/usr/include/openvdb/tools/Clip.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
/// @file Clip.h
///
/// @brief Functions to clip a grid against a bounding box, a camera frustum,
/// or another grid's active voxel topology
#ifndef OPENVDB_TOOLS_CLIP_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_CLIP_HAS_BEEN_INCLUDED
#include <openvdb/Grid.h>
#include <openvdb/math/Math.h> // for math::isNegative()
#include <openvdb/math/Maps.h> // for math::NonlinearFrustumMap
#include <openvdb/tree/LeafManager.h>
#include "GridTransformer.h" // for tools::resampleToMatch()
#include "Prune.h"
#include <tbb/blocked_range.h>
#include <tbb/parallel_reduce.h>
#include <type_traits> // for std::enable_if, std::is_same
#include <vector>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
/// @brief Clip the given grid against a world-space bounding box
/// and return a new grid containing the result.
/// @param grid the grid to be clipped
/// @param bbox a world-space bounding box
/// @param keepInterior if true, discard voxels that lie outside the bounding box;
/// if false, discard voxels that lie inside the bounding box
/// @warning Clipping a level set will likely produce a grid that is
/// no longer a valid level set.
template<typename GridType>
inline typename GridType::Ptr
clip(const GridType& grid, const BBoxd& bbox, bool keepInterior = true);
/// @brief Clip the given grid against a frustum and return a new grid containing the result.
/// @param grid the grid to be clipped
/// @param frustum a frustum map
/// @param keepInterior if true, discard voxels that lie outside the frustum;
/// if false, discard voxels that lie inside the frustum
/// @warning Clipping a level set will likely produce a grid that is
/// no longer a valid level set.
template<typename GridType>
inline typename GridType::Ptr
clip(const GridType& grid, const math::NonlinearFrustumMap& frustum, bool keepInterior = true);
/// @brief Clip a grid against the active voxels of another grid
/// and return a new grid containing the result.
/// @param grid the grid to be clipped
/// @param mask a grid whose active voxels form a boolean clipping mask
/// @param keepInterior if true, discard voxels that do not intersect the mask;
/// if false, discard voxels that intersect the mask
/// @details The mask grid need not have the same transform as the source grid.
/// Also, if the mask grid is a level set, consider using tools::sdfInteriorMask
/// to construct a new mask comprising the interior (rather than the narrow band)
/// of the level set.
/// @warning Clipping a level set will likely produce a grid that is
/// no longer a valid level set.
template<typename GridType, typename MaskTreeType>
inline typename GridType::Ptr
clip(const GridType& grid, const Grid<MaskTreeType>& mask, bool keepInterior = true);
////////////////////////////////////////
namespace clip_internal {
// Use either MaskGrids or BoolGrids internally.
// (MaskGrids have a somewhat lower memory footprint.)
using MaskValueType = ValueMask;
//using MaskValueType = bool;
template<typename TreeT>
class MaskInteriorVoxels
{
public:
using ValueT = typename TreeT::ValueType;
using LeafNodeT = typename TreeT::LeafNodeType;
MaskInteriorVoxels(const TreeT& tree): mAcc(tree) {}
template<typename LeafNodeType>
void operator()(LeafNodeType& leaf, size_t /*leafIndex*/) const
{
const auto* refLeaf = mAcc.probeConstLeaf(leaf.origin());
if (refLeaf) {
for (auto iter = leaf.beginValueOff(); iter; ++iter) {
const auto pos = iter.pos();
leaf.setActiveState(pos, math::isNegative(refLeaf->getValue(pos)));
}
}
}
private:
tree::ValueAccessor<const TreeT> mAcc;
};
////////////////////////////////////////
template<typename TreeT>
class CopyLeafNodes
{
public:
using MaskTreeT = typename TreeT::template ValueConverter<MaskValueType>::Type;
using MaskLeafManagerT = tree::LeafManager<const MaskTreeT>;
CopyLeafNodes(const TreeT&, const MaskLeafManagerT&);
void run(bool threaded = true);
typename TreeT::Ptr tree() const { return mNewTree; }
CopyLeafNodes(CopyLeafNodes&, tbb::split);
void operator()(const tbb::blocked_range<size_t>&);
void join(const CopyLeafNodes& rhs) { mNewTree->merge(*rhs.mNewTree); }
private:
const MaskTreeT* mClipMask;
const TreeT* mTree;
const MaskLeafManagerT* mLeafNodes;
typename TreeT::Ptr mNewTree;
};
template<typename TreeT>
CopyLeafNodes<TreeT>::CopyLeafNodes(const TreeT& tree, const MaskLeafManagerT& leafNodes)
: mTree(&tree)
, mLeafNodes(&leafNodes)
, mNewTree(new TreeT(mTree->background()))
{
}
template<typename TreeT>
CopyLeafNodes<TreeT>::CopyLeafNodes(CopyLeafNodes& rhs, tbb::split)
: mTree(rhs.mTree)
, mLeafNodes(rhs.mLeafNodes)
, mNewTree(new TreeT(mTree->background()))
{
}
template<typename TreeT>
void
CopyLeafNodes<TreeT>::run(bool threaded)
{
if (threaded) tbb::parallel_reduce(mLeafNodes->getRange(), *this);
else (*this)(mLeafNodes->getRange());
}
template<typename TreeT>
void
CopyLeafNodes<TreeT>::operator()(const tbb::blocked_range<size_t>& range)
{
tree::ValueAccessor<TreeT> acc(*mNewTree);
tree::ValueAccessor<const TreeT> refAcc(*mTree);
for (auto n = range.begin(); n != range.end(); ++n) {
const auto& maskLeaf = mLeafNodes->leaf(n);
const auto& ijk = maskLeaf.origin();
const auto* refLeaf = refAcc.probeConstLeaf(ijk);
auto* newLeaf = acc.touchLeaf(ijk);
if (refLeaf) {
for (auto it = maskLeaf.cbeginValueOn(); it; ++it) {
const auto pos = it.pos();
newLeaf->setValueOnly(pos, refLeaf->getValue(pos));
newLeaf->setActiveState(pos, refLeaf->isValueOn(pos));
}
} else {
typename TreeT::ValueType value;
bool isActive = refAcc.probeValue(ijk, value);
for (auto it = maskLeaf.cbeginValueOn(); it; ++it) {
const auto pos = it.pos();
newLeaf->setValueOnly(pos, value);
newLeaf->setActiveState(pos, isActive);
}
}
}
}
////////////////////////////////////////
struct BoolSampler
{
static const char* name() { return "bin"; }
static int radius() { return 2; }
static bool mipmap() { return false; }
static bool consistent() { return true; }
template<class TreeT>
static bool sample(const TreeT& inTree,
const Vec3R& inCoord, typename TreeT::ValueType& result)
{
return inTree.probeValue(Coord::floor(inCoord), result);
}
};
////////////////////////////////////////
// Convert a grid of one type to a grid of another type
template<typename FromGridT, typename ToGridT>
struct ConvertGrid
{
using FromGridCPtrT = typename FromGridT::ConstPtr;
using ToGridPtrT = typename ToGridT::Ptr;
ToGridPtrT operator()(const FromGridCPtrT& grid) { return ToGridPtrT(new ToGridT(*grid)); }
};
// Partial specialization that avoids copying when
// the input and output grid types are the same
template<typename GridT>
struct ConvertGrid<GridT, GridT>
{
using GridCPtrT = typename GridT::ConstPtr;
GridCPtrT operator()(const GridCPtrT& grid) { return grid; }
};
////////////////////////////////////////
// Convert a grid of arbitrary type to a mask grid with the same tree configuration
// and return a pointer to the new grid.
/// @private
template<typename GridT>
inline typename std::enable_if<!std::is_same<MaskValueType, typename GridT::BuildType>::value,
typename GridT::template ValueConverter<MaskValueType>::Type::Ptr>::type
convertToMaskGrid(const GridT& grid)
{
using MaskGridT = typename GridT::template ValueConverter<MaskValueType>::Type;
auto mask = MaskGridT::create(/*background=*/false);
mask->topologyUnion(grid);
mask->setTransform(grid.constTransform().copy());
return mask;
}
// Overload that avoids any processing if the input grid is already a mask grid
/// @private
template<typename GridT>
inline typename std::enable_if<std::is_same<MaskValueType, typename GridT::BuildType>::value,
typename GridT::ConstPtr>::type
convertToMaskGrid(const GridT& grid)
{
return grid.copy(); // shallow copy
}
////////////////////////////////////////
/// @private
template<typename GridType>
inline typename GridType::Ptr
doClip(
const GridType& grid,
const typename GridType::template ValueConverter<MaskValueType>::Type& clipMask,
bool keepInterior)
{
using TreeT = typename GridType::TreeType;
using MaskTreeT = typename GridType::TreeType::template ValueConverter<MaskValueType>::Type;
const auto gridClass = grid.getGridClass();
const auto& tree = grid.tree();
MaskTreeT gridMask(false);
gridMask.topologyUnion(tree);
if (gridClass == GRID_LEVEL_SET) {
tree::LeafManager<MaskTreeT> leafNodes(gridMask);
leafNodes.foreach(MaskInteriorVoxels<TreeT>(tree));
tree::ValueAccessor<const TreeT> acc(tree);
typename MaskTreeT::ValueAllIter iter(gridMask);
iter.setMaxDepth(MaskTreeT::ValueAllIter::LEAF_DEPTH - 1);
for ( ; iter; ++iter) {
iter.setActiveState(math::isNegative(acc.getValue(iter.getCoord())));
}
}
if (keepInterior) {
gridMask.topologyIntersection(clipMask.constTree());
} else {
gridMask.topologyDifference(clipMask.constTree());
}
typename GridType::Ptr outGrid;
{
// Copy voxel values and states.
tree::LeafManager<const MaskTreeT> leafNodes(gridMask);
CopyLeafNodes<TreeT> maskOp(tree, leafNodes);
maskOp.run();
outGrid = GridType::create(maskOp.tree());
}
{
// Copy tile values and states.
tree::ValueAccessor<const TreeT> refAcc(tree);
tree::ValueAccessor<const MaskTreeT> maskAcc(gridMask);
typename TreeT::ValueAllIter it(outGrid->tree());
it.setMaxDepth(TreeT::ValueAllIter::LEAF_DEPTH - 1);
for ( ; it; ++it) {
Coord ijk = it.getCoord();
if (maskAcc.isValueOn(ijk)) {
typename TreeT::ValueType value;
bool isActive = refAcc.probeValue(ijk, value);
it.setValue(value);
if (!isActive) it.setValueOff();
}
}
}
outGrid->setTransform(grid.transform().copy());
if (gridClass != GRID_LEVEL_SET) outGrid->setGridClass(gridClass);
return outGrid;
}
} // namespace clip_internal
////////////////////////////////////////
/// @private
template<typename GridType>
inline typename GridType::Ptr
clip(const GridType& grid, const BBoxd& bbox, bool keepInterior)
{
using MaskValueT = clip_internal::MaskValueType;
using MaskGridT = typename GridType::template ValueConverter<MaskValueT>::Type;
// Transform the world-space bounding box into the source grid's index space.
Vec3d idxMin, idxMax;
math::calculateBounds(grid.constTransform(), bbox.min(), bbox.max(), idxMin, idxMax);
CoordBBox region(Coord::floor(idxMin), Coord::floor(idxMax));
// Construct a boolean mask grid that is true inside the index-space bounding box
// and false everywhere else.
MaskGridT clipMask(/*background=*/false);
clipMask.fill(region, /*value=*/true, /*active=*/true);
return clip_internal::doClip(grid, clipMask, keepInterior);
}
/// @private
template<typename SrcGridType, typename ClipTreeType>
inline typename SrcGridType::Ptr
clip(const SrcGridType& srcGrid, const Grid<ClipTreeType>& clipGrid, bool keepInterior)
{
using MaskValueT = clip_internal::MaskValueType;
using ClipGridType = Grid<ClipTreeType>;
using SrcMaskGridType = typename SrcGridType::template ValueConverter<MaskValueT>::Type;
using ClipMaskGridType = typename ClipGridType::template ValueConverter<MaskValueT>::Type;
// Convert the clipping grid to a boolean-valued mask grid with the same tree configuration.
auto maskGrid = clip_internal::convertToMaskGrid(clipGrid);
// Resample the mask grid into the source grid's index space.
if (srcGrid.constTransform() != maskGrid->constTransform()) {
auto resampledMask = ClipMaskGridType::create(/*background=*/false);
resampledMask->setTransform(srcGrid.constTransform().copy());
tools::resampleToMatch<clip_internal::BoolSampler>(*maskGrid, *resampledMask);
tools::prune(resampledMask->tree());
maskGrid = resampledMask;
}
// Convert the mask grid to a mask grid with the same tree configuration as the source grid.
auto clipMask = clip_internal::ConvertGrid<
/*from=*/ClipMaskGridType, /*to=*/SrcMaskGridType>()(maskGrid);
// Clip the source grid against the mask grid.
return clip_internal::doClip(srcGrid, *clipMask, keepInterior);
}
/// @private
template<typename GridType>
inline typename GridType::Ptr
clip(const GridType& inGrid, const math::NonlinearFrustumMap& frustumMap, bool keepInterior)
{
using ValueT = typename GridType::ValueType;
using TreeT = typename GridType::TreeType;
using LeafT = typename TreeT::LeafNodeType;
const auto& gridXform = inGrid.transform();
const auto frustumIndexBBox = frustumMap.getBBox();
// Return true if index-space point (i,j,k) lies inside the frustum.
auto frustumContainsCoord = [&](const Coord& ijk) -> bool {
auto xyz = gridXform.indexToWorld(ijk);
xyz = frustumMap.applyInverseMap(xyz);
return frustumIndexBBox.isInside(xyz);
};
// Return the frustum index-space bounding box of the corners of
// the given grid index-space bounding box.
auto toFrustumIndexSpace = [&](const CoordBBox& inBBox) -> BBoxd {
const Coord bounds[2] = { inBBox.min(), inBBox.max() };
Coord ijk;
BBoxd outBBox;
for (int i = 0; i < 8; ++i) {
ijk[0] = bounds[(i & 1) >> 0][0];
ijk[1] = bounds[(i & 2) >> 1][1];
ijk[2] = bounds[(i & 4) >> 2][2];
auto xyz = gridXform.indexToWorld(ijk);
xyz = frustumMap.applyInverseMap(xyz);
outBBox.expand(xyz);
}
return outBBox;
};
// Construct an output grid with the same transform and metadata as the input grid.
#if OPENVDB_ABI_VERSION_NUMBER <= 3
auto outGrid = inGrid.copy(CP_NEW);
#else
auto outGrid = inGrid.copyWithNewTree();
#endif
if (outGrid->getGridClass() == GRID_LEVEL_SET) {
// After clipping, a level set grid might no longer be a valid SDF.
outGrid->setGridClass(GRID_UNKNOWN);
}
const auto& bg = outGrid->background();
auto outAcc = outGrid->getAccessor();
// Copy active and inactive tiles that intersect the clipping region
// from the input grid to the output grid.
// ("Clipping region" refers to either the interior or the exterior
// of the frustum, depending on the value of keepInterior.)
auto tileIter = inGrid.beginValueAll();
tileIter.setMaxDepth(GridType::ValueAllIter::LEAF_DEPTH - 1);
CoordBBox tileBBox;
for ( ; tileIter; ++tileIter) {
const bool tileActive = tileIter.isValueOn();
const auto& tileValue = tileIter.getValue();
// Skip background tiles.
if (!tileActive && math::isApproxEqual(tileValue, bg)) continue;
// Transform the tile's bounding box into frustum index space.
tileIter.getBoundingBox(tileBBox);
const auto tileFrustumBBox = toFrustumIndexSpace(tileBBox);
// Determine whether any or all of the tile intersects the clipping region.
enum class CopyTile { kNone, kPartial, kFull };
auto copyTile = CopyTile::kNone;
if (keepInterior) {
if (frustumIndexBBox.isInside(tileFrustumBBox)) {
copyTile = CopyTile::kFull;
} else if (frustumIndexBBox.hasOverlap(tileFrustumBBox)) {
copyTile = CopyTile::kPartial;
}
} else {
if (!frustumIndexBBox.hasOverlap(tileFrustumBBox)) {
copyTile = CopyTile::kFull;
} else if (!frustumIndexBBox.isInside(tileFrustumBBox)) {
copyTile = CopyTile::kPartial;
}
}
switch (copyTile) {
case CopyTile::kNone:
break;
case CopyTile::kFull:
// Copy the entire tile.
outAcc.addTile(tileIter.getLevel(), tileBBox.min(), tileValue, tileActive);
break;
case CopyTile::kPartial:
// Copy only voxels inside the clipping region.
for (std::vector<CoordBBox> bboxVec = { tileBBox }; !bboxVec.empty(); ) {
// For efficiency, subdivide sufficiently large tiles and discard
// subregions based on additional bounding box intersection tests.
// The mimimum subregion size is chosen so that cost of the
// bounding box test is comparable to testing every voxel.
if (bboxVec.back().volume() > 64 && bboxVec.back().is_divisible()) {
// Subdivide this region in-place and append the other half to the list.
bboxVec.emplace_back(bboxVec.back(), tbb::split{});
continue;
}
auto subBBox = bboxVec.back();
bboxVec.pop_back();
// Discard the subregion if it lies completely outside the clipping region.
if (keepInterior) {
if (!frustumIndexBBox.hasOverlap(toFrustumIndexSpace(subBBox))) continue;
} else {
if (frustumIndexBBox.isInside(toFrustumIndexSpace(subBBox))) continue;
}
// Test every voxel within the subregion.
for (const auto& ijk: subBBox) {
if (frustumContainsCoord(ijk) == keepInterior) {
if (tileActive) {
outAcc.setValueOn(ijk, tileValue);
} else {
outAcc.setValueOff(ijk, tileValue);
}
}
}
}
break;
}
}
tools::prune(outGrid->tree());
// Ensure that the output grid has the same leaf node topology as the input grid,
// with the exception of leaf nodes that lie completely outside the clipping region.
// (This operation is serial.)
for (auto leafIter = inGrid.constTree().beginLeaf(); leafIter; ++leafIter) {
const auto leafBBox = leafIter->getNodeBoundingBox();
const auto leafFrustumBBox = toFrustumIndexSpace(leafBBox);
if (keepInterior) {
if (frustumIndexBBox.hasOverlap(leafFrustumBBox)) {
outAcc.touchLeaf(leafBBox.min());
}
} else {
if (!frustumIndexBBox.hasOverlap(leafFrustumBBox)
|| !frustumIndexBBox.isInside(leafFrustumBBox))
{
outAcc.touchLeaf(leafBBox.min());
}
}
}
// In parallel across output leaf nodes, copy leaf voxels
// from the input grid to the output grid.
tree::LeafManager<TreeT> outLeafNodes{outGrid->tree()};
outLeafNodes.foreach(
[&](LeafT& leaf, size_t /*idx*/) {
auto inAcc = inGrid.getConstAccessor();
ValueT val;
for (auto voxelIter = leaf.beginValueAll(); voxelIter; ++voxelIter) {
const auto ijk = voxelIter.getCoord();
if (frustumContainsCoord(ijk) == keepInterior) {
const bool active = inAcc.probeValue(ijk, val);
voxelIter.setValue(val);
voxelIter.setValueOn(active);
}
}
}
);
return outGrid;
}
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_CLIP_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|