + inv[0][1] * m[1][3]
+ inv[0][2] * m[2][3];
p[1] = inv[1][0] * m[0][3] + inv[1][1] * m[1][3]
+ inv[1][2] * m[2][3];
p[2] = inv[2][0] * m[0][3] + inv[2][1] * m[1][3]
+ inv[2][2] * m[2][3];
T h = m[3][3] - p.dot(Vec3<T>(m[3][0],m[3][1],m[3][2]));
if (isApproxEqual(h,T(0.0),tolerance)) {
invertible = false;
} else {
h = 1.0 / h;
//
// Calculate h, g, and f
//
inv[3][3] = h;
inv[3][0] = -h * r[0];
inv[3][1] = -h * r[1];
inv[3][2] = -h * r[2];
inv[0][3] = -h * p[0];
inv[1][3] = -h * p[1];
inv[2][3] = -h * p[2];
//
// Calculate E
//
p *= h;
inv[0][0] += p[0] * r[0];
inv[0][1] += p[0] * r[1];
inv[0][2] += p[0] * r[2];
inv[1][0] += p[1] * r[0];
inv[1][1] += p[1] * r[1];
inv[1][2] += p[1] * r[2];
inv[2][0] += p[2] * r[0];
inv[2][1] += p[2] * r[1];
inv[2][2] += p[2] * r[2];
}
} else {
// Equations are much simpler in the non-perspective case
inv[3][0] = - (m[3][0] * inv[0][0] + m[3][1] * inv[1][0]
+ m[3][2] * inv[2][0]);
inv[3][1] = - (m[3][0] * inv[0][1] + m[3][1] * inv[1][1]
+ m[3][2] * inv[2][1]);
inv[3][2] = - (m[3][0] * inv[0][2] + m[3][1] * inv[1][2]
+ m[3][2] * inv[2][2]);
inv[0][3] = 0.0;
inv[1][3] = 0.0;
inv[2][3] = 0.0;
inv[3][3] = 1.0;
}
}
if (!invertible) OPENVDB_THROW(ArithmeticError, "Inversion of singular 4x4 matrix");
return inv;
}
/// Determinant of matrix
T det() const
{
const T *ap;
Mat3<T> submat;
T det;
T *sp;
int i, j, k, sign;
det = 0;
sign = 1;
for (i = 0; i < 4; i++) {
ap = &MyBase::mm[ 0];
sp = submat.asPointer();
for (j = 0; j < 4; j++) {
for (k = 0; k < 4; k++) {
if ((k != i) && (j != 0)) {
*sp++ = *ap;
}
ap++;
}
}
det += sign * MyBase::mm[i] * submat.det();
sign = -sign;
}
return det;
}
/// Sets the matrix to a matrix that translates by v
static Mat4 translation(const Vec3d& v)
{
return Mat4(
T(1), T(0), T(0), T(0),
T(0), T(1), T(0), T(0),
T(0), T(0), T(1), T(0),
T(v.x()), T(v.y()),T(v.z()), T(1));
}
/// Sets the matrix to a matrix that translates by v
template <typename T0>
void setToTranslation(const Vec3<T0>& v)
{
MyBase::mm[ 0] = 1;
MyBase::mm[ 1] = 0;
MyBase::mm[ 2] = 0;
MyBase::mm[ 3] = 0;
MyBase::mm[ 4] = 0;
MyBase::mm[ 5] = 1;
MyBase::mm[ 6] = 0;
MyBase::mm[ 7] = 0;
MyBase::mm[ 8] = 0;
MyBase::mm[ 9] = 0;
MyBase::mm[10] = 1;
MyBase::mm[11] = 0;
MyBase::mm[12] = v.x();
MyBase::mm[13] = v.y();
MyBase::mm[14] = v.z();
MyBase::mm[15] = 1;
}
/// Left multiples by the specified translation, i.e. Trans * (*this)
template <typename T0>
void preTranslate(const Vec3<T0>& tr)
{
Vec3<T> tmp(tr.x(), tr.y(), tr.z());
Mat4<T> Tr = Mat4<T>::translation(tmp);
*this = Tr * (*this);
}
/// Right multiplies by the specified translation matrix, i.e. (*this) * Trans
template <typename T0>
void postTranslate(const Vec3<T0>& tr)
{
Vec3<T> tmp(tr.x(), tr.y(), tr.z());
Mat4<T> Tr = Mat4<T>::translation(tmp);
*this = (*this) * Tr;
}
/// Sets the matrix to a matrix that scales by v
template <typename T0>
void setToScale(const Vec3<T0>& v)
{
this->setIdentity();
MyBase::mm[ 0] = v.x();
MyBase::mm[ 5] = v.y();
MyBase::mm[10] = v.z();
}
// Left multiples by the specified scale matrix, i.e. Sc * (*this)
template <typename T0>
void preScale(const Vec3<T0>& v)
{
MyBase::mm[ 0] *= v.x();
MyBase::mm[ 1] *= v.x();
MyBase::mm[ 2] *= v.x();
MyBase::mm[ 3] *= v.x();
MyBase::mm[ 4] *= v.y();
MyBase::mm[ 5] *= v.y();
MyBase::mm[ 6] *= v.y();
MyBase::mm[ 7] *= v.y();
MyBase::mm[ 8] *= v.z();
MyBase::mm[ 9] *= v.z();
MyBase::mm[10] *= v.z();
MyBase::mm[11] *= v.z();
}
// Right multiples by the specified scale matrix, i.e. (*this) * Sc
template <typename T0>
void postScale(const Vec3<T0>& v)
{
MyBase::mm[ 0] *= v.x();
MyBase::mm[ 1] *= v.y();
MyBase::mm[ 2] *= v.z();
MyBase::mm[ 4] *= v.x();
MyBase::mm[ 5] *= v.y();
MyBase::mm[ 6] *= v.z();
MyBase::mm[ 8] *= v.x();
MyBase::mm[ 9] *= v.y();
MyBase::mm[10] *= v.z();
MyBase::mm[12] *= v.x();
MyBase::mm[13] *= v.y();
MyBase::mm[14] *= v.z();
}
/// @brief Sets the matrix to a rotation about the given axis.
/// @param axis The axis (one of X, Y, Z) to rotate about.
/// @param angle The rotation angle, in radians.
void setToRotation(Axis axis, T angle) {*this = rotation<Mat4<T> >(axis, angle);}
/// @brief Sets the matrix to a rotation about an arbitrary axis
/// @param axis The axis of rotation (cannot be zero-length)
/// @param angle The rotation angle, in radians.
void setToRotation(const Vec3<T>& axis, T angle) {*this = rotation<Mat4<T> >(axis, angle);}
/// @brief Sets the matrix to a rotation that maps v1 onto v2 about the cross
/// product of v1 and v2.
void setToRotation(const Vec3<T>& v1, const Vec3<T>& v2) {*this = rotation<Mat4<T> >(v1, v2);}
/// @brief Left multiplies by a rotation clock-wiseabout the given axis into this matrix.
/// @param axis The axis (one of X, Y, Z) of rotation.
/// @param angle The clock-wise rotation angle, in radians.
void preRotate(Axis axis, T angle)
{
T c = static_cast<T>(cos(angle));
T s = -static_cast<T>(sin(angle)); // the "-" makes it clockwise
switch (axis) {
case X_AXIS:
{
T a4, a5, a6, a7;
a4 = c * MyBase::mm[ 4] - s * MyBase::mm[ 8];
a5 = c * MyBase::mm[ 5] - s * MyBase::mm[ 9];
a6 = c * MyBase::mm[ 6] - s * MyBase::mm[10];
a7 = c * MyBase::mm[ 7] - s * MyBase::mm[11];
MyBase::mm[ 8] = s * MyBase::mm[ 4] + c * MyBase::mm[ 8];
MyBase::mm[ 9] = s * MyBase::mm[ 5] + c * MyBase::mm[ 9];
MyBase::mm[10] = s * MyBase::mm[ 6] + c * MyBase::mm[10];
MyBase::mm[11] = s * MyBase::mm[ 7] + c * MyBase::mm[11];
MyBase::mm[ 4] = a4;
MyBase::mm[ 5] = a5;
MyBase::mm[ 6] = a6;
MyBase::mm[ 7] = a7;
}
break;
case Y_AXIS:
{
T a0, a1, a2, a3;
a0 = c * MyBase::mm[ 0] + s * MyBase::mm[ 8];
a1 = c * MyBase::mm[ 1] + s * MyBase::mm[ 9];
a2 = c * MyBase::mm[ 2] + s * MyBase::mm[10];
a3 = c * MyBase::mm[ 3] + s * MyBase::mm[11];
MyBase::mm[ 8] = -s * MyBase::mm[ 0] + c * MyBase::mm[ 8];
MyBase::mm[ 9] = -s * MyBase::mm[ 1] + c * MyBase::mm[ 9];
MyBase::mm[10] = -s * MyBase::mm[ 2] + c * MyBase::mm[10];
MyBase::mm[11] = -s * MyBase::mm[ 3] + c * MyBase::mm[11];
MyBase::mm[ 0] = a0;
MyBase::mm[ 1] = a1;
MyBase::mm[ 2] = a2;
MyBase::mm[ 3] = a3;
}
break;
case Z_AXIS:
{
T a0, a1, a2, a3;
a0 = c * MyBase::mm[ 0] - s * MyBase::mm[ 4];
a1 = c * MyBase::mm[ 1] - s * MyBase::mm[ 5];
a2 = c * MyBase::mm[ 2] - s * MyBase::mm[ 6];
a3 = c * MyBase::mm[ 3] - s * MyBase::mm[ 7];
MyBase::mm[ 4] = s * MyBase::mm[ 0] + c * MyBase::mm[ 4];
MyBase::mm[ 5] = s * MyBase::mm[ 1] + c * MyBase::mm[ 5];
MyBase::mm[ 6] = s * MyBase::mm[ 2] + c * MyBase::mm[ 6];
MyBase::mm[ 7] = s * MyBase::mm[ 3] + c * MyBase::mm[ 7];
MyBase::mm[ 0] = a0;
MyBase::mm[ 1] = a1;
MyBase::mm[ 2] = a2;
MyBase::mm[ 3] = a3;
}
break;
default:
assert(axis==X_AXIS || axis==Y_AXIS || axis==Z_AXIS);
}
}
/// @brief Right multiplies by a rotation clock-wiseabout the given axis into this matrix.
/// @param axis The axis (one of X, Y, Z) of rotation.
/// @param angle The clock-wise rotation angle, in radians.
void postRotate(Axis axis, T angle)
{
T c = static_cast<T>(cos(angle));
T s = -static_cast<T>(sin(angle)); // the "-" makes it clockwise
switch (axis) {
case X_AXIS:
{
T a2, a6, a10, a14;
a2 = c * MyBase::mm[ 2] - s * MyBase::mm[ 1];
a6 = c * MyBase::mm[ 6] - s * MyBase::mm[ 5];
a10 = c * MyBase::mm[10] - s * MyBase::mm[ 9];
a14 = c * MyBase::mm[14] - s * MyBase::mm[13];
MyBase::mm[ 1] = c * MyBase::mm[ 1] + s * MyBase::mm[ 2];
MyBase::mm[ 5] = c * MyBase::mm[ 5] + s * MyBase::mm[ 6];
MyBase::mm[ 9] = c * MyBase::mm[ 9] + s * MyBase::mm[10];
MyBase::mm[13] = c * MyBase::mm[13] + s * MyBase::mm[14];
MyBase::mm[ 2] = a2;
MyBase::mm[ 6] = a6;
MyBase::mm[10] = a10;
MyBase::mm[14] = a14;
}
break;
case Y_AXIS:
{
T a2, a6, a10, a14;
a2 = c * MyBase::mm[ 2] + s * MyBase::mm[ 0];
a6 = c * MyBase::mm[ 6] + s * MyBase::mm[ 4];
a10 = c * MyBase::mm[10] + s * MyBase::mm[ 8];
a14 = c * MyBase::mm[14] + s * MyBase::mm[12];
MyBase::mm[ 0] = c * MyBase::mm[ 0] - s * MyBase::mm[ 2];
MyBase::mm[ 4] = c * MyBase::mm[ 4] - s * MyBase::mm[ 6];
MyBase::mm[ 8] = c * MyBase::mm[ 8] - s * MyBase::mm[10];
MyBase::mm[12] = c * MyBase::mm[12] - s * MyBase::mm[14];
MyBase::mm[ 2] = a2;
MyBase::mm[ 6] = a6;
MyBase::mm[10] = a10;
MyBase::mm[14] = a14;
}
break;
case Z_AXIS:
{
T a1, a5, a9, a13;
a1 = c * MyBase::mm[ 1] - s * MyBase::mm[ 0];
a5 = c * MyBase::mm[ 5] - s * MyBase::mm[ 4];
a9 = c * MyBase::mm[ 9] - s * MyBase::mm[ 8];
a13 = c * MyBase::mm[13] - s * MyBase::mm[12];
MyBase::mm[ 0] = c * MyBase::mm[ 0] + s * MyBase::mm[ 1];
MyBase::mm[ 4] = c * MyBase::mm[ 4] + s * MyBase::mm[ 5];
MyBase::mm[ 8] = c * MyBase::mm[ 8] + s * MyBase::mm[ 9];
MyBase::mm[12] = c * MyBase::mm[12] + s * MyBase::mm[13];
MyBase::mm[ 1] = a1;
MyBase::mm[ 5] = a5;
MyBase::mm[ 9] = a9;
MyBase::mm[13] = a13;
}
break;
default:
assert(axis==X_AXIS || axis==Y_AXIS || axis==Z_AXIS);
}
}
/// @brief Sets the matrix to a shear along axis0 by a fraction of axis1.
/// @param axis0 The fixed axis of the shear.
/// @param axis1 The shear axis.
/// @param shearby The shear factor.
void setToShear(Axis axis0, Axis axis1, T shearby)
{
*this = shear<Mat4<T> >(axis0, axis1, shearby);
}
/// @brief Left multiplies a shearing transformation into the matrix.
/// @see setToShear
void preShear(Axis axis0, Axis axis1, T shear)
{
int index0 = static_cast<int>(axis0);
int index1 = static_cast<int>(axis1);
// to row "index1" add a multiple of the index0 row
MyBase::mm[index1 * 4 + 0] += shear * MyBase::mm[index0 * 4 + 0];
MyBase::mm[index1 * 4 + 1] += shear * MyBase::mm[index0 * 4 + 1];
MyBase::mm[index1 * 4 + 2] += shear * MyBase::mm[index0 * 4 + 2];
MyBase::mm[index1 * 4 + 3] += shear * MyBase::mm[index0 * 4 + 3];
}
/// @brief Right multiplies a shearing transformation into the matrix.
/// @see setToShear
void postShear(Axis axis0, Axis axis1, T shear)
{
int index0 = static_cast<int>(axis0);
int index1 = static_cast<int>(axis1);
// to collumn "index0" add a multiple of the index1 row
MyBase::mm[index0 + 0] += shear * MyBase::mm[index1 + 0];
MyBase::mm[index0 + 4] += shear * MyBase::mm[index1 + 4];
MyBase::mm[index0 + 8] += shear * MyBase::mm[index1 + 8];
MyBase::mm[index0 + 12] += shear * MyBase::mm[index1 + 12];
}
/// Transform a Vec4 by post-multiplication.
template<typename T0>
Vec4<T0> transform(const Vec4<T0> &v) const
{
return static_cast< Vec4<T0> >(v * *this);
}
/// Transform a Vec3 by post-multiplication, without homogenous division.
template<typename T0>
Vec3<T0> transform(const Vec3<T0> &v) const
{
return static_cast< Vec3<T0> >(v * *this);
}
/// Transform a Vec4 by pre-multiplication.
template<typename T0>
Vec4<T0> pretransform(const Vec4<T0> &v) const
{
return static_cast< Vec4<T0> >(*this * v);
}
/// Transform a Vec3 by pre-multiplication, without homogenous division.
template<typename T0>
Vec3<T0> pretransform(const Vec3<T0> &v) const
{
return static_cast< Vec3<T0> >(*this * v);
}
/// Transform a Vec3 by post-multiplication, doing homogenous divison.
template<typename T0>
Vec3<T0> transformH(const Vec3<T0> &p) const
{
T0 w;
// w = p * (*this).col(3);
w = static_cast<T0>(p[0] * MyBase::mm[ 3] + p[1] * MyBase::mm[ 7]
+ p[2] * MyBase::mm[11] + MyBase::mm[15]);
if ( !isExactlyEqual(w , 0.0) ) {
return Vec3<T0>(static_cast<T0>((p[0] * MyBase::mm[ 0] + p[1] * MyBase::mm[ 4] +
p[2] * MyBase::mm[ 8] + MyBase::mm[12]) / w),
static_cast<T0>((p[0] * MyBase::mm[ 1] + p[1] * MyBase::mm[ 5] +
p[2] * MyBase::mm[ 9] + MyBase::mm[13]) / w),
static_cast<T0>((p[0] * MyBase::mm[ 2] + p[1] * MyBase::mm[ 6] +
p[2] * MyBase::mm[10] + MyBase::mm[14]) / w));
}
return Vec3<T0>(0, 0, 0);
}
/// Transform a Vec3 by pre-multiplication, doing homogenous division.
template<typename T0>
Vec3<T0> pretransformH(const Vec3<T0> &p) const
{
T0 w;
// w = p * (*this).col(3);
w = p[0] * MyBase::mm[12] + p[1] * MyBase::mm[13] + p[2] * MyBase::mm[14] + MyBase::mm[15];
if ( !isExactlyEqual(w , 0.0) ) {
return Vec3<T0>(static_cast<T0>((p[0] * MyBase::mm[ 0] + p[1] * MyBase::mm[ 1] +
p[2] * MyBase::mm[ 2] + MyBase::mm[ 3]) / w),
static_cast<T0>((p[0] * MyBase::mm[ 4] + p[1] * MyBase::mm[ 5] +
p[2] * MyBase::mm[ 6] + MyBase::mm[ 7]) / w),
static_cast<T0>((p[0] * MyBase::mm[ 8] + p[1] * MyBase::mm[ 9] +
p[2] * MyBase::mm[10] + MyBase::mm[11]) / w));
}
return Vec3<T0>(0, 0, 0);
}
/// Transform a Vec3 by post-multiplication, without translation.
template<typename T0>
Vec3<T0> transform3x3(const Vec3<T0> &v) const
{
return Vec3<T0>(
static_cast<T0>(v[0] * MyBase::mm[ 0] + v[1] * MyBase::mm[ 4] + v[2] * MyBase::mm[ 8]),
static_cast<T0>(v[0] * MyBase::mm[ 1] + v[1] * MyBase::mm[ 5] + v[2] * MyBase::mm[ 9]),
static_cast<T0>(v[0] * MyBase::mm[ 2] + v[1] * MyBase::mm[ 6] + v[2] * MyBase::mm[10]));
}
private:
bool invert(Mat4<T> &inverse, T tolerance) const;
T det2(const Mat4<T> &a, int i0, int i1, int j0, int j1) const {
int i0row = i0 * 4;
int i1row = i1 * 4;
return a.mm[i0row+j0]*a.mm[i1row+j1] - a.mm[i0row+j1]*a.mm[i1row+j0];
}
T det3(const Mat4<T> &a, int i0, int i1, int i2,
int j0, int j1, int j2) const {
int i0row = i0 * 4;
return a.mm[i0row+j0]*det2(a, i1,i2, j1,j2) +
a.mm[i0row+j1]*det2(a, i1,i2, j2,j0) +
a.mm[i0row+j2]*det2(a, i1,i2, j0,j1);
}
}; // class Mat4
/// @relates Mat4
/// @brief Equality operator, does exact floating point comparisons
template <typename T0, typename T1>
bool operator==(const Mat4<T0> &m0, const Mat4<T1> &m1)
{
const T0 *t0 = m0.asPointer();
const T1 *t1 = m1.asPointer();
for (int i=0; i<16; ++i) if (!isExactlyEqual(t0[i], t1[i])) return false;
return true;
}
/// @relates Mat4
/// @brief Inequality operator, does exact floating point comparisons
template <typename T0, typename T1>
bool operator!=(const Mat4<T0> &m0, const Mat4<T1> &m1) { return !(m0 == m1); }
/// @relates Mat4
/// @brief Multiply each element of the given matrix by @a scalar and return the result.
template <typename S, typename T>
Mat4<typename promote<S, T>::type> operator*(S scalar, const Mat4<T> &m)
{
return m*scalar;
}
/// @relates Mat4
/// @brief Multiply each element of the given matrix by @a scalar and return the result.
template <typename S, typename T>
Mat4<typename promote<S, T>::type> operator*(const Mat4<T> &m, S scalar)
{
Mat4<typename promote<S, T>::type> result(m);
result *= scalar;
return result;
}
/// @relates Mat4
/// @brief Multiply @a _m by @a _v and return the resulting vector.
template<typename T, typename MT>
inline Vec4<typename promote<T, MT>::type>
operator*(const Mat4<MT> &_m,
const Vec4<T> &_v)
{
MT const *m = _m.asPointer();
return Vec4<typename promote<T, MT>::type>(
_v[0]*m[0] + _v[1]*m[1] + _v[2]*m[2] + _v[3]*m[3],
_v[0]*m[4] + _v[1]*m[5] + _v[2]*m[6] + _v[3]*m[7],
_v[0]*m[8] + _v[1]*m[9] + _v[2]*m[10] + _v[3]*m[11],
_v[0]*m[12] + _v[1]*m[13] + _v[2]*m[14] + _v[3]*m[15]);
}
/// @relates Mat4
/// @brief Multiply @a _v by @a _m and return the resulting vector.
template<typename T, typename MT>
inline Vec4<typename promote<T, MT>::type>
operator*(const Vec4<T> &_v,
const Mat4<MT> &_m)
{
MT const *m = _m.asPointer();
return Vec4<typename promote<T, MT>::type>(
_v[0]*m[0] + _v[1]*m[4] + _v[2]*m[8] + _v[3]*m[12],
_v[0]*m[1] + _v[1]*m[5] + _v[2]*m[9] + _v[3]*m[13],
_v[0]*m[2] + _v[1]*m[6] + _v[2]*m[10] + _v[3]*m[14],
_v[0]*m[3] + _v[1]*m[7] + _v[2]*m[11] + _v[3]*m[15]);
}
/// @relates Mat4
/// @brief Multiply @a _m by @a _v and return the resulting vector.
template<typename T, typename MT>
inline Vec3<typename promote<T, MT>::type>
operator*(const Mat4<MT> &_m, const Vec3<T> &_v)
{
MT const *m = _m.asPointer();
return Vec3<typename promote<T, MT>::type>(
_v[0]*m[0] + _v[1]*m[1] + _v[2]*m[2] + m[3],
_v[0]*m[4] + _v[1]*m[5] + _v[2]*m[6] + m[7],
_v[0]*m[8] + _v[1]*m[9] + _v[2]*m[10] + m[11]);
}
/// @relates Mat4
/// @brief Multiply @a _v by @a _m and return the resulting vector.
template<typename T, typename MT>
inline Vec3<typename promote<T, MT>::type>
operator*(const Vec3<T> &_v, const Mat4<MT> &_m)
{
MT const *m = _m.asPointer();
return Vec3<typename promote<T, MT>::type>(
_v[0]*m[0] + _v[1]*m[4] + _v[2]*m[8] + m[12],
_v[0]*m[1] + _v[1]*m[5] + _v[2]*m[9] + m[13],
_v[0]*m[2] + _v[1]*m[6] + _v[2]*m[10] + m[14]);
}
/// @relates Mat4
/// @brief Add corresponding elements of @a m0 and @a m1 and return the result.
template <typename T0, typename T1>
Mat4<typename promote<T0, T1>::type>
operator+(const Mat4<T0> &m0, const Mat4<T1> &m1)
{
Mat4<typename promote<T0, T1>::type> result(m0);
result += m1;
return result;
}
/// @relates Mat4
/// @brief Subtract corresponding elements of @a m0 and @a m1 and return the result.
template <typename T0, typename T1>
Mat4<typename promote<T0, T1>::type>
operator-(const Mat4<T0> &m0, const Mat4<T1> &m1)
{
Mat4<typename promote<T0, T1>::type> result(m0);
result -= m1;
return result;
}
/// @relates Mat4
/// @brief Multiply @a m0 by @a m1 and return the resulting matrix.
template <typename T0, typename T1>
Mat4<typename promote<T0, T1>::type>
operator*(const Mat4<T0> &m0, const Mat4<T1> &m1)
{
Mat4<typename promote<T0, T1>::type> result(m0);
result *= m1;
return result;
}
/// Transform a Vec3 by pre-multiplication, without translation.
/// Presumes this matrix is inverse of coordinate transform
/// Synonymous to "pretransform3x3"
template<typename T0, typename T1>
Vec3<T1> transformNormal(const Mat4<T0> &m, const Vec3<T1> &n)
{
return Vec3<T1>(
static_cast<T1>(m[0][0]*n[0] + m[0][1]*n[1] + m[0][2]*n[2]),
static_cast<T1>(m[1][0]*n[0] + m[1][1]*n[1] + m[1][2]*n[2]),
static_cast<T1>(m[2][0]*n[0] + m[2][1]*n[1] + m[2][2]*n[2]));
}
/// Invert via gauss-jordan elimination. Modified from dreamworks internal mx library
template<typename T>
bool Mat4<T>::invert(Mat4<T> &inverse, T tolerance) const
{
Mat4<T> temp(*this);
inverse.setIdentity();
// Forward elimination step
double det = 1.0;
for (int i = 0; i < 4; ++i) {
int row = i;
double max = fabs(temp[i][i]);
for (int k = i+1; k < 4; ++k) {
if (fabs(temp[k][i]) > max) {
row = k;
max = fabs(temp[k][i]);
}
}
if (isExactlyEqual(max, 0.0)) return false;
// must move pivot to row i
if (row != i) {
det = -det;
for (int k = 0; k < 4; ++k) {
std::swap(temp[row][k], temp[i][k]);
std::swap(inverse[row][k], inverse[i][k]);
}
}
double pivot = temp[i][i];
det *= pivot;
// scale row i
for (int k = 0; k < 4; ++k) {
temp[i][k] /= pivot;
inverse[i][k] /= pivot;
}
// eliminate in rows below i
for (int j = i+1; j < 4; ++j) {
double t = temp[j][i];
if (!isExactlyEqual(t, 0.0)) {
// subtract scaled row i from row j
for (int k = 0; k < 4; ++k) {
temp[j][k] -= temp[i][k] * t;
inverse[j][k] -= inverse[i][k] * t;
}
}
}
}
// Backward elimination step
for (int i = 3; i > 0; --i) {
for (int j = 0; j < i; ++j) {
double t = temp[j][i];
if (!isExactlyEqual(t, 0.0)) {
for (int k = 0; k < 4; ++k) {
inverse[j][k] -= inverse[i][k]*t;
}
}
}
}
return det*det >= tolerance*tolerance;
}
template <typename T>
inline bool isAffine(const Mat4<T>& m) {
return (m.col(3) == Vec4<T>(0, 0, 0, 1));
}
template <typename T>
inline bool hasTranslation(const Mat4<T>& m) {
return (m.row(3) != Vec4<T>(0, 0, 0, 1));
}
using Mat4s = Mat4<float>;
using Mat4d = Mat4<double>;
using Mat4f = Mat4d;
} // namespace math
template<> inline math::Mat4s zeroVal<math::Mat4s>() { return math::Mat4s::identity(); }
template<> inline math::Mat4d zeroVal<math::Mat4d>() { return math::Mat4d::identity(); }
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_UTIL_MAT4_H_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|