This file is indexed.

/usr/include/openvdb/tools/Composite.h is in libopenvdb-dev 5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Composite.h
///
/// @brief Functions to efficiently perform various compositing operations on grids
///
/// @authors Peter Cucka, Mihai Alden, Ken Museth

#ifndef OPENVDB_TOOLS_COMPOSITE_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_COMPOSITE_HAS_BEEN_INCLUDED

#include <openvdb/Platform.h>
#include <openvdb/Exceptions.h>
#include <openvdb/Types.h>
#include <openvdb/Grid.h>
#include <openvdb/math/Math.h> // for isExactlyEqual()
#include "ValueTransformer.h" // for transformValues()
#include "Prune.h"// for prune
#include "SignedFloodFill.h" // for signedFloodFill()

#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <tbb/task_group.h>
#include <tbb/task_scheduler_init.h>

#include <type_traits>
#include <functional>

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

/// @brief Given two level set grids, replace the A grid with the union of A and B.
/// @throw ValueError if the background value of either grid is not greater than zero.
/// @note This operation always leaves the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void csgUnion(GridOrTreeT& a, GridOrTreeT& b, bool prune = true);
/// @brief Given two level set grids, replace the A grid with the intersection of A and B.
/// @throw ValueError if the background value of either grid is not greater than zero.
/// @note This operation always leaves the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void csgIntersection(GridOrTreeT& a, GridOrTreeT& b, bool prune = true);
/// @brief Given two level set grids, replace the A grid with the difference A / B.
/// @throw ValueError if the background value of either grid is not greater than zero.
/// @note This operation always leaves the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void csgDifference(GridOrTreeT& a, GridOrTreeT& b, bool prune = true);

/// @brief  Threaded CSG union operation that produces a new grid or tree from
///         immutable inputs.
/// @return The CSG union of the @a and @b level set inputs.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline typename GridOrTreeT::Ptr csgUnionCopy(const GridOrTreeT& a, const GridOrTreeT& b);
/// @brief  Threaded CSG intersection operation that produces a new grid or tree from
///         immutable inputs.
/// @return The CSG intersection of the @a and @b level set inputs.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline typename GridOrTreeT::Ptr csgIntersectionCopy(const GridOrTreeT& a, const GridOrTreeT& b);
/// @brief  Threaded CSG difference operation that produces a new grid or tree from
///         immutable inputs.
/// @return The CSG difference of the @a and @b level set inputs.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline typename GridOrTreeT::Ptr csgDifferenceCopy(const GridOrTreeT& a, const GridOrTreeT& b);

/// @brief Given grids A and B, compute max(a, b) per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compMax(GridOrTreeT& a, GridOrTreeT& b);
/// @brief Given grids A and B, compute min(a, b) per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compMin(GridOrTreeT& a, GridOrTreeT& b);
/// @brief Given grids A and B, compute a + b per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compSum(GridOrTreeT& a, GridOrTreeT& b);
/// @brief Given grids A and B, compute a * b per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compMul(GridOrTreeT& a, GridOrTreeT& b);
/// @brief Given grids A and B, compute a / b per voxel (using sparse traversal).
/// Store the result in the A grid and leave the B grid empty.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compDiv(GridOrTreeT& a, GridOrTreeT& b);

/// Copy the active voxels of B into A.
template<typename GridOrTreeT> OPENVDB_STATIC_SPECIALIZATION
inline void compReplace(GridOrTreeT& a, const GridOrTreeT& b);


////////////////////////////////////////


namespace composite {

// composite::min() and composite::max() for non-vector types compare with operator<().
template<typename T> inline
const typename std::enable_if<!VecTraits<T>::IsVec, T>::type& // = T if T is not a vector type
min(const T& a, const T& b) { return std::min(a, b); }

template<typename T> inline
const typename std::enable_if<!VecTraits<T>::IsVec, T>::type&
max(const T& a, const T& b) { return std::max(a, b); }


// composite::min() and composite::max() for OpenVDB vector types compare by magnitude.
template<typename T> inline
const typename std::enable_if<VecTraits<T>::IsVec, T>::type& // = T if T is a vector type
min(const T& a, const T& b)
{
    const typename T::ValueType aMag = a.lengthSqr(), bMag = b.lengthSqr();
    return (aMag < bMag ? a : (bMag < aMag ? b : std::min(a, b)));
}

template<typename T> inline
const typename std::enable_if<VecTraits<T>::IsVec, T>::type&
max(const T& a, const T& b)
{
    const typename T::ValueType aMag = a.lengthSqr(), bMag = b.lengthSqr();
    return (aMag < bMag ? b : (bMag < aMag ? a : std::max(a, b)));
}


template<typename T> inline
typename std::enable_if<!std::is_integral<T>::value, T>::type // = T if T is not an integer type
divide(const T& a, const T& b) { return a / b; }

template<typename T> inline
typename std::enable_if<std::is_integral<T>::value, T>::type // = T if T is an integer type
divide(const T& a, const T& b)
{
    const T zero(0);
    if (b != zero) return a / b;
    if (a == zero) return 0;
    return (a > 0 ? std::numeric_limits<T>::max() : -std::numeric_limits<T>::max());
}

// If b is true, return a / 1 = a.
// If b is false and a is true, return 1 / 0 = inf = MAX_BOOL = 1 = a.
// If b is false and a is false, return 0 / 0 = NaN = 0 = a.
inline bool divide(bool a, bool /*b*/) { return a; }


enum CSGOperation { CSG_UNION, CSG_INTERSECTION, CSG_DIFFERENCE };

template<typename TreeType, CSGOperation Operation>
struct BuildPrimarySegment
{
    typedef typename TreeType::ValueType                                            ValueType;
    typedef typename TreeType::Ptr                                                  TreePtrType;
    typedef typename TreeType::LeafNodeType                                         LeafNodeType;
    typedef typename LeafNodeType::NodeMaskType                                     NodeMaskType;
    typedef typename TreeType::RootNodeType                                         RootNodeType;
    typedef typename RootNodeType::NodeChainType                                    NodeChainType;
    typedef typename boost::mpl::at<NodeChainType, boost::mpl::int_<1> >::type      InternalNodeType;

    BuildPrimarySegment(const TreeType& lhs, const TreeType& rhs)
        : mSegment(new TreeType(lhs.background()))
        , mLhsTree(&lhs)
        , mRhsTree(&rhs)
    {
    }

    void operator()() const
    {
        std::vector<const LeafNodeType*> leafNodes;

        {
            std::vector<const InternalNodeType*> internalNodes;
            mLhsTree->getNodes(internalNodes);

            ProcessInternalNodes op(internalNodes, *mRhsTree, *mSegment, leafNodes);
            tbb::parallel_reduce(tbb::blocked_range<size_t>(0, internalNodes.size()), op);
        }

        ProcessLeafNodes op(leafNodes, *mRhsTree, *mSegment);
        tbb::parallel_reduce(tbb::blocked_range<size_t>(0, leafNodes.size()), op);
    }

    TreePtrType& segment() { return mSegment; }

private:

    struct ProcessInternalNodes {

        ProcessInternalNodes(std::vector<const InternalNodeType*>& lhsNodes, const TreeType& rhsTree,
            TreeType& outputTree, std::vector<const LeafNodeType*>& outputLeafNodes)
            : mLhsNodes(lhsNodes.empty() ? NULL : &lhsNodes.front())
            , mRhsTree(&rhsTree)
            , mLocalTree(mRhsTree->background())
            , mOutputTree(&outputTree)
            , mLocalLeafNodes()
            , mOutputLeafNodes(&outputLeafNodes)
        {
        }

        ProcessInternalNodes(ProcessInternalNodes& other, tbb::split)
            : mLhsNodes(other.mLhsNodes)
            , mRhsTree(other.mRhsTree)
            , mLocalTree(mRhsTree->background())
            , mOutputTree(&mLocalTree)
            , mLocalLeafNodes()
            , mOutputLeafNodes(&mLocalLeafNodes)
        {
        }

        void join(ProcessInternalNodes& other)
        {
            mOutputTree->merge(*other.mOutputTree);
            mOutputLeafNodes->insert(mOutputLeafNodes->end(),
                other.mOutputLeafNodes->begin(), other.mOutputLeafNodes->end());
        }

        void operator()(const tbb::blocked_range<size_t>& range)
        {
            tree::ValueAccessor<const TreeType> rhsAcc(*mRhsTree);
            tree::ValueAccessor<TreeType>       outputAcc(*mOutputTree);

            std::vector<const LeafNodeType*> tmpLeafNodes;

            for (size_t n = range.begin(), N = range.end(); n < N; ++n) {

                const InternalNodeType& lhsNode = *mLhsNodes[n];
                const Coord& ijk = lhsNode.origin();
                const InternalNodeType * rhsNode = rhsAcc.template probeConstNode<InternalNodeType>(ijk);

                if (rhsNode) {
                    lhsNode.getNodes(*mOutputLeafNodes);
                } else {
                    if (Operation == CSG_INTERSECTION) {
                        if (rhsAcc.getValue(ijk) < ValueType(0.0)) {
                            tmpLeafNodes.clear();
                            lhsNode.getNodes(tmpLeafNodes);
                            for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
                                outputAcc.addLeaf(new LeafNodeType(*tmpLeafNodes[i]));
                            }
                        }
                    } else { // Union & Difference
                        if (!(rhsAcc.getValue(ijk) < ValueType(0.0))) {
                            tmpLeafNodes.clear();
                            lhsNode.getNodes(tmpLeafNodes);
                            for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
                                outputAcc.addLeaf(new LeafNodeType(*tmpLeafNodes[i]));
                            }
                        }
                    }
                }
            } //  end range loop
        }

        InternalNodeType const * const * const mLhsNodes;
        TreeType                 const * const mRhsTree;
        TreeType                               mLocalTree;
        TreeType                       * const mOutputTree;

        std::vector<const LeafNodeType*>         mLocalLeafNodes;
        std::vector<const LeafNodeType*> * const mOutputLeafNodes;
    }; // struct ProcessInternalNodes

    struct ProcessLeafNodes {

        ProcessLeafNodes(std::vector<const LeafNodeType*>& lhsNodes, const TreeType& rhsTree, TreeType& output)
            : mLhsNodes(lhsNodes.empty() ? NULL : &lhsNodes.front())
            , mRhsTree(&rhsTree)
            , mLocalTree(mRhsTree->background())
            , mOutputTree(&output)
        {
        }

        ProcessLeafNodes(ProcessLeafNodes& other, tbb::split)
            : mLhsNodes(other.mLhsNodes)
            , mRhsTree(other.mRhsTree)
            , mLocalTree(mRhsTree->background())
            , mOutputTree(&mLocalTree)
        {
        }

        void join(ProcessLeafNodes& rhs) { mOutputTree->merge(*rhs.mOutputTree); }

        void operator()(const tbb::blocked_range<size_t>& range)
        {
            tree::ValueAccessor<const TreeType> rhsAcc(*mRhsTree);
            tree::ValueAccessor<TreeType>       outputAcc(*mOutputTree);

            for (size_t n = range.begin(), N = range.end(); n < N; ++n) {

                const LeafNodeType& lhsNode = *mLhsNodes[n];
                const Coord& ijk = lhsNode.origin();

                const LeafNodeType* rhsNodePt = rhsAcc.probeConstLeaf(ijk);

                if (rhsNodePt) { // combine overlapping nodes

                    LeafNodeType* outputNode = outputAcc.touchLeaf(ijk);
                    ValueType * outputData = outputNode->buffer().data();
                    NodeMaskType& outputMask = outputNode->getValueMask();

                    const ValueType * lhsData = lhsNode.buffer().data();
                    const NodeMaskType& lhsMask = lhsNode.getValueMask();

                    const ValueType * rhsData = rhsNodePt->buffer().data();
                    const NodeMaskType& rhsMask = rhsNodePt->getValueMask();

                    if (Operation == CSG_INTERSECTION) {
                        for (Index pos = 0; pos < LeafNodeType::SIZE; ++pos) {
                            const bool fromRhs = lhsData[pos] < rhsData[pos];
                            outputData[pos] = fromRhs ? rhsData[pos] : lhsData[pos];
                            outputMask.set(pos, fromRhs ? rhsMask.isOn(pos) : lhsMask.isOn(pos));
                        }
                    } else if (Operation == CSG_DIFFERENCE){
                        for (Index pos = 0; pos < LeafNodeType::SIZE; ++pos) {
                            const ValueType rhsVal = math::negative(rhsData[pos]);
                            const bool fromRhs = lhsData[pos] < rhsVal;
                            outputData[pos] = fromRhs ? rhsVal : lhsData[pos];
                            outputMask.set(pos, fromRhs ? rhsMask.isOn(pos) : lhsMask.isOn(pos));
                        }
                    } else { // Union
                        for (Index pos = 0; pos < LeafNodeType::SIZE; ++pos) {
                            const bool fromRhs = lhsData[pos] > rhsData[pos];
                            outputData[pos] = fromRhs ? rhsData[pos] : lhsData[pos];
                            outputMask.set(pos, fromRhs ? rhsMask.isOn(pos) : lhsMask.isOn(pos));
                        }
                    }

                } else {
                    if (Operation == CSG_INTERSECTION) {
                        if (rhsAcc.getValue(ijk) < ValueType(0.0)) {
                            outputAcc.addLeaf(new LeafNodeType(lhsNode));
                        }
                    } else { // Union & Difference
                        if (!(rhsAcc.getValue(ijk) < ValueType(0.0))) {
                            outputAcc.addLeaf(new LeafNodeType(lhsNode));
                        }
                    }
                }
            } //  end range loop
        }

        LeafNodeType const * const * const mLhsNodes;
        TreeType             const * const mRhsTree;
        TreeType                           mLocalTree;
        TreeType                   * const mOutputTree;
    }; // struct ProcessLeafNodes

    TreePtrType               mSegment;
    TreeType    const * const mLhsTree;
    TreeType    const * const mRhsTree;
}; // struct BuildPrimarySegment


template<typename TreeType, CSGOperation Operation>
struct BuildSecondarySegment
{
    typedef typename TreeType::ValueType                                            ValueType;
    typedef typename TreeType::Ptr                                                  TreePtrType;
    typedef typename TreeType::LeafNodeType                                         LeafNodeType;
    typedef typename LeafNodeType::NodeMaskType                                     NodeMaskType;
    typedef typename TreeType::RootNodeType                                         RootNodeType;
    typedef typename RootNodeType::NodeChainType                                    NodeChainType;
    typedef typename boost::mpl::at<NodeChainType, boost::mpl::int_<1> >::type      InternalNodeType;

    BuildSecondarySegment(const TreeType& lhs, const TreeType& rhs)
        : mSegment(new TreeType(lhs.background()))
        , mLhsTree(&lhs)
        , mRhsTree(&rhs)
    {
    }

    void operator()() const
    {
        std::vector<const LeafNodeType*> leafNodes;

        {
            std::vector<const InternalNodeType*> internalNodes;
            mRhsTree->getNodes(internalNodes);

            ProcessInternalNodes op(internalNodes, *mLhsTree, *mSegment, leafNodes);
            tbb::parallel_reduce(tbb::blocked_range<size_t>(0, internalNodes.size()), op);
        }

        ProcessLeafNodes op(leafNodes, *mLhsTree, *mSegment);
        tbb::parallel_reduce(tbb::blocked_range<size_t>(0, leafNodes.size()), op);
    }

    TreePtrType& segment() { return mSegment; }

private:

    struct ProcessInternalNodes {

        ProcessInternalNodes(std::vector<const InternalNodeType*>& rhsNodes, const TreeType& lhsTree,
            TreeType& outputTree, std::vector<const LeafNodeType*>& outputLeafNodes)
            : mRhsNodes(rhsNodes.empty() ? NULL : &rhsNodes.front())
            , mLhsTree(&lhsTree)
            , mLocalTree(mLhsTree->background())
            , mOutputTree(&outputTree)
            , mLocalLeafNodes()
            , mOutputLeafNodes(&outputLeafNodes)
        {
        }

        ProcessInternalNodes(ProcessInternalNodes& other, tbb::split)
            : mRhsNodes(other.mRhsNodes)
            , mLhsTree(other.mLhsTree)
            , mLocalTree(mLhsTree->background())
            , mOutputTree(&mLocalTree)
            , mLocalLeafNodes()
            , mOutputLeafNodes(&mLocalLeafNodes)
        {
        }

        void join(ProcessInternalNodes& other)
        {
            mOutputTree->merge(*other.mOutputTree);
            mOutputLeafNodes->insert(mOutputLeafNodes->end(),
                other.mOutputLeafNodes->begin(), other.mOutputLeafNodes->end());
        }

        void operator()(const tbb::blocked_range<size_t>& range)
        {
            tree::ValueAccessor<const TreeType> lhsAcc(*mLhsTree);
            tree::ValueAccessor<TreeType>       outputAcc(*mOutputTree);

            std::vector<const LeafNodeType*> tmpLeafNodes;

            for (size_t n = range.begin(), N = range.end(); n < N; ++n) {

                const InternalNodeType& rhsNode = *mRhsNodes[n];
                const Coord& ijk = rhsNode.origin();
                const InternalNodeType * lhsNode = lhsAcc.template probeConstNode<InternalNodeType>(ijk);

                if (lhsNode) {
                   rhsNode.getNodes(*mOutputLeafNodes);
                } else {
                    if (Operation == CSG_INTERSECTION) {
                        if (lhsAcc.getValue(ijk) < ValueType(0.0)) {
                            tmpLeafNodes.clear();
                            rhsNode.getNodes(tmpLeafNodes);
                            for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
                                outputAcc.addLeaf(new LeafNodeType(*tmpLeafNodes[i]));
                            }
                        }
                    } else if (Operation == CSG_DIFFERENCE) {
                        if (lhsAcc.getValue(ijk) < ValueType(0.0)) {
                            tmpLeafNodes.clear();
                            rhsNode.getNodes(tmpLeafNodes);
                            for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
                                LeafNodeType* outputNode = new LeafNodeType(*tmpLeafNodes[i]);
                                outputNode->negate();
                                outputAcc.addLeaf(outputNode);
                            }
                        }
                    } else { // Union
                        if (!(lhsAcc.getValue(ijk) < ValueType(0.0))) {
                            tmpLeafNodes.clear();
                            rhsNode.getNodes(tmpLeafNodes);
                            for (size_t i = 0, I = tmpLeafNodes.size(); i < I; ++i) {
                                outputAcc.addLeaf(new LeafNodeType(*tmpLeafNodes[i]));
                            }
                        }
                    }
                }
            } //  end range loop
        }

        InternalNodeType const * const * const mRhsNodes;
        TreeType                 const * const mLhsTree;
        TreeType                               mLocalTree;
        TreeType                       * const mOutputTree;

        std::vector<const LeafNodeType*>         mLocalLeafNodes;
        std::vector<const LeafNodeType*> * const mOutputLeafNodes;
    }; // struct ProcessInternalNodes

    struct ProcessLeafNodes {

        ProcessLeafNodes(std::vector<const LeafNodeType*>& rhsNodes, const TreeType& lhsTree, TreeType& output)
            : mRhsNodes(rhsNodes.empty() ? NULL : &rhsNodes.front())
            , mLhsTree(&lhsTree)
            , mLocalTree(mLhsTree->background())
            , mOutputTree(&output)
        {
        }

        ProcessLeafNodes(ProcessLeafNodes& rhs, tbb::split)
            : mRhsNodes(rhs.mRhsNodes)
            , mLhsTree(rhs.mLhsTree)
            , mLocalTree(mLhsTree->background())
            , mOutputTree(&mLocalTree)
        {
        }

        void join(ProcessLeafNodes& rhs) { mOutputTree->merge(*rhs.mOutputTree); }

        void operator()(const tbb::blocked_range<size_t>& range)
        {
            tree::ValueAccessor<const TreeType> lhsAcc(*mLhsTree);
            tree::ValueAccessor<TreeType>       outputAcc(*mOutputTree);

            for (size_t n = range.begin(), N = range.end(); n < N; ++n) {

                const LeafNodeType& rhsNode = *mRhsNodes[n];
                const Coord& ijk = rhsNode.origin();

                const LeafNodeType* lhsNode = lhsAcc.probeConstLeaf(ijk);

                if (!lhsNode) {
                    if (Operation == CSG_INTERSECTION) {
                        if (lhsAcc.getValue(ijk) < ValueType(0.0)) {
                            outputAcc.addLeaf(new LeafNodeType(rhsNode));
                        }
                    } else if (Operation == CSG_DIFFERENCE) {
                        if (lhsAcc.getValue(ijk) < ValueType(0.0)) {
                            LeafNodeType* outputNode = new LeafNodeType(rhsNode);
                            outputNode->negate();
                            outputAcc.addLeaf(outputNode);
                        }
                    } else { // Union
                        if (!(lhsAcc.getValue(ijk) < ValueType(0.0))) {
                            outputAcc.addLeaf(new LeafNodeType(rhsNode));
                        }
                    }
                }
            } //  end range loop
        }

        LeafNodeType const * const * const mRhsNodes;
        TreeType             const * const mLhsTree;
        TreeType                           mLocalTree;
        TreeType                   * const mOutputTree;
    }; // struct ProcessLeafNodes

    TreePtrType               mSegment;
    TreeType    const * const mLhsTree;
    TreeType    const * const mRhsTree;
}; // struct BuildSecondarySegment


template<CSGOperation Operation, typename TreeType>
inline typename TreeType::Ptr
doCSGCopy(const TreeType& lhs, const TreeType& rhs)
{
    BuildPrimarySegment<TreeType, Operation> primary(lhs, rhs);
    BuildSecondarySegment<TreeType, Operation> secondary(lhs, rhs);

    // Exploiting nested parallelism
    tbb::task_group tasks;
    tasks.run(primary);
    tasks.run(secondary);
    tasks.wait();

    primary.segment()->merge(*secondary.segment());

    // The leafnode (level = 0) sign is set in the segment construction.
    tools::signedFloodFill(*primary.segment(), /*threaded=*/true, /*grainSize=*/1, /*minLevel=*/1);

    return primary.segment();
}


////////////////////////////////////////


template<typename TreeType>
struct GridOrTreeConstructor
{
    typedef typename TreeType::Ptr TreeTypePtr;
    static TreeTypePtr construct(const TreeType&, TreeTypePtr& tree) { return tree; }
};


template<typename TreeType>
struct GridOrTreeConstructor<Grid<TreeType> >
{
    typedef Grid<TreeType>                  GridType;
    typedef typename Grid<TreeType>::Ptr    GridTypePtr;
    typedef typename TreeType::Ptr          TreeTypePtr;

    static GridTypePtr construct(const GridType& grid, TreeTypePtr& tree) {
        GridTypePtr maskGrid(GridType::create(tree));
        maskGrid->setTransform(grid.transform().copy());
        maskGrid->insertMeta(grid);
        return maskGrid;
    }
};


////////////////////////////////////////

/// @cond COMPOSITE_INTERNAL
/// List of pairs of leaf node pointers
template <typename LeafT>
using LeafPairList = std::vector<std::pair<LeafT*, LeafT*>>;
/// @endcond

/// @cond COMPOSITE_INTERNAL
/// Transfers leaf nodes from a source tree into a
/// desitnation tree, unless it already exists in the destination tree
/// in which case pointers to both leaf nodes are added to a list for
/// subsequent compositing operations.
template <typename TreeT>
inline void transferLeafNodes(TreeT &srcTree, TreeT &dstTree,
                              LeafPairList<typename TreeT::LeafNodeType> &overlapping)
{
    using LeafT = typename TreeT::LeafNodeType;
    tree::ValueAccessor<TreeT> acc(dstTree);//destination
    std::vector<LeafT*> srcLeafNodes;
    srcLeafNodes.reserve(srcTree.leafCount());
    srcTree.stealNodes(srcLeafNodes);
    srcTree.clear();
    for (LeafT *srcLeaf : srcLeafNodes) {
        LeafT *dstLeaf = acc.probeLeaf(srcLeaf->origin());
        if (dstLeaf) {
            overlapping.emplace_back(dstLeaf, srcLeaf);//dst, src
        } else {
            acc.addLeaf(srcLeaf);
        }
    }
}
/// @endcond

/// @cond COMPOSITE_INTERNAL
/// Template specailization of compActiveLeafVoxels
template <typename TreeT, typename OpT>
inline
typename std::enable_if<!std::is_same<typename TreeT::ValueType, bool>::value &&
                        !std::is_same<typename TreeT::BuildType, ValueMask>::value &&
                         std::is_same<typename TreeT::LeafNodeType::Buffer::ValueType,
                                      typename TreeT::LeafNodeType::Buffer::StorageType>::value>::type
doCompActiveLeafVoxels(TreeT &srcTree, TreeT &dstTree, OpT op)
{
    using LeafT  = typename TreeT::LeafNodeType;
    LeafPairList<LeafT> overlapping;//dst, src
    transferLeafNodes(srcTree, dstTree, overlapping);

    using RangeT = tbb::blocked_range<size_t>;
    tbb::parallel_for(RangeT(0, overlapping.size()), [op, &overlapping](const RangeT& r) {
        for (auto i = r.begin(); i != r.end(); ++i) {
            auto *dstLeaf = overlapping[i].first, *srcLeaf = overlapping[i].second;
            dstLeaf->getValueMask() |= srcLeaf->getValueMask();
            auto *ptr = dstLeaf->buffer().data();
            for (auto v = srcLeaf->cbeginValueOn(); v; ++v) op(ptr[v.pos()], *v);
            delete srcLeaf;
        }
   });
}
/// @endcond

/// @cond COMPOSITE_INTERNAL
/// Template specailization of compActiveLeafVoxels
template <typename TreeT, typename OpT>
inline
typename std::enable_if<std::is_same<typename TreeT::BuildType, ValueMask>::value &&
                        std::is_same<typename TreeT::ValueType, bool>::value>::type
doCompActiveLeafVoxels(TreeT &srcTree, TreeT &dstTree, OpT)
{
    using LeafT  = typename TreeT::LeafNodeType;
    LeafPairList<LeafT> overlapping;//dst, src
    transferLeafNodes(srcTree, dstTree, overlapping);

    using RangeT = tbb::blocked_range<size_t>;
    tbb::parallel_for(RangeT(0, overlapping.size()), [&overlapping](const RangeT& r) {
        for (auto i = r.begin(); i != r.end(); ++i) {
            overlapping[i].first->getValueMask() |= overlapping[i].second->getValueMask();
            delete overlapping[i].second;
        }
    });
}

/// @cond COMPOSITE_INTERNAL
/// Template specailization of compActiveLeafVoxels
template <typename TreeT, typename OpT>
inline
typename std::enable_if<std::is_same<typename TreeT::ValueType, bool>::value &&
                        !std::is_same<typename TreeT::BuildType, ValueMask>::value>::type
doCompActiveLeafVoxels(TreeT &srcTree, TreeT &dstTree, OpT op)
{
    using LeafT = typename TreeT::LeafNodeType;
    LeafPairList<LeafT> overlapping;//dst, src
    transferLeafNodes(srcTree, dstTree, overlapping);

    using RangeT = tbb::blocked_range<size_t>;
    using WordT = typename LeafT::Buffer::WordType;
    tbb::parallel_for(RangeT(0, overlapping.size()), [op, &overlapping](const RangeT& r) {
        for (auto i = r.begin(); i != r.end(); ++i) {
            LeafT *dstLeaf = overlapping[i].first, *srcLeaf = overlapping[i].second;
            WordT *w1 = dstLeaf->buffer().data();
            const WordT *w2 = srcLeaf->buffer().data();
            const WordT *w3 = &(srcLeaf->getValueMask().template getWord<WordT>(0));
            for (Index32 n = LeafT::Buffer::WORD_COUNT; n--; ++w1) {
                WordT tmp = *w1, state = *w3++;
                op (tmp, *w2++);
                *w1 = (state & tmp) | (~state & *w1);//inactive values are unchanged
            }
            dstLeaf->getValueMask() |= srcLeaf->getValueMask();
            delete srcLeaf;
        }
    });
}
/// @endcond

/// @cond COMPOSITE_INTERNAL
/// Default functor for compActiveLeafVoxels
template <typename TreeT>
struct CopyOp
{
    using ValueT = typename TreeT::ValueType;
    CopyOp() = default;
    void operator()(ValueT& dst, const ValueT& src) const { dst = src; }
};
/// @endcond

} // namespace composite


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compMax(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
    typedef TreeAdapter<GridOrTreeT>    Adapter;
    typedef typename Adapter::TreeType  TreeT;
    typedef typename TreeT::ValueType   ValueT;
    struct Local {
        static inline void op(CombineArgs<ValueT>& args) {
            args.setResult(composite::max(args.a(), args.b()));
        }
    };
    Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compMin(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
    typedef TreeAdapter<GridOrTreeT>    Adapter;
    typedef typename Adapter::TreeType  TreeT;
    typedef typename TreeT::ValueType   ValueT;
    struct Local {
        static inline void op(CombineArgs<ValueT>& args) {
            args.setResult(composite::min(args.a(), args.b()));
        }
    };
    Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compSum(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
    typedef TreeAdapter<GridOrTreeT> Adapter;
    typedef typename Adapter::TreeType TreeT;
    struct Local {
        static inline void op(CombineArgs<typename TreeT::ValueType>& args) {
            args.setResult(args.a() + args.b());
        }
    };
    Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compMul(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
    typedef TreeAdapter<GridOrTreeT> Adapter;
    typedef typename Adapter::TreeType TreeT;
    struct Local {
        static inline void op(CombineArgs<typename TreeT::ValueType>& args) {
            args.setResult(args.a() * args.b());
        }
    };
    Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compDiv(GridOrTreeT& aTree, GridOrTreeT& bTree)
{
    typedef TreeAdapter<GridOrTreeT> Adapter;
    typedef typename Adapter::TreeType TreeT;
    struct Local {
        static inline void op(CombineArgs<typename TreeT::ValueType>& args) {
            args.setResult(composite::divide(args.a(), args.b()));
        }
    };
    Adapter::tree(aTree).combineExtended(Adapter::tree(bTree), Local::op, /*prune=*/false);
}


////////////////////////////////////////


template<typename TreeT>
struct CompReplaceOp
{
    TreeT* const aTree;

    CompReplaceOp(TreeT& _aTree): aTree(&_aTree) {}

    /// @note fill operation is not thread safe
    void operator()(const typename TreeT::ValueOnCIter& iter) const
    {
        CoordBBox bbox;
        iter.getBoundingBox(bbox);
        aTree->fill(bbox, *iter);
    }

    void operator()(const typename TreeT::LeafCIter& leafIter) const
    {
        tree::ValueAccessor<TreeT> acc(*aTree);
        for (typename TreeT::LeafCIter::LeafNodeT::ValueOnCIter iter =
            leafIter->cbeginValueOn(); iter; ++iter)
        {
            acc.setValue(iter.getCoord(), *iter);
        }
    }
};


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
compReplace(GridOrTreeT& aTree, const GridOrTreeT& bTree)
{
    typedef TreeAdapter<GridOrTreeT> Adapter;
    typedef typename Adapter::TreeType TreeT;
    typedef typename TreeT::ValueOnCIter ValueOnCIterT;

    // Copy active states (but not values) from B to A.
    Adapter::tree(aTree).topologyUnion(Adapter::tree(bTree));

    CompReplaceOp<TreeT> op(Adapter::tree(aTree));

    // Copy all active tile values from B to A.
    ValueOnCIterT iter = bTree.cbeginValueOn();
    iter.setMaxDepth(iter.getLeafDepth() - 1); // don't descend into leaf nodes
    foreach(iter, op, /*threaded=*/false);

    // Copy all active voxel values from B to A.
    foreach(Adapter::tree(bTree).cbeginLeaf(), op);
}


////////////////////////////////////////


/// Base visitor class for CSG operations
/// (not intended to be used polymorphically, so no virtual functions)
template<typename TreeType>
class CsgVisitorBase
{
public:
    typedef TreeType TreeT;
    typedef typename TreeT::ValueType ValueT;
    typedef typename TreeT::LeafNodeType::ChildAllIter ChildIterT;

    enum { STOP = 3 };

    CsgVisitorBase(const TreeT& aTree, const TreeT& bTree):
        mAOutside(aTree.background()),
        mAInside(math::negative(mAOutside)),
        mBOutside(bTree.background()),
        mBInside(math::negative(mBOutside))
    {
        const ValueT zero = zeroVal<ValueT>();
        if (!(mAOutside > zero)) {
            OPENVDB_THROW(ValueError,
                "expected grid A outside value > 0, got " << mAOutside);
        }
        if (!(mAInside < zero)) {
            OPENVDB_THROW(ValueError,
                "expected grid A inside value < 0, got " << mAInside);
        }
        if (!(mBOutside > zero)) {
            OPENVDB_THROW(ValueError,
                "expected grid B outside value > 0, got " << mBOutside);
        }
        if (!(mBInside < zero)) {
            OPENVDB_THROW(ValueError,
                "expected grid B outside value < 0, got " << mBOutside);
        }
    }

protected:
    ValueT mAOutside, mAInside, mBOutside, mBInside;
};


////////////////////////////////////////


template<typename TreeType>
struct CsgUnionVisitor: public CsgVisitorBase<TreeType>
{
    typedef TreeType TreeT;
    typedef typename TreeT::ValueType ValueT;
    typedef typename TreeT::LeafNodeType::ChildAllIter ChildIterT;

    enum { STOP = CsgVisitorBase<TreeT>::STOP };

    CsgUnionVisitor(const TreeT& a, const TreeT& b): CsgVisitorBase<TreeT>(a, b) {}

    /// Don't process nodes that are at different tree levels.
    template<typename AIterT, typename BIterT>
    inline int operator()(AIterT&, BIterT&) { return 0; }

    /// Process root and internal nodes.
    template<typename IterT>
    inline int operator()(IterT& aIter, IterT& bIter)
    {
        ValueT aValue = zeroVal<ValueT>();
        typename IterT::ChildNodeType* aChild = aIter.probeChild(aValue);
        if (!aChild && aValue < zeroVal<ValueT>()) {
            // A is an inside tile.  Leave it alone and stop traversing this branch.
            return STOP;
        }

        ValueT bValue = zeroVal<ValueT>();
        typename IterT::ChildNodeType* bChild = bIter.probeChild(bValue);
        if (!bChild && bValue < zeroVal<ValueT>()) {
            // B is an inside tile.  Make A an inside tile and stop traversing this branch.
            aIter.setValue(this->mAInside);
            aIter.setValueOn(bIter.isValueOn());
            delete aChild;
            return STOP;
        }

        if (!aChild && aValue > zeroVal<ValueT>()) {
            // A is an outside tile.  If B has a child, transfer it to A,
            // otherwise leave A alone.
            if (bChild) {
                bIter.setValue(this->mBOutside);
                bIter.setValueOff();
                bChild->resetBackground(this->mBOutside, this->mAOutside);
                aIter.setChild(bChild); // transfer child
                delete aChild;
            }
            return STOP;
        }

        // If A has a child and B is an outside tile, stop traversing this branch.
        // Continue traversal only if A and B both have children.
        return (aChild && bChild) ? 0 : STOP;
    }

    /// Process leaf node values.
    inline int operator()(ChildIterT& aIter, ChildIterT& bIter)
    {
        ValueT aValue, bValue;
        aIter.probeValue(aValue);
        bIter.probeValue(bValue);
        if (aValue > bValue) { // a = min(a, b)
            aIter.setValue(bValue);
            aIter.setValueOn(bIter.isValueOn());
        }
        return 0;
    }
};



////////////////////////////////////////


template<typename TreeType>
struct CsgIntersectVisitor: public CsgVisitorBase<TreeType>
{
    typedef TreeType TreeT;
    typedef typename TreeT::ValueType ValueT;
    typedef typename TreeT::LeafNodeType::ChildAllIter ChildIterT;

    enum { STOP = CsgVisitorBase<TreeT>::STOP };

    CsgIntersectVisitor(const TreeT& a, const TreeT& b): CsgVisitorBase<TreeT>(a, b) {}

    /// Don't process nodes that are at different tree levels.
    template<typename AIterT, typename BIterT>
    inline int operator()(AIterT&, BIterT&) { return 0; }

    /// Process root and internal nodes.
    template<typename IterT>
    inline int operator()(IterT& aIter, IterT& bIter)
    {
        ValueT aValue = zeroVal<ValueT>();
        typename IterT::ChildNodeType* aChild = aIter.probeChild(aValue);
        if (!aChild && !(aValue < zeroVal<ValueT>())) {
            // A is an outside tile.  Leave it alone and stop traversing this branch.
            return STOP;
        }

        ValueT bValue = zeroVal<ValueT>();
        typename IterT::ChildNodeType* bChild = bIter.probeChild(bValue);
        if (!bChild && !(bValue < zeroVal<ValueT>())) {
            // B is an outside tile.  Make A an outside tile and stop traversing this branch.
            aIter.setValue(this->mAOutside);
            aIter.setValueOn(bIter.isValueOn());
            delete aChild;
            return STOP;
        }

        if (!aChild && aValue < zeroVal<ValueT>()) {
            // A is an inside tile.  If B has a child, transfer it to A,
            // otherwise leave A alone.
            if (bChild) {
                bIter.setValue(this->mBOutside);
                bIter.setValueOff();
                bChild->resetBackground(this->mBOutside, this->mAOutside);
                aIter.setChild(bChild); // transfer child
                delete aChild;
            }
            return STOP;
        }

        // If A has a child and B is an outside tile, stop traversing this branch.
        // Continue traversal only if A and B both have children.
        return (aChild && bChild) ? 0 : STOP;
    }

    /// Process leaf node values.
    inline int operator()(ChildIterT& aIter, ChildIterT& bIter)
    {
        ValueT aValue, bValue;
        aIter.probeValue(aValue);
        bIter.probeValue(bValue);
        if (aValue < bValue) { // a = max(a, b)
            aIter.setValue(bValue);
            aIter.setValueOn(bIter.isValueOn());
        }
        return 0;
    }
};


////////////////////////////////////////


template<typename TreeType>
struct CsgDiffVisitor: public CsgVisitorBase<TreeType>
{
    typedef TreeType TreeT;
    typedef typename TreeT::ValueType ValueT;
    typedef typename TreeT::LeafNodeType::ChildAllIter ChildIterT;

    enum { STOP = CsgVisitorBase<TreeT>::STOP };

    CsgDiffVisitor(const TreeT& a, const TreeT& b): CsgVisitorBase<TreeT>(a, b) {}

    /// Don't process nodes that are at different tree levels.
    template<typename AIterT, typename BIterT>
    inline int operator()(AIterT&, BIterT&) { return 0; }

    /// Process root and internal nodes.
    template<typename IterT>
    inline int operator()(IterT& aIter, IterT& bIter)
    {
        ValueT aValue = zeroVal<ValueT>();
        typename IterT::ChildNodeType* aChild = aIter.probeChild(aValue);
        if (!aChild && !(aValue < zeroVal<ValueT>())) {
            // A is an outside tile.  Leave it alone and stop traversing this branch.
            return STOP;
        }

        ValueT bValue = zeroVal<ValueT>();
        typename IterT::ChildNodeType* bChild = bIter.probeChild(bValue);
        if (!bChild && bValue < zeroVal<ValueT>()) {
            // B is an inside tile.  Make A an inside tile and stop traversing this branch.
            aIter.setValue(this->mAOutside);
            aIter.setValueOn(bIter.isValueOn());
            delete aChild;
            return STOP;
        }

        if (!aChild && aValue < zeroVal<ValueT>()) {
            // A is an inside tile.  If B has a child, transfer it to A,
            // otherwise leave A alone.
            if (bChild) {
                bIter.setValue(this->mBOutside);
                bIter.setValueOff();
                bChild->resetBackground(this->mBOutside, this->mAOutside);
                aIter.setChild(bChild); // transfer child
                bChild->negate();
                delete aChild;
            }
            return STOP;
        }

        // If A has a child and B is an outside tile, stop traversing this branch.
        // Continue traversal only if A and B both have children.
        return (aChild && bChild) ? 0 : STOP;
    }

    /// Process leaf node values.
    inline int operator()(ChildIterT& aIter, ChildIterT& bIter)
    {
        ValueT aValue, bValue;
        aIter.probeValue(aValue);
        bIter.probeValue(bValue);
        bValue = math::negative(bValue);
        if (aValue < bValue) { // a = max(a, -b)
            aIter.setValue(bValue);
            aIter.setValueOn(bIter.isValueOn());
        }
        return 0;
    }
};


////////////////////////////////////////


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
csgUnion(GridOrTreeT& a, GridOrTreeT& b, bool prune)
{
    typedef TreeAdapter<GridOrTreeT> Adapter;
    typedef typename Adapter::TreeType TreeT;
    TreeT &aTree = Adapter::tree(a), &bTree = Adapter::tree(b);
    CsgUnionVisitor<TreeT> visitor(aTree, bTree);
    aTree.visit2(bTree, visitor);
    if (prune) tools::pruneLevelSet(aTree);
}

template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
csgIntersection(GridOrTreeT& a, GridOrTreeT& b, bool prune)
{
    typedef TreeAdapter<GridOrTreeT> Adapter;
    typedef typename Adapter::TreeType TreeT;
    TreeT &aTree = Adapter::tree(a), &bTree = Adapter::tree(b);
    CsgIntersectVisitor<TreeT> visitor(aTree, bTree);
    aTree.visit2(bTree, visitor);
    if (prune) tools::pruneLevelSet(aTree);
}

template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline void
csgDifference(GridOrTreeT& a, GridOrTreeT& b, bool prune)
{
    typedef TreeAdapter<GridOrTreeT> Adapter;
    typedef typename Adapter::TreeType TreeT;
    TreeT &aTree = Adapter::tree(a), &bTree = Adapter::tree(b);
    CsgDiffVisitor<TreeT> visitor(aTree, bTree);
    aTree.visit2(bTree, visitor);
    if (prune) tools::pruneLevelSet(aTree);
}


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline typename GridOrTreeT::Ptr
csgUnionCopy(const GridOrTreeT& a, const GridOrTreeT& b)
{
    typedef TreeAdapter<GridOrTreeT>            Adapter;
    typedef typename Adapter::TreeType::Ptr     TreePtrT;

    TreePtrT output = composite::doCSGCopy<composite::CSG_UNION>(
                        Adapter::tree(a), Adapter::tree(b));

    return composite::GridOrTreeConstructor<GridOrTreeT>::construct(a, output);
}


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline typename GridOrTreeT::Ptr
csgIntersectionCopy(const GridOrTreeT& a, const GridOrTreeT& b)
{
    typedef TreeAdapter<GridOrTreeT>            Adapter;
    typedef typename Adapter::TreeType::Ptr     TreePtrT;

    TreePtrT output = composite::doCSGCopy<composite::CSG_INTERSECTION>(
                        Adapter::tree(a), Adapter::tree(b));

    return composite::GridOrTreeConstructor<GridOrTreeT>::construct(a, output);
}


template<typename GridOrTreeT>
OPENVDB_STATIC_SPECIALIZATION inline typename GridOrTreeT::Ptr
csgDifferenceCopy(const GridOrTreeT& a, const GridOrTreeT& b)
{
    typedef TreeAdapter<GridOrTreeT>            Adapter;
    typedef typename Adapter::TreeType::Ptr     TreePtrT;

    TreePtrT output = composite::doCSGCopy<composite::CSG_DIFFERENCE>(
                        Adapter::tree(a), Adapter::tree(b));

    return composite::GridOrTreeConstructor<GridOrTreeT>::construct(a, output);
}

////////////////////////////////////////////////////////

/// @brief Composite the active values in leaf nodes, i.e. active
///        voxels, of a source tree into a destination tree.
///
/// @param srcTree source tree from which active voxels are composited.
///
/// @param dstTree destination tree into which active voxels are composited.
///
/// @param op      a functor of the form <tt>void op(T& dst, const T& src)</tt>,
///                where @c T is the @c ValueType of the tree, that composites
///                a source value into a destination value. By default
///                it copies the value from src to dst.
///
/// @details All active voxels in the source tree will
///          be active in the destination tree, and their value is
///          determined by a use-defined functor (OpT op) that operates on the
///          source and destination values. The only exception is when
///          the tree type is MaskTree, in which case no functor is
///          needed since by defintion a MaskTree has no values (only topology).
///
/// @warning This function only operated on leaf node values,
///          i.e. tile values are ignored.
template <typename TreeT, typename OpT = composite::CopyOp<TreeT> >
inline void compActiveLeafVoxels(TreeT &srcTree, TreeT &dstTree, OpT op = composite::CopyOp<TreeT>())
{
    composite::doCompActiveLeafVoxels<TreeT, OpT>(srcTree, dstTree, op);
}


} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_COMPOSITE_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )