/usr/include/openvdb/tools/Composite.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Composite.h
///
/// @brief Functions to efficiently perform various compositing operations on grids
///
/// @authors Peter Cucka, Mihai Alden, Ken Museth
#ifndef OPENVDB_TOOLS_COMPOSITE_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_COMPOSITE_HAS_BEEN_INCLUDED
#include <openvdb/Platform.h>
#include <openvdb/Exceptions.h>
#include <openvdb/Types.h>
#include <openvdb/Grid.h>
#include <openvdb/math/Math.h> // for isExactlyEqual()
#include "ValueTransformer.h" // for transformValues()
#include "Prune.h"// for prune
#include "SignedFloodFill.h" // for signedFloodFill()
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <tbb/task_group.h>
#include <tbb/task_scheduler_init.h>
#include <type_traits>
#include <functional>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
/// @brief Given two level set grids, replace the A grid with the union of A and B.
/// @throw ValueError if the background value of either grid is not greater than zero.
/// @note This operation always leaves the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void csgUnion(GridOrTreeT& a, GridOrTreeT& b, bool prune = true);
/// @brief Given two level set grids, replace the A grid with the intersection of A and B.
/// @throw ValueError if the background value of either grid is not greater than zero.
/// @note This operation always leaves the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void csgIntersection(GridOrTreeT& a, GridOrTreeT& b, bool prune = true);
/// @brief Given two level set grids, replace the A grid with the difference A / B.
/// @throw ValueError if the background value of either grid is not greater than zero.
/// @note This operation always leaves the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void csgDifference(GridOrTreeT& a, GridOrTreeT& b, bool prune = true);
/// @brief Threaded CSG union operation that produces a new grid or tree from
/// immutable inputs.
/// @return The CSG union of the @a and @b level set inputs.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline typename GridOrTreeT::Ptr csgUnionCopy(const GridOrTreeT& a, const GridOrTreeT& b);
/// @brief Threaded CSG intersection operation that produces a new grid or tree from
/// immutable inputs.
/// @return The CSG intersection of the @a and @b level set inputs.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline typename GridOrTreeT::Ptr csgIntersectionCopy(const GridOrTreeT& a, const GridOrTreeT& b);
/// @brief Threaded CSG difference operation that produces a new grid or tree from
/// immutable inputs.
/// @return The CSG difference of the @a and @b level set inputs.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline typename GridOrTreeT::Ptr csgDifferenceCopy(const GridOrTreeT& a, const GridOrTreeT& b);
/// @brief Given grids A and B, compute max(a, b) per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compMax(GridOrTreeT& a, GridOrTreeT& b);
/// @brief Given grids A and B, compute min(a, b) per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compMin(GridOrTreeT& a, GridOrTreeT& b);
/// @brief Given grids A and B, compute a + b per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compSum(GridOrTreeT& a, GridOrTreeT& b);
/// @brief Given grids A and B, compute a * b per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compMul(GridOrTreeT& a, GridOrTreeT& b);
/// @brief Given grids A and B, compute a / b per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compDiv(GridOrTreeT& a, GridOrTreeT& b);
/// Copy the active voxels of B into A.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compReplace(GridOrTreeT& a, const GridOrTreeT& b);
////////////////////////////////////////
namespace composite {
// composite::min() and composite::max() for non-vector types compare with operator<().
template<typename T> inline
const typename std::enable_if<!VecTraits<T>::IsVec, T>::type& // = T if T is not a vector type
min(const T& a, const T& b) { return std::min(a, b); }
template<typename T> inline
const typename std::enable_if<!VecTraits<T>::IsVec, T>::type&
max(const T& a, const T& b) { return std::max(a, b); }
// composite::min() and composite::max() for OpenVDB vector types compare by magnitude.
template<typename T> inline
const typename std::enable_if<VecTraits<T>::IsVec, T>::type& // = T if T is a vector type
min(const T& a, const T& b)
{
const typename T::ValueType aMag = a.lengthSqr(), bMag = b.lengthSqr();
return (aMag < bMag ? a : (bMag < aMag ? b : std::min(a, b)));
}
template<typename T> inline
const typename std::enable_if<VecTraits<T>::IsVec, T>::type&
max(const T& a, const T& b)
{
const typename T::ValueType aMag = a.lengthSqr(), bMag = b.lengthSqr();
return (aMag < bMag ? b : (bMag < aMag ? a : std::max(a, b)));
}
template<typename T> inline
typename std::enable_if<!std::is_integral<T>::value, T>::type // = T if T is not an integer type
divide(const T& a, const T& b) { return a / b; }
template<typename T> inline
typename std::enable_if<std::is_integral<T>::value, T>::type // = T if T is an integer type
divide(const T& a, const T& b)
{
const T zero(0);
if (b != zero) return a / b;
if (a == zero) return 0;
return (a > 0 ? std::numeric_limits<T>::max() : -std::numeric_limits<T>::max());
}
// If b is true, return a / 1 = a.
// If b is false and a is true, return 1 / 0 = inf = MAX_BOOL = 1 = a.
// If b is false and a is false, return 0 / 0 = NaN = 0 = a.
inline bool divide(bool a, bool /*b*/) { return a; }
enum CSGOperation { CSG_UNION, CSG_INTERSECTION, CSG_DIFFERENCE };
template<typename TreeType, CSGOperation Operation>
struct BuildPrimarySegment
{
typedef typename TreeType::ValueType ValueType;
typedef typename TreeType::Ptr TreePtrType;
typedef typename TreeType::LeafNodeType LeafNodeType;
typedef typename LeafNodeType::NodeMaskType NodeMaskType;
typedef typename TreeType::RootNodeType RootNodeType;
typedef typename RootNodeType::NodeChainType NodeChainType;
typedef typename boost::mpl::at<NodeChainType, boost::mpl::int_<1> >::type InternalNodeType;
BuildPrimarySegment(const TreeType& lhs, const TreeType& rhs)
: mSegment(new TreeType(lhs.background()))
, mLhsTree(&lhs)
, mRhsTree(&rhs)
{
}
void operator()() const
{
std::vector<const LeafNodeType*> leafNodes;
{
std::vector<const InternalNodeType*> internalNodes;
mLhsTree->getNodes(internalNodes);
ProcessInternalNodes op(internalNodes, *mRhsTree, *mSegment, leafNodes);
tbb::parallel_reduce(tbb::blocked_range<size_t>(0, internalNodes.size()), op);
}
ProcessLeafNodes op(leafNodes, *mRhsTree, *mSegment);
tbb::parallel_reduce(tbb::blocked_range<size_t>(0, leafNodes.size()), op);
}
TreePtrType& segment() { return mSegment; }
private:
struct ProcessInternalNodes {
ProcessInternalNodes(std::vector<const InternalNodeType*>& lhsNodes, const TreeType& rhsTree,
TreeType& outputTree, std::vector<const LeafNodeType*>& outputLeafNodes)
: mLhsNodes(lhsNodes.empty() ? NULL : &lhsNodes.front())
, mRhsTree(&rhsTree)
, mLocalTree(mRhsTree->background())
, mOutputTree(&outputTree)
, mLocalLeafNodes()
, mOutputLeafNodes(&outputLeafNodes)
{
}
ProcessInternalNodes(ProcessInternalNodes& other, tbb::split)
: mLhsNodes(other.mLhsNodes)
, mRhsTree(other.mRhsTree)
, mLocalTree(mRhsTree->background())
, mOutputTree(&mLocalTree)
, mLocalLeafNodes()
, mOutputLeafNodes(&mLocalLeafNodes)
{
}
void join(ProcessInternalNodes& other)
{
mOutputTree->merge(*other.mOutputTree);
mOutputLeafNodes->insert(mOutputLeafNodes->end(),
other.mOutputLeafNodes->begin(), other.mOutputLeafNodes->end());
}
void operator()(const tbb::blocked_range<size_t>& range)
{
tree::ValueAccessor<const TreeType> rhsAcc(*mRhsTree);
tree::ValueAccessor<TreeType> outputAcc(*mOutputTree);
std::vector<const LeafNodeType*> tmpLeafNodes;
for (size_t n = range.begin(), N = range.end(); n < N; ++n) {
const InternalNodeType& lhsNode = *mLhsNodes[n];
const Coord& ijk = lhsNode.origin();
const InternalNodeType * rhsNode = rhsAcc.template probeConstNode<InternalNodeType>(ijk);
if (rhsNode) {
lhsNode.getNodes(*mOutputLeafNodes);
} else {
if (Operation == CSG_INTERSECTION) {
if (rhsAcc.getValue(ijk) < ValueType(0.0)) {
tmpLeafNodes.clear();
lhsNode.getNodes(tmpLeafNodes);
for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
outputAcc.addLeaf(new LeafNodeType(*tmpLeafNodes[i]));
}
}
} else { // Union & Difference
if (!(rhsAcc.getValue(ijk) < ValueType(0.0))) {
tmpLeafNodes.clear();
lhsNode.getNodes(tmpLeafNodes);
for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
outputAcc.addLeaf(new LeafNodeType(*tmpLeafNodes[i]));
}
}
}
}
} // end range loop
}
InternalNodeType const * const * const mLhsNodes;
TreeType const * const mRhsTree;
TreeType mLocalTree;
TreeType * const mOutputTree;
std::vector<const LeafNodeType*> mLocalLeafNodes;
std::vector<const LeafNodeType*> * const mOutputLeafNodes;
}; // struct ProcessInternalNodes
struct ProcessLeafNodes {
ProcessLeafNodes(std::vector<const LeafNodeType*>& lhsNodes, const TreeType& rhsTree, TreeType& output)
: mLhsNodes(lhsNodes.empty() ? NULL : &lhsNodes.front())
, mRhsTree(&rhsTree)
, mLocalTree(mRhsTree->background())
, mOutputTree(&output)
{
}
ProcessLeafNodes(ProcessLeafNodes& other, tbb::split)
: mLhsNodes(other.mLhsNodes)
, mRhsTree(other.mRhsTree)
, mLocalTree(mRhsTree->background())
, mOutputTree(&mLocalTree)
{
}
void join(ProcessLeafNodes& rhs) { mOutputTree->merge(*rhs.mOutputTree); }
void operator()(const tbb::blocked_range<size_t>& range)
{
tree::ValueAccessor<const TreeType> rhsAcc(*mRhsTree);
tree::ValueAccessor<TreeType> outputAcc(*mOutputTree);
for (size_t n = range.begin(), N = range.end(); n < N; ++n) {
const LeafNodeType& lhsNode = *mLhsNodes[n];
const Coord& ijk = lhsNode.origin();
const LeafNodeType* rhsNodePt = rhsAcc.probeConstLeaf(ijk);
if (rhsNodePt) { // combine overlapping nodes
LeafNodeType* outputNode = outputAcc.touchLeaf(ijk);
ValueType * outputData = outputNode->buffer().data();
NodeMaskType& outputMask = outputNode->getValueMask();
const ValueType * lhsData = lhsNode.buffer().data();
const NodeMaskType& lhsMask = lhsNode.getValueMask();
const ValueType * rhsData = rhsNodePt->buffer().data();
const NodeMaskType& rhsMask = rhsNodePt->getValueMask();
if (Operation == CSG_INTERSECTION) {
for (Index pos = 0; pos < LeafNodeType::SIZE; ++pos) {
const bool fromRhs = lhsData[pos] < rhsData[pos];
outputData[pos] = fromRhs ? rhsData[pos] : lhsData[pos];
outputMask.set(pos, fromRhs ? rhsMask.isOn(pos) : lhsMask.isOn(pos));
}
} else if (Operation == CSG_DIFFERENCE){
for (Index pos = 0; pos < LeafNodeType::SIZE; ++pos) {
const ValueType rhsVal = math::negative(rhsData[pos]);
const bool fromRhs = lhsData[pos] < rhsVal;
outputData[pos] = fromRhs ? rhsVal : lhsData[pos];
outputMask.set(pos, fromRhs ? rhsMask.isOn(pos) : lhsMask.isOn(pos));
}
} else { // Union
for (Index pos = 0; pos < LeafNodeType::SIZE; ++pos) {
const bool fromRhs = lhsData[pos] > rhsData[pos];
outputData[pos] = fromRhs ? rhsData[pos] : lhsData[pos];
outputMask.set(pos, fromRhs ? rhsMask.isOn(pos) : lhsMask.isOn(pos));
}
}
} else {
if (Operation == CSG_INTERSECTION) {
if (rhsAcc.getValue(ijk) < ValueType(0.0)) {
outputAcc.addLeaf(new LeafNodeType(lhsNode));
}
} else { // Union & Difference
if (!(rhsAcc.getValue(ijk) < ValueType(0.0))) {
outputAcc.addLeaf(new LeafNodeType(lhsNode));
}
}
}
} // end range loop
}
LeafNodeType const * const * const mLhsNodes;
TreeType const * const mRhsTree;
TreeType mLocalTree;
TreeType * const mOutputTree;
}; // struct ProcessLeafNodes
TreePtrType mSegment;
TreeType const * const mLhsTree;
TreeType const * const mRhsTree;
}; // struct BuildPrimarySegment
template<typename TreeType, CSGOperation Operation>
struct BuildSecondarySegment
{
typedef typename TreeType::ValueType ValueType;
typedef typename TreeType::Ptr TreePtrType;
typedef typename TreeType::LeafNodeType LeafNodeType;
typedef typename LeafNodeType::NodeMaskType NodeMaskType;
typedef typename TreeType::RootNodeType RootNodeType;
typedef typename RootNodeType::NodeChainType NodeChainType;
typedef typename boost::mpl::at<NodeChainType, boost::mpl::int_<1> >::type InternalNodeType;
BuildSecondarySegment(const TreeType& lhs, const TreeType& rhs)
: mSegment(new TreeType(lhs.background()))
, mLhsTree(&lhs)
, mRhsTree(&rhs)
{
}
void operator()() const
{
std::vector<const LeafNodeType*> leafNodes;
{
std::vector<const InternalNodeType*> internalNodes;
mRhsTree->getNodes(internalNodes);
ProcessInternalNodes op(internalNodes, *mLhsTree, *mSegment, leafNodes);
tbb::parallel_reduce(tbb::blocked_range<size_t>(0, internalNodes.size()), op);
}
ProcessLeafNodes op(leafNodes, *mLhsTree, *mSegment);
tbb::parallel_reduce(tbb::blocked_range<size_t>(0, leafNodes.size()), op);
}
TreePtrType& segment() { return mSegment; }
private:
struct ProcessInternalNodes {
ProcessInternalNodes(std::vector<const InternalNodeType*>& rhsNodes, const TreeType& lhsTree,
TreeType& outputTree, std::vector<const LeafNodeType*>& outputLeafNodes)
: mRhsNodes(rhsNodes.empty() ? NULL : &rhsNodes.front())
, mLhsTree(&lhsTree)
, mLocalTree(mLhsTree->background())
, mOutputTree(&outputTree)
, mLocalLeafNodes()
, mOutputLeafNodes(&outputLeafNodes)
{
}
ProcessInternalNodes(ProcessInternalNodes& other, tbb::split)
: mRhsNodes(other.mRhsNodes)
, mLhsTree(other.mLhsTree)
, mLocalTree(mLhsTree->background())
, mOutputTree(&mLocalTree)
, mLocalLeafNodes()
, mOutputLeafNodes(&mLocalLeafNodes)
{
}
void join(ProcessInternalNodes& other)
{
mOutputTree->merge(*other.mOutputTree);
mOutputLeafNodes->insert(mOutputLeafNodes->end(),
other.mOutputLeafNodes->begin(), other.mOutputLeafNodes->end());
}
void operator()(const tbb::blocked_range<size_t>& range)
{
tree::ValueAccessor<const TreeType> lhsAcc(*mLhsTree);
tree::ValueAccessor<TreeType> outputAcc(*mOutputTree);
std::vector<const LeafNodeType*> tmpLeafNodes;
for (size_t n = range.begin(), N = range.end(); n < N; ++n) {
const InternalNodeType& rhsNode = *mRhsNodes[n];
const Coord& ijk = rhsNode.origin();
const InternalNodeType * lhsNode = lhsAcc.template probeConstNode<InternalNodeType>(ijk);
if (lhsNode) {
rhsNode.getNodes(*mOutputLeafNodes);
} else {
if (Operation == CSG_INTERSECTION) {
if (lhsAcc.getValue(ijk) < ValueType(0.0)) {
tmpLeafNodes.clear();
rhsNode.getNodes(tmpLeafNodes);
for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
outputAcc.addLeaf(new LeafNodeType(*tmpLeafNodes[i]));
}
}
} else if (Operation == CSG_DIFFERENCE) {
if (lhsAcc.getValue(ijk) < ValueType(0.0)) {
tmpLeafNodes.clear();
rhsNode.getNodes(tmpLeafNodes);
for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
LeafNodeType* outputNode = new LeafNodeType(*tmpLeafNodes[i]);
outputNode->negate();
outputAcc.addLeaf(outputNode);
}
}
} else { // Union
if (!(lhsAcc.getValue(ijk) < ValueType(0.0))) {
tmpLeafNodes.clear();
rhsNode.getNodes(tmpLeafNodes);
for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
outputAcc.addLeaf(new LeafNodeType(*tmpLeafNodes[i]));
}
}
}
}
} // end range loop
}
InternalNodeType const * const * const mRhsNodes;
TreeType const * const mLhsTree;
TreeType mLocalTree;
TreeType * const mOutputTree;
std::vector<const LeafNodeType*> mLocalLeafNodes;
std::vector<const LeafNodeType*> * const mOutputLeafNodes;
}; // struct ProcessInternalNodes
struct ProcessLeafNodes {
ProcessLeafNodes(std::vector<const LeafNodeType*>& rhsNodes, const TreeType& lhsTree, TreeType& output)
: mRhsNodes(rhsNodes.empty() ? NULL : &rhsNodes.front())
, mLhsTree(&lhsTree)
, mLocalTree(mLhsTree->background())
, mOutputTree(&output)
{
}
ProcessLeafNodes(ProcessLeafNodes& rhs, tbb::split)
: mRhsNodes(rhs.mRhsNodes)
, mLhsTree(rhs.mLhsTree)
, mLocalTree(mLhsTree->background())
, mOutputTree(&mLocalTree)
{
}
void join(ProcessLeafNodes& rhs) { mOutputTree->merge(*rhs.mOutputTree); }
void operator()(const tbb::blocked_range<size_t>& range)
{
tree::ValueAccessor<const TreeType> lhsAcc(*mLhsTree);
tree::ValueAccessor<TreeType> outputAcc(*mOutputTree);
for (size_t n = range.begin(), N = range.end(); n < N; ++n) {
const LeafNodeType& rhsNode = *mRhsNodes[n];
const Coord& ijk = rhsNode.origin();
const LeafNodeType* lhsNode = lhsAcc.probeConstLeaf(ijk);
if (!lhsNode) {
if (Operation == CSG_INTERSECTION) {
if (lhsAcc.getValue(ijk) < ValueType(0.0)) {
outputAcc.addLeaf(new LeafNodeType(rhsNode));
}
} else if (Operation == CSG_DIFFERENCE) {
if (lhsAcc.getValue(ijk) < ValueType(0.0)) {
LeafNodeType* outputNode = new LeafNodeType(rhsNode);
outputNode->negate();
outputAcc.addLeaf(outputNode);
}
} else { // Union
if (!(lhsAcc.getValue(ijk) < ValueType(0.0))) {
outputAcc.addLeaf(new LeafNodeType(rhsNode));
}
}
}
} // end range loop
}
LeafNodeType const * const * const mRhsNodes;
TreeType const * const mLhsTree;
TreeType mLocalTree;
TreeType * const mOutputTree;
}; // struct ProcessLeafNodes
TreePtrType mSegment;
TreeType const * const mLhsTree;
TreeType const * const mRhsTree;
}; // struct BuildSecondarySegment
template<CSGOperation Operation, typename TreeType>
inline typename TreeType::Ptr
doCSGCopy(const TreeType& lhs, const TreeType& rhs)
{
BuildPrimarySegment<TreeType, Operation> primary(lhs, rhs);
BuildSecondarySegment<TreeType, Operation> secondary(lhs, rhs);
// Exploiting nested parallelism
tbb::task_group tasks;
tasks.run(primary);
tasks.run(secondary);
tasks.wait();
primary.segment()->merge(*secondary.segment());
// The leafnode (level = 0) sign is set in the segment construction.
tools::signedFloodFill(*primary.segment(), /*threaded=*/true, /*grainSize=*/1, /*minLevel=*/1);
return primary.segment();
}
////////////////////////////////////////
template<typename TreeType>
struct GridOrTreeConstructor
{
typedef typename TreeType::Ptr TreeTypePtr;
static TreeTypePtr construct(const TreeType&, TreeTypePtr& tree) { return tree; }
};
template<typename TreeType>
struct GridOrTreeConstructor<Grid<TreeType> >
{
typedef Grid<TreeType> GridType;
typedef typename Grid<TreeType>::Ptr GridTypePtr;
typedef typename TreeType::Ptr TreeTypePtr;
static GridTypePtr construct(const GridType& grid, TreeTypePtr& tree) {
GridTypePtr maskGrid(GridType::create(tree));
maskGrid->setTransform(grid.transform().copy());
maskGrid->insertMeta(grid);
return maskGrid;
}
};
////////////////////////////////////////
/// @cond COMPOSITE_INTERNAL
/// List of pairs of leaf node pointers
template <typename LeafT>
using LeafPairList = std::vector<std::pair<LeafT*, LeafT*>>;
/// @endcond
/// @cond COMPOSITE_INTERNAL
/// Transfers leaf nodes from a source tree into a
/// desitnation tree, unless it already exists in the destination tree
/// in which case pointers to both leaf nodes are added to a list for
/// subsequent compositing operations.
template <typename TreeT>
inline void transferLeafNodes(TreeT &srcTree, TreeT &dstTree,
LeafPairList<typename TreeT::LeafNodeType> &overlapping)
{
using LeafT = typename TreeT::LeafNodeType;
tree::ValueAccessor<TreeT> acc(dstTree);//destination
std::vector<LeafT*> srcLeafNodes;
srcLeafNodes.reserve(srcTree.leafCount());
srcTree.stealNodes(srcLeafNodes);
srcTree.clear();
for (LeafT *srcLeaf : srcLeafNodes) {
LeafT *dstLeaf = acc.probeLeaf(srcLeaf->origin());
if (dstLeaf) {
overlapping.emplace_back(dstLeaf, srcLeaf);//dst, src
} else {
acc.addLeaf(srcLeaf);
}
}
}
/// @endcond
/// @cond COMPOSITE_INTERNAL
/// Template specailization of compActiveLeafVoxels
template <typename TreeT, typename OpT>
inline
typename std::enable_if<!std::is_same<typename TreeT::ValueType, bool>::value &&
!std::is_same<typename TreeT::BuildType, ValueMask>::value &&
std::is_same<typename TreeT::LeafNodeType::Buffer::ValueType,
typename TreeT::LeafNodeType::Buffer::StorageType>::value>::type
doCompActiveLeafVoxels(TreeT &srcTree, TreeT &dstTree, OpT op)
{
using LeafT = typename TreeT::LeafNodeType;
LeafPairList<LeafT> overlapping;//dst, src
transferLeafNodes(srcTree, dstTree, overlapping);
using RangeT = tbb::blocked_range<size_t>;
tbb::parallel_for(RangeT(0, overlapping.size()), [op, &overlapping](const RangeT& r) {
for (auto i = r.begin(); i != r.end(); ++i) {
auto *dstLeaf = overlapping[i].first, *srcLeaf = overlapping[i].second;
dstLeaf->getValueMask() |= srcLeaf->getValueMask();
auto *ptr = dstLeaf->buffer().data();
for (auto v = srcLeaf->cbeginValueOn(); v; ++v) op(ptr[v.pos()], *v);
delete srcLeaf;
}
});
}
/// @endcond
/// @cond COMPOSITE_INTERNAL
/// Template specailization of compActiveLeafVoxels
template <typename TreeT, typename OpT>
inline
typename std::enable_if<std::is_same<typename TreeT::BuildType, ValueMask>::value &&
std::is_same<typename TreeT::ValueType, bool>::value>::type
doCompActiveLeafVoxels(TreeT &srcTree, TreeT &dstTree, OpT)
{
using LeafT = typename TreeT::LeafNodeType;
LeafPairList<LeafT> overlapping;//dst, src
transferLeafNodes(srcTree, dstTree, overlapping);
using RangeT = tbb::blocked_range<size_t>;
tbb::parallel_for(RangeT(0, overlapping.size()), [&overlapping](const RangeT& r) {
for (auto i = r.begin(); i != r.end(); ++i) {
overlapping[i].first->getValueMask() |= overlapping[i].second->getValueMask();
delete overlapping[i].second;
}
});
}
/// @cond COMPOSITE_INTERNAL
/// Template specailization of compActiveLeafVoxels
template <typename TreeT, typename OpT>
inline
typename std::enable_if<std::is_same<typename TreeT::ValueType, bool>::value &&
!std::is_same<typename TreeT::BuildType, ValueMask>::value>::type
doCompActiveLeafVoxels(TreeT &srcTree, TreeT &dstTree, OpT op)
{
using LeafT = typename TreeT::LeafNodeType;
LeafPairList<LeafT> overlapping;//dst, src
transferLeafNodes(srcTree, dstTree, overlapping);
using RangeT = tbb::blocked_range<size_t>;
using WordT = typename LeafT::Buffer::WordType;
tbb::parallel_for(RangeT(0, overlapping.size()), [op, &overlapping](const RangeT& r) {
for (auto i = r.begin(); i != r.end(); ++i) {
LeafT *dstLeaf = overlapping[i].first, *srcLeaf = overlapping[i].second;
WordT *w1 = dstLeaf->buffer().data();
const WordT *w2 = srcLeaf->buffer().data();
const WordT *w3 = &(srcLeaf->getValueMask().template getWord<WordT>(0));
for (Index32 n = LeafT::Buffer::WORD_COUNT; n--; ++w1) {
WordT tmp = *w1, state = *w3++;
op (tmp, *w2++);
*w1 = (state & tmp) | (~state & *w1);//inactive values are unchanged
}
dstLeaf->getValueMask() |= srcLeaf->getValueMask();
delete srcLeaf;
}
});
}
/// @endcond
/// @cond COMPOSITE_INTERNAL
/// Default functor for compActiveLeafVoxels
template <typename TreeT>
struct CopyOp
{
using ValueT = typename TreeT::ValueType;
CopyOp() = default;
void operator()(ValueT& dst, const ValueT& src) const { dst = src; }
};
/// @endcond
} // namespace composite
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compMax(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType TreeT;
typedef typename TreeT::ValueType ValueT;
struct Local {
static inline void op(CombineArgs<ValueT>& args) {
args.setResult(composite::max(args.a(), args.b()));
}
};
Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compMin(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType TreeT;
typedef typename TreeT::ValueType ValueT;
struct Local {
static inline void op(CombineArgs<ValueT>& args) {
args.setResult(composite::min(args.a(), args.b()));
}
};
Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compSum(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType TreeT;
struct Local {
static inline void op(CombineArgs<typename TreeT::ValueType>& args) {
args.setResult(args.a() + args.b());
}
};
Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compMul(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType TreeT;
struct Local {
static inline void op(CombineArgs<typename TreeT::ValueType>& args) {
args.setResult(args.a() * args.b());
}
};
Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compDiv(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType TreeT;
struct Local {
static inline void op(CombineArgs<typename TreeT::ValueType>& args) {
args.setResult(composite::divide(args.a(), args.b()));
}
};
Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}
////////////////////////////////////////
template<typename TreeT>
struct CompReplaceOp
{
TreeT* const aTree;
CompReplaceOp(TreeT& _aTree): aTree(&_aTree) {}
/// @note fill operation is not thread safe
void operator()(const typename TreeT::ValueOnCIter& iter) const
{
CoordBBox bbox;
iter.getBoundingBox(bbox);
aTree->fill(bbox, *iter);
}
void operator()(const typename TreeT::LeafCIter& leafIter) const
{
tree::ValueAccessor<TreeT> acc(*aTree);
for (typename TreeT::LeafCIter::LeafNodeT::ValueOnCIter iter =
leafIter->cbeginValueOn(); iter; ++iter)
{
acc.setValue(iter.getCoord(), *iter);
}
}
};
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compReplace(GridOrTreeT& aTree, const GridOrTreeT& bTree)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType TreeT;
typedef typename TreeT::ValueOnCIter ValueOnCIterT;
// Copy active states (but not values) from B to A.
Adapter::tree(aTree).topologyUnion(Adapter::tree(bTree));
CompReplaceOp<TreeT> op(Adapter::tree(aTree));
// Copy all active tile values from B to A.
ValueOnCIterT iter = bTree.cbeginValueOn();
iter.setMaxDepth(iter.getLeafDepth() - 1); // don't descend into leaf nodes
foreach(iter, op, /*threaded=*/false);
// Copy all active voxel values from B to A.
foreach(Adapter::tree(bTree).cbeginLeaf(), op);
}
////////////////////////////////////////
/// Base visitor class for CSG operations
/// (not intended to be used polymorphically, so no virtual functions)
template<typename TreeType>
class CsgVisitorBase
{
public:
typedef TreeType TreeT;
typedef typename TreeT::ValueType ValueT;
typedef typename TreeT::LeafNodeType::ChildAllIter ChildIterT;
enum { STOP = 3 };
CsgVisitorBase(const TreeT& aTree, const TreeT& bTree):
mAOutside(aTree.background()),
mAInside(math::negative(mAOutside)),
mBOutside(bTree.background()),
mBInside(math::negative(mBOutside))
{
const ValueT zero = zeroVal<ValueT>();
if (!(mAOutside > zero)) {
OPENVDB_THROW(ValueError,
"expected grid A outside value > 0, got " << mAOutside);
}
if (!(mAInside < zero)) {
OPENVDB_THROW(ValueError,
"expected grid A inside value < 0, got " << mAInside);
}
if (!(mBOutside > zero)) {
OPENVDB_THROW(ValueError,
"expected grid B outside value > 0, got " << mBOutside);
}
if (!(mBInside < zero)) {
OPENVDB_THROW(ValueError,
"expected grid B outside value < 0, got " << mBOutside);
}
}
protected:
ValueT mAOutside, mAInside, mBOutside, mBInside;
};
////////////////////////////////////////
template<typename TreeType>
struct CsgUnionVisitor: public CsgVisitorBase<TreeType>
{
typedef TreeType TreeT;
typedef typename TreeT::ValueType ValueT;
typedef typename TreeT::LeafNodeType::ChildAllIter ChildIterT;
enum { STOP = CsgVisitorBase<TreeT>::STOP };
CsgUnionVisitor(const TreeT& a, const TreeT& b): CsgVisitorBase<TreeT>(a, b) {}
/// Don't process nodes that are at different tree levels.
template<typename AIterT, typename BIterT>
inline int operator()(AIterT&, BIterT&) { return 0; }
/// Process root and internal nodes.
template<typename IterT>
inline int operator()(IterT& aIter, IterT& bIter)
{
ValueT aValue = zeroVal<ValueT>();
typename IterT::ChildNodeType* aChild = aIter.probeChild(aValue);
if (!aChild && aValue < zeroVal<ValueT>()) {
// A is an inside tile. Leave it alone and stop traversing this branch.
return STOP;
}
ValueT bValue = zeroVal<ValueT>();
typename IterT::ChildNodeType* bChild = bIter.probeChild(bValue);
if (!bChild && bValue < zeroVal<ValueT>()) {
// B is an inside tile. Make A an inside tile and stop traversing this branch.
aIter.setValue(this->mAInside);
aIter.setValueOn(bIter.isValueOn());
delete aChild;
return STOP;
}
if (!aChild && aValue > zeroVal<ValueT>()) {
// A is an outside tile. If B has a child, transfer it to A,
// otherwise leave A alone.
if (bChild) {
bIter.setValue(this->mBOutside);
bIter.setValueOff();
bChild->resetBackground(this->mBOutside, this->mAOutside);
aIter.setChild(bChild); // transfer child
delete aChild;
}
return STOP;
}
// If A has a child and B is an outside tile, stop traversing this branch.
// Continue traversal only if A and B both have children.
return (aChild && bChild) ? 0 : STOP;
}
/// Process leaf node values.
inline int operator()(ChildIterT& aIter, ChildIterT& bIter)
{
ValueT aValue, bValue;
aIter.probeValue(aValue);
bIter.probeValue(bValue);
if (aValue > bValue) { // a = min(a, b)
aIter.setValue(bValue);
aIter.setValueOn(bIter.isValueOn());
}
return 0;
}
};
////////////////////////////////////////
template<typename TreeType>
struct CsgIntersectVisitor: public CsgVisitorBase<TreeType>
{
typedef TreeType TreeT;
typedef typename TreeT::ValueType ValueT;
typedef typename TreeT::LeafNodeType::ChildAllIter ChildIterT;
enum { STOP = CsgVisitorBase<TreeT>::STOP };
CsgIntersectVisitor(const TreeT& a, const TreeT& b): CsgVisitorBase<TreeT>(a, b) {}
/// Don't process nodes that are at different tree levels.
template<typename AIterT, typename BIterT>
inline int operator()(AIterT&, BIterT&) { return 0; }
/// Process root and internal nodes.
template<typename IterT>
inline int operator()(IterT& aIter, IterT& bIter)
{
ValueT aValue = zeroVal<ValueT>();
typename IterT::ChildNodeType* aChild = aIter.probeChild(aValue);
if (!aChild && !(aValue < zeroVal<ValueT>())) {
// A is an outside tile. Leave it alone and stop traversing this branch.
return STOP;
}
ValueT bValue = zeroVal<ValueT>();
typename IterT::ChildNodeType* bChild = bIter.probeChild(bValue);
if (!bChild && !(bValue < zeroVal<ValueT>())) {
// B is an outside tile. Make A an outside tile and stop traversing this branch.
aIter.setValue(this->mAOutside);
aIter.setValueOn(bIter.isValueOn());
delete aChild;
return STOP;
}
if (!aChild && aValue < zeroVal<ValueT>()) {
// A is an inside tile. If B has a child, transfer it to A,
// otherwise leave A alone.
if (bChild) {
bIter.setValue(this->mBOutside);
bIter.setValueOff();
bChild->resetBackground(this->mBOutside, this->mAOutside);
aIter.setChild(bChild); // transfer child
delete aChild;
}
return STOP;
}
// If A has a child and B is an outside tile, stop traversing this branch.
// Continue traversal only if A and B both have children.
return (aChild && bChild) ? 0 : STOP;
}
/// Process leaf node values.
inline int operator()(ChildIterT& aIter, ChildIterT& bIter)
{
ValueT aValue, bValue;
aIter.probeValue(aValue);
bIter.probeValue(bValue);
if (aValue < bValue) { // a = max(a, b)
aIter.setValue(bValue);
aIter.setValueOn(bIter.isValueOn());
}
return 0;
}
};
////////////////////////////////////////
template<typename TreeType>
struct CsgDiffVisitor: public CsgVisitorBase<TreeType>
{
typedef TreeType TreeT;
typedef typename TreeT::ValueType ValueT;
typedef typename TreeT::LeafNodeType::ChildAllIter ChildIterT;
enum { STOP = CsgVisitorBase<TreeT>::STOP };
CsgDiffVisitor(const TreeT& a, const TreeT& b): CsgVisitorBase<TreeT>(a, b) {}
/// Don't process nodes that are at different tree levels.
template<typename AIterT, typename BIterT>
inline int operator()(AIterT&, BIterT&) { return 0; }
/// Process root and internal nodes.
template<typename IterT>
inline int operator()(IterT& aIter, IterT& bIter)
{
ValueT aValue = zeroVal<ValueT>();
typename IterT::ChildNodeType* aChild = aIter.probeChild(aValue);
if (!aChild && !(aValue < zeroVal<ValueT>())) {
// A is an outside tile. Leave it alone and stop traversing this branch.
return STOP;
}
ValueT bValue = zeroVal<ValueT>();
typename IterT::ChildNodeType* bChild = bIter.probeChild(bValue);
if (!bChild && bValue < zeroVal<ValueT>()) {
// B is an inside tile. Make A an inside tile and stop traversing this branch.
aIter.setValue(this->mAOutside);
aIter.setValueOn(bIter.isValueOn());
delete aChild;
return STOP;
}
if (!aChild && aValue < zeroVal<ValueT>()) {
// A is an inside tile. If B has a child, transfer it to A,
// otherwise leave A alone.
if (bChild) {
bIter.setValue(this->mBOutside);
bIter.setValueOff();
bChild->resetBackground(this->mBOutside, this->mAOutside);
aIter.setChild(bChild); // transfer child
bChild->negate();
delete aChild;
}
return STOP;
}
// If A has a child and B is an outside tile, stop traversing this branch.
// Continue traversal only if A and B both have children.
return (aChild && bChild) ? 0 : STOP;
}
/// Process leaf node values.
inline int operator()(ChildIterT& aIter, ChildIterT& bIter)
{
ValueT aValue, bValue;
aIter.probeValue(aValue);
bIter.probeValue(bValue);
bValue = math::negative(bValue);
if (aValue < bValue) { // a = max(a, -b)
aIter.setValue(bValue);
aIter.setValueOn(bIter.isValueOn());
}
return 0;
}
};
////////////////////////////////////////
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
csgUnion(GridOrTreeT& a, GridOrTreeT& b, bool prune)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType TreeT;
TreeT &aTree = Adapter::tree(a), &bTree = Adapter::tree(b);
CsgUnionVisitor<TreeT> visitor(aTree, bTree);
aTree.visit2(bTree, visitor);
if (prune) tools::pruneLevelSet(aTree);
}
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
csgIntersection(GridOrTreeT& a, GridOrTreeT& b, bool prune)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType TreeT;
TreeT &aTree = Adapter::tree(a), &bTree = Adapter::tree(b);
CsgIntersectVisitor<TreeT> visitor(aTree, bTree);
aTree.visit2(bTree, visitor);
if (prune) tools::pruneLevelSet(aTree);
}
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
csgDifference(GridOrTreeT& a, GridOrTreeT& b, bool prune)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType TreeT;
TreeT &aTree = Adapter::tree(a), &bTree = Adapter::tree(b);
CsgDiffVisitor<TreeT> visitor(aTree, bTree);
aTree.visit2(bTree, visitor);
if (prune) tools::pruneLevelSet(aTree);
}
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline typename GridOrTreeT::Ptr
csgUnionCopy(const GridOrTreeT& a, const GridOrTreeT& b)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType::Ptr TreePtrT;
TreePtrT output = composite::doCSGCopy<composite::CSG_UNION>(
Adapter::tree(a), Adapter::tree(b));
return composite::GridOrTreeConstructor<GridOrTreeT>::construct(a, output);
}
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline typename GridOrTreeT::Ptr
csgIntersectionCopy(const GridOrTreeT& a, const GridOrTreeT& b)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType::Ptr TreePtrT;
TreePtrT output = composite::doCSGCopy<composite::CSG_INTERSECTION>(
Adapter::tree(a), Adapter::tree(b));
return composite::GridOrTreeConstructor<GridOrTreeT>::construct(a, output);
}
template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline typename GridOrTreeT::Ptr
csgDifferenceCopy(const GridOrTreeT& a, const GridOrTreeT& b)
{
typedef TreeAdapter<GridOrTreeT> Adapter;
typedef typename Adapter::TreeType::Ptr TreePtrT;
TreePtrT output = composite::doCSGCopy<composite::CSG_DIFFERENCE>(
Adapter::tree(a), Adapter::tree(b));
return composite::GridOrTreeConstructor<GridOrTreeT>::construct(a, output);
}
////////////////////////////////////////////////////////
/// @brief Composite the active values in leaf nodes, i.e. active
/// voxels, of a source tree into a destination tree.
///
/// @param srcTree source tree from which active voxels are composited.
///
/// @param dstTree destination tree into which active voxels are composited.
///
/// @param op a functor of the form <tt>void op(T& dst, const T& src)</tt>,
/// where @c T is the @c ValueType of the tree, that composites
/// a source value into a destination value. By default
/// it copies the value from src to dst.
///
/// @details All active voxels in the source tree will
/// be active in the destination tree, and their value is
/// determined by a use-defined functor (OpT op) that operates on the
/// source and destination values. The only exception is when
/// the tree type is MaskTree, in which case no functor is
/// needed since by defintion a MaskTree has no values (only topology).
///
/// @warning This function only operated on leaf node values,
/// i.e. tile values are ignored.
template <typename TreeT, typename OpT = composite::CopyOp<TreeT> >
inline void compActiveLeafVoxels(TreeT &srcTree, TreeT &dstTree, OpT op = composite::CopyOp<TreeT>())
{
composite::doCompActiveLeafVoxels<TreeT, OpT>(srcTree, dstTree, op);
}
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_COMPOSITE_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|