This file is indexed.

/usr/include/openvdb/math/Vec4.h is in libopenvdb-dev 5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

#ifndef OPENVDB_MATH_VEC4_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_VEC4_HAS_BEEN_INCLUDED

#include <openvdb/Exceptions.h>
#include "Math.h"
#include "Tuple.h"
#include "Vec3.h"
#include <algorithm>
#include <cmath>
#include <type_traits>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {

template<typename T> class Mat3;

template<typename T>
class Vec4: public Tuple<4, T>
{
public:
    using value_type = T;
    using ValueType = T;

    /// Trivial constructor, the vector is NOT initialized
    Vec4() {}

    /// @brief Construct a vector all of whose components have the given value.
    explicit Vec4(T val) { this->mm[0] = this->mm[1] = this->mm[2] = this->mm[3] = val; }

    /// Constructor with four arguments, e.g.   Vec4f v(1,2,3,4);
    Vec4(T x, T y, T z, T w)
    {
        this->mm[0] = x;
        this->mm[1] = y;
        this->mm[2] = z;
        this->mm[3] = w;
    }

    /// Constructor with array argument, e.g.   float a[4]; Vec4f v(a);
    template <typename Source>
    Vec4(Source *a)
    {
        this->mm[0] = a[0];
        this->mm[1] = a[1];
        this->mm[2] = a[2];
        this->mm[3] = a[3];
    }

    /// Conversion constructor
    template<typename Source>
    explicit Vec4(const Tuple<4, Source> &v)
    {
        this->mm[0] = static_cast<T>(v[0]);
        this->mm[1] = static_cast<T>(v[1]);
        this->mm[2] = static_cast<T>(v[2]);
        this->mm[3] = static_cast<T>(v[3]);
    }

    /// @brief Construct a vector all of whose components have the given value,
    /// which may be of an arithmetic type different from this vector's value type.
    /// @details Type conversion warnings are suppressed.
    template<typename Other>
    explicit Vec4(Other val,
        typename std::enable_if<std::is_arithmetic<Other>::value, Conversion>::type = Conversion{})
    {
        this->mm[0] = this->mm[1] = this->mm[2] = this->mm[3] = static_cast<T>(val);
    }

    /// Reference to the component, e.g.   v.x() = 4.5f;
    T& x() { return this->mm[0]; }
    T& y() { return this->mm[1]; }
    T& z() { return this->mm[2]; }
    T& w() { return this->mm[3]; }

    /// Get the component, e.g.   float f = v.y();
    T x() const { return this->mm[0]; }
    T y() const { return this->mm[1]; }
    T z() const { return this->mm[2]; }
    T w() const { return this->mm[3]; }

    T* asPointer() { return this->mm; }
    const T* asPointer() const { return this->mm; }

    /// Alternative indexed reference to the elements
    T& operator()(int i) { return this->mm[i]; }

    /// Alternative indexed constant reference to the elements,
    T operator()(int i) const { return this->mm[i]; }

    /// Returns a Vec3 with the first three elements of the Vec4.
    Vec3<T> getVec3() const { return Vec3<T>(this->mm[0], this->mm[1], this->mm[2]); }

    /// "this" vector gets initialized to [x, y, z, w],
    /// calling v.init(); has same effect as calling v = Vec4::zero();
    const Vec4<T>& init(T x=0, T y=0, T z=0, T w=0)
    {
        this->mm[0] = x; this->mm[1] = y; this->mm[2] = z; this->mm[3] = w;
        return *this;
    }

    /// Set "this" vector to zero
    const Vec4<T>& setZero()
    {
        this->mm[0] = 0; this->mm[1] = 0; this->mm[2] = 0; this->mm[3] = 0;
        return *this;
    }

    /// Assignment operator
    template<typename Source>
    const Vec4<T>& operator=(const Vec4<Source> &v)
    {
        // note: don't static_cast because that suppresses warnings
        this->mm[0] = v[0];
        this->mm[1] = v[1];
        this->mm[2] = v[2];
        this->mm[3] = v[3];

        return *this;
    }

    /// Test if "this" vector is equivalent to vector v with tolerance
    /// of eps
    bool eq(const Vec4<T> &v, T eps=1.0e-8) const
    {
        return isApproxEqual(this->mm[0], v.mm[0], eps) &&
            isApproxEqual(this->mm[1], v.mm[1], eps) &&
            isApproxEqual(this->mm[2], v.mm[2], eps) &&
            isApproxEqual(this->mm[3], v.mm[3], eps);
    }

    /// Negation operator, for e.g.   v1 = -v2;
    Vec4<T> operator-() const
    {
        return Vec4<T>(
            -this->mm[0],
            -this->mm[1],
            -this->mm[2],
            -this->mm[3]);
    }

    /// this = v1 + v2
    /// "this", v1 and v2 need not be distinct objects, e.g. v.add(v1,v);
    template <typename T0, typename T1>
    const Vec4<T>& add(const Vec4<T0> &v1, const Vec4<T1> &v2)
    {
        this->mm[0] = v1[0] + v2[0];
        this->mm[1] = v1[1] + v2[1];
        this->mm[2] = v1[2] + v2[2];
        this->mm[3] = v1[3] + v2[3];

        return *this;
    }


    /// this = v1 - v2
    /// "this", v1 and v2 need not be distinct objects, e.g. v.sub(v1,v);
    template <typename T0, typename T1>
    const Vec4<T>& sub(const Vec4<T0> &v1, const Vec4<T1> &v2)
    {
        this->mm[0] = v1[0] - v2[0];
        this->mm[1] = v1[1] - v2[1];
        this->mm[2] = v1[2] - v2[2];
        this->mm[3] = v1[3] - v2[3];

        return *this;
    }

    /// this =  scalar*v, v need not be a distinct object from "this",
    /// e.g. v.scale(1.5,v1);
    template <typename T0, typename T1>
    const Vec4<T>& scale(T0 scale, const Vec4<T1> &v)
    {
        this->mm[0] = scale * v[0];
        this->mm[1] = scale * v[1];
        this->mm[2] = scale * v[2];
        this->mm[3] = scale * v[3];

        return *this;
    }

    template <typename T0, typename T1>
    const Vec4<T> &div(T0 scalar, const Vec4<T1> &v)
    {
        this->mm[0] = v[0] / scalar;
        this->mm[1] = v[1] / scalar;
        this->mm[2] = v[2] / scalar;
        this->mm[3] = v[3] / scalar;

        return *this;
    }

    /// Dot product
    T dot(const Vec4<T> &v) const
    {
        return (this->mm[0]*v.mm[0] + this->mm[1]*v.mm[1]
            + this->mm[2]*v.mm[2] + this->mm[3]*v.mm[3]);
    }

    /// Length of the vector
    T length() const
    {
        return sqrt(
            this->mm[0]*this->mm[0] +
            this->mm[1]*this->mm[1] +
            this->mm[2]*this->mm[2] +
            this->mm[3]*this->mm[3]);
    }


    /// Squared length of the vector, much faster than length() as it
    /// does not involve square root
    T lengthSqr() const
    {
        return (this->mm[0]*this->mm[0] + this->mm[1]*this->mm[1]
            + this->mm[2]*this->mm[2] + this->mm[3]*this->mm[3]);
    }

    /// Return a reference to itself after the exponent has been
    /// applied to all the vector components.
    inline const Vec4<T>& exp()
    {
        this->mm[0] = std::exp(this->mm[0]);
        this->mm[1] = std::exp(this->mm[1]);
        this->mm[2] = std::exp(this->mm[2]);
        this->mm[3] = std::exp(this->mm[3]);
        return *this;
    }

    /// Return a reference to itself after log has been
    /// applied to all the vector components.
    inline const Vec4<T>& log()
    {
        this->mm[0] = std::log(this->mm[0]);
        this->mm[1] = std::log(this->mm[1]);
        this->mm[2] = std::log(this->mm[2]);
        this->mm[3] = std::log(this->mm[3]);
        return *this;
    }

    /// Return the sum of all the vector components.
    inline T sum() const
    {
        return this->mm[0] + this->mm[1] + this->mm[2] + this->mm[3];
    }

    /// Return the product of all the vector components.
    inline T product() const
    {
        return this->mm[0] * this->mm[1] * this->mm[2] * this->mm[3];
    }

    /// this = normalized this
    bool normalize(T eps=1.0e-8)
    {
        T d = length();
        if (isApproxEqual(d, T(0), eps)) {
            return false;
        }
        *this *= (T(1) / d);
        return true;
    }

    /// return normalized this, throws if null vector
    Vec4<T> unit(T eps=0) const
    {
        T d;
        return unit(eps, d);
    }

    /// return normalized this and length, throws if null vector
    Vec4<T> unit(T eps, T& len) const
    {
        len = length();
        if (isApproxEqual(len, T(0), eps)) {
            throw ArithmeticError("Normalizing null 4-vector");
        }
        return *this / len;
    }

    /// return normalized this, or (1, 0, 0, 0) if this is null vector
    Vec4<T> unitSafe() const
    {
        T l2 = lengthSqr();
        return l2 ? *this / static_cast<T>(sqrt(l2)) : Vec4<T>(1, 0, 0, 0);
    }

    /// Multiply each element of this vector by @a scalar.
    template <typename S>
    const Vec4<T> &operator*=(S scalar)
    {
        this->mm[0] *= scalar;
        this->mm[1] *= scalar;
        this->mm[2] *= scalar;
        this->mm[3] *= scalar;
        return *this;
    }

    /// Multiply each element of this vector by the corresponding element of the given vector.
    template <typename S>
    const Vec4<T> &operator*=(const Vec4<S> &v1)
    {
        this->mm[0] *= v1[0];
        this->mm[1] *= v1[1];
        this->mm[2] *= v1[2];
        this->mm[3] *= v1[3];

        return *this;
    }

    /// Divide each element of this vector by @a scalar.
    template <typename S>
    const Vec4<T> &operator/=(S scalar)
    {
        this->mm[0] /= scalar;
        this->mm[1] /= scalar;
        this->mm[2] /= scalar;
        this->mm[3] /= scalar;
        return *this;
    }

    /// Divide each element of this vector by the corresponding element of the given vector.
    template <typename S>
    const Vec4<T> &operator/=(const Vec4<S> &v1)
    {
        this->mm[0] /= v1[0];
        this->mm[1] /= v1[1];
        this->mm[2] /= v1[2];
        this->mm[3] /= v1[3];
        return *this;
    }

    /// Add @a scalar to each element of this vector.
    template <typename S>
    const Vec4<T> &operator+=(S scalar)
    {
        this->mm[0] += scalar;
        this->mm[1] += scalar;
        this->mm[2] += scalar;
        this->mm[3] += scalar;
        return *this;
    }

    /// Add each element of the given vector to the corresponding element of this vector.
    template <typename S>
    const Vec4<T> &operator+=(const Vec4<S> &v1)
    {
        this->mm[0] += v1[0];
        this->mm[1] += v1[1];
        this->mm[2] += v1[2];
        this->mm[3] += v1[3];
        return *this;
    }

    /// Subtract @a scalar from each element of this vector.
    template <typename S>
    const Vec4<T> &operator-=(S scalar)
    {
        this->mm[0] -= scalar;
        this->mm[1] -= scalar;
        this->mm[2] -= scalar;
        this->mm[3] -= scalar;
        return *this;
    }

    /// Subtract each element of the given vector from the corresponding element of this vector.
    template <typename S>
    const Vec4<T> &operator-=(const Vec4<S> &v1)
    {
        this->mm[0] -= v1[0];
        this->mm[1] -= v1[1];
        this->mm[2] -= v1[2];
        this->mm[3] -= v1[3];
        return *this;
    }

    // Number of cols, rows, elements
    static unsigned numRows() { return 1; }
    static unsigned numColumns()  { return 4; }
    static unsigned numElements()  { return 4; }

    /// Predefined constants, e.g.   Vec4f v = Vec4f::xNegAxis();
    static Vec4<T> zero() { return Vec4<T>(0, 0, 0, 0); }
    static Vec4<T> origin() { return Vec4<T>(0, 0, 0, 1); }
    static Vec4<T> ones() { return Vec4<T>(1, 1, 1, 1); }
};

/// Equality operator, does exact floating point comparisons
template <typename T0, typename T1>
inline bool operator==(const Vec4<T0> &v0, const Vec4<T1> &v1)
{
    return
        isExactlyEqual(v0[0], v1[0]) &&
        isExactlyEqual(v0[1], v1[1]) &&
        isExactlyEqual(v0[2], v1[2]) &&
        isExactlyEqual(v0[3], v1[3]);
}

/// Inequality operator, does exact floating point comparisons
template <typename T0, typename T1>
inline bool operator!=(const Vec4<T0> &v0, const Vec4<T1> &v1) { return !(v0==v1); }

/// Multiply each element of the given vector by @a scalar and return the result.
template <typename S, typename T>
inline Vec4<typename promote<S, T>::type> operator*(S scalar, const Vec4<T> &v)
{ return v*scalar; }

/// Multiply each element of the given vector by @a scalar and return the result.
template <typename S, typename T>
inline Vec4<typename promote<S, T>::type> operator*(const Vec4<T> &v, S scalar)
{
    Vec4<typename promote<S, T>::type> result(v);
    result *= scalar;
    return result;
}

/// Multiply corresponding elements of @a v0 and @a v1 and return the result.
template <typename T0, typename T1>
inline Vec4<typename promote<T0, T1>::type> operator*(const Vec4<T0> &v0, const Vec4<T1> &v1)
{
    Vec4<typename promote<T0, T1>::type> result(v0[0]*v1[0],
                                                v0[1]*v1[1],
                                                v0[2]*v1[2],
                                                v0[3]*v1[3]);
    return result;
}

/// Divide @a scalar by each element of the given vector and return the result.
template <typename S, typename T>
inline Vec4<typename promote<S, T>::type> operator/(S scalar, const Vec4<T> &v)
{
    return Vec4<typename promote<S, T>::type>(scalar/v[0],
                                              scalar/v[1],
                                              scalar/v[2],
                                              scalar/v[3]);
}

/// Divide each element of the given vector by @a scalar and return the result.
template <typename S, typename T>
inline Vec4<typename promote<S, T>::type> operator/(const Vec4<T> &v, S scalar)
{
    Vec4<typename promote<S, T>::type> result(v);
    result /= scalar;
    return result;
}

/// Divide corresponding elements of @a v0 and @a v1 and return the result.
template <typename T0, typename T1>
inline Vec4<typename promote<T0, T1>::type> operator/(const Vec4<T0> &v0, const Vec4<T1> &v1)
{
    Vec4<typename promote<T0, T1>::type>
        result(v0[0]/v1[0], v0[1]/v1[1], v0[2]/v1[2], v0[3]/v1[3]);
    return result;
}

/// Add corresponding elements of @a v0 and @a v1 and return the result.
template <typename T0, typename T1>
inline Vec4<typename promote<T0, T1>::type> operator+(const Vec4<T0> &v0, const Vec4<T1> &v1)
{
    Vec4<typename promote<T0, T1>::type> result(v0);
    result += v1;
    return result;
}

/// Add @a scalar to each element of the given vector and return the result.
template <typename S, typename T>
inline Vec4<typename promote<S, T>::type> operator+(const Vec4<T> &v, S scalar)
{
    Vec4<typename promote<S, T>::type> result(v);
    result += scalar;
    return result;
}

/// Subtract corresponding elements of @a v0 and @a v1 and return the result.
template <typename T0, typename T1>
inline Vec4<typename promote<T0, T1>::type> operator-(const Vec4<T0> &v0, const Vec4<T1> &v1)
{
    Vec4<typename promote<T0, T1>::type> result(v0);
    result -= v1;
    return result;
}

/// Subtract @a scalar from each element of the given vector and return the result.
template <typename S, typename T>
inline Vec4<typename promote<S, T>::type> operator-(const Vec4<T> &v, S scalar)
{
    Vec4<typename promote<S, T>::type> result(v);
    result -= scalar;
    return result;
}

template <typename T>
inline bool
isApproxEqual(const Vec4<T>& a, const Vec4<T>& b)
{
    return a.eq(b);
}
template <typename T>
inline bool
isApproxEqual(const Vec4<T>& a, const Vec4<T>& b, const Vec4<T>& eps)
{
    return isApproxEqual(a[0], b[0], eps[0]) &&
           isApproxEqual(a[1], b[1], eps[1]) &&
           isApproxEqual(a[2], b[2], eps[2]) &&
           isApproxEqual(a[3], b[3], eps[3]);
}

template<typename T>
inline Vec4<T>
Abs(const Vec4<T>& v)
{
    return Vec4<T>(Abs(v[0]), Abs(v[1]), Abs(v[2]), Abs(v[3]));
}

/// @remark We are switching to a more explicit name because the semantics
/// are different from std::min/max. In that case, the function returns a
/// reference to one of the objects based on a comparator. Here, we must
/// fabricate a new object which might not match either of the inputs.

/// Return component-wise minimum of the two vectors.
template <typename T>
inline Vec4<T> minComponent(const Vec4<T> &v1, const Vec4<T> &v2)
{
    return Vec4<T>(
            std::min(v1.x(), v2.x()),
            std::min(v1.y(), v2.y()),
            std::min(v1.z(), v2.z()),
            std::min(v1.w(), v2.w()));
}

/// Return component-wise maximum of the two vectors.
template <typename T>
inline Vec4<T> maxComponent(const Vec4<T> &v1, const Vec4<T> &v2)
{
    return Vec4<T>(
            std::max(v1.x(), v2.x()),
            std::max(v1.y(), v2.y()),
            std::max(v1.z(), v2.z()),
            std::max(v1.w(), v2.w()));
}

/// @brief Return a vector with the exponent applied to each of
/// the components of the input vector.
template <typename T>
inline Vec4<T> Exp(Vec4<T> v) { return v.exp(); }

/// @brief Return a vector with log applied to each of
/// the components of the input vector.
template <typename T>
inline Vec4<T> Log(Vec4<T> v) { return v.log(); }

using Vec4i = Vec4<int32_t>;
using Vec4ui = Vec4<uint32_t>;
using Vec4s = Vec4<float>;
using Vec4d = Vec4<double>;

} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_MATH_VEC4_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )