/usr/include/openvdb/tools/DenseSparseTools.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_TOOLS_DENSESPARSETOOLS_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_DENSESPARSETOOLS_HAS_BEEN_INCLUDED
#include <tbb/parallel_reduce.h>
#include <tbb/blocked_range3d.h>
#include <tbb/blocked_range2d.h>
#include <tbb/blocked_range.h>
#include <openvdb/Types.h>
#include <openvdb/tree/LeafManager.h>
#include "Dense.h"
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
/// @brief Selectively extract and transform data from a dense grid, producing a
/// sparse tree with leaf nodes only (e.g. create a tree from the square
/// of values greater than a cutoff.)
/// @param dense A dense grid that acts as a data source
/// @param functor A functor that selects and transforms data for output
/// @param background The background value of the resulting sparse grid
/// @param threaded Option to use threaded or serial code path
/// @return @c Ptr to tree with the valuetype and configuration defined
/// by typedefs in the @c functor.
/// @note To achieve optimal sparsity consider calling the prune()
/// method on the result.
/// @note To simply copy the all the data from a Dense grid to a
/// OpenVDB Grid, use tools::copyFromDense() for better performance.
///
/// The type of the sparse tree is determined by the specified OtpType
/// functor by means of the typedef OptType::ResultTreeType
///
/// The OptType function is responsible for the the transformation of
/// dense grid data to sparse grid data on a per-voxel basis.
///
/// Only leaf nodes with active values will be added to the sparse grid.
///
/// The OpType must struct that defines a the minimal form
/// @code
/// struct ExampleOp
/// {
/// typedef DesiredTreeType ResultTreeType;
///
/// template<typename IndexOrCoord>
/// void OpType::operator() (const DenseValueType a, const IndexOrCoord& ijk,
/// ResultTreeType::LeafNodeType* leaf);
/// };
/// @endcode
///
/// For example, to generate a <ValueType, 5, 4, 3> tree with valuesOn
/// at locations greater than a given maskvalue
/// @code
/// template <typename ValueType>
/// class Rule
/// {
/// public:
/// // Standard tree type (e.g. MaskTree or FloatTree in openvdb.h)
/// typedef typename openvdb::tree::Tree4<ValueType, 5, 4, 3>::Type ResultTreeType;
///
/// typedef typename ResultTreeType::LeafNodeType ResultLeafNodeType;
/// typedef typename ResultTreeType::ValueType ResultValueType;
///
/// typedef float DenseValueType;
///
/// typedef vdbmath::Coord::ValueType Index;
///
/// Rule(const DenseValueType& value): mMaskValue(value){};
///
/// template <typename IndexOrCoord>
/// void operator()(const DenseValueType& a, const IndexOrCoord& offset,
/// ResultLeafNodeType* leaf) const
/// {
/// if (a > mMaskValue) {
/// leaf->setValueOn(offset, a);
/// }
/// }
///
/// private:
/// const DenseValueType mMaskValue;
/// };
/// @endcode
template<typename OpType, typename DenseType>
typename OpType::ResultTreeType::Ptr
extractSparseTree(const DenseType& dense, const OpType& functor,
const typename OpType::ResultValueType& background,
bool threaded = true);
/// This struct that aids template resolution of a new tree type
/// has the same configuration at TreeType, but the ValueType from
/// DenseType.
template <typename DenseType, typename TreeType> struct DSConverter {
typedef typename DenseType::ValueType ValueType;
typedef typename TreeType::template ValueConverter<ValueType>::Type Type;
};
/// @brief Copy data from the intersection of a sparse tree and a dense input grid.
/// The resulting tree has the same configuration as the sparse tree, but holds
/// the data type specified by the dense input.
/// @param dense A dense grid that acts as a data source
/// @param mask The active voxels and tiles intersected with dense define iteration mask
/// @param background The background value of the resulting sparse grid
/// @param threaded Option to use threaded or serial code path
/// @return @c Ptr to tree with the same configuration as @c mask but of value type
/// defined by @c dense.
template<typename DenseType, typename MaskTreeType>
typename DSConverter<DenseType, MaskTreeType>::Type::Ptr
extractSparseTreeWithMask(const DenseType& dense,
const MaskTreeType& mask,
const typename DenseType::ValueType& background,
bool threaded = true);
/// Apply a point-wise functor to the intersection of a dense grid and a given bounding box
/// @param dense A dense grid to be transformed
/// @param bbox Index space bounding box, define region where the transformation is applied
/// @param op A functor that acts on the dense grid value type
/// @param parallel Used to select multithreaded or single threaded
/// Minimally, the @c op class has to support a @c operator() method,
/// @code
/// // Square values in a grid
/// struct Op
/// {
/// ValueT operator()(const ValueT& in) const
/// {
/// // do work
/// ValueT result = in * in;
///
/// return result;
/// }
/// };
/// @endcode
/// NB: only Dense grids with memory layout zxy are supported
template<typename ValueT, typename OpType>
void transformDense(Dense<ValueT, openvdb::tools::LayoutZYX>& dense,
const openvdb::CoordBBox& bbox, const OpType& op, bool parallel=true);
/// We currrently support the following operations when compositing sparse
/// data into a dense grid.
enum DSCompositeOp {
DS_OVER, DS_ADD, DS_SUB, DS_MIN, DS_MAX, DS_MULT, DS_SET
};
/// @brief Composite data from a sparse tree into a dense array of the same value type.
/// @param dense Dense grid to be altered by the operation
/// @param source Sparse data to composite into @c dense
/// @param alpha Sparse Alpha mask used in compositing operations.
/// @param beta Constant multiplier on src
/// @param strength Constant multiplier on alpha
/// @param threaded Enable threading for this operation.
template<DSCompositeOp, typename TreeT>
void compositeToDense(Dense<typename TreeT::ValueType, LayoutZYX>& dense,
const TreeT& source,
const TreeT& alpha,
const typename TreeT::ValueType beta,
const typename TreeT::ValueType strength,
bool threaded = true);
/// @brief Functor-based class used to extract data that satisfies some
/// criteria defined by the embedded @c OpType functor. The @c extractSparseTree
/// function wraps this class.
template<typename OpType, typename DenseType>
class SparseExtractor
{
public:
typedef openvdb::math::Coord::ValueType Index;
typedef typename DenseType::ValueType DenseValueType;
typedef typename OpType::ResultTreeType ResultTreeType;
typedef typename ResultTreeType::ValueType ResultValueType;
typedef typename ResultTreeType::LeafNodeType ResultLeafNodeType;
typedef typename ResultTreeType::template ValueConverter<ValueMask>::Type MaskTree;
typedef tbb::blocked_range3d<Index, Index, Index> Range3d;
private:
const DenseType& mDense;
const OpType& mFunctor;
const ResultValueType mBackground;
const openvdb::math::CoordBBox mBBox;
const Index mWidth;
typename ResultTreeType::Ptr mMask;
openvdb::math::Coord mMin;
public:
SparseExtractor(const DenseType& dense, const OpType& functor,
const ResultValueType background) :
mDense(dense), mFunctor(functor),
mBackground(background),
mBBox(dense.bbox()),
mWidth(ResultLeafNodeType::DIM),
mMask( new ResultTreeType(mBackground))
{}
SparseExtractor(const DenseType& dense,
const openvdb::math::CoordBBox& bbox,
const OpType& functor,
const ResultValueType background) :
mDense(dense), mFunctor(functor),
mBackground(background),
mBBox(bbox),
mWidth(ResultLeafNodeType::DIM),
mMask( new ResultTreeType(mBackground))
{
// mBBox must be inside the coordinate rage of the dense grid
if (!dense.bbox().isInside(mBBox)) {
OPENVDB_THROW(ValueError, "Data extraction window out of bound");
}
}
SparseExtractor(SparseExtractor& other, tbb::split):
mDense(other.mDense), mFunctor(other.mFunctor),
mBackground(other.mBackground), mBBox(other.mBBox),
mWidth(other.mWidth),
mMask(new ResultTreeType(mBackground)),
mMin(other.mMin)
{}
typename ResultTreeType::Ptr extract(bool threaded = true) {
// Construct 3D range of leaf nodes that
// intersect mBBox.
// Snap the bbox to nearest leaf nodes min and max
openvdb::math::Coord padded_min = mBBox.min();
openvdb::math::Coord padded_max = mBBox.max();
padded_min &= ~(mWidth - 1);
padded_max &= ~(mWidth - 1);
padded_max[0] += mWidth - 1;
padded_max[1] += mWidth - 1;
padded_max[2] += mWidth - 1;
// number of leaf nodes in each direction
// division by leaf width, e.g. 8 in most cases
const Index xleafCount = ( padded_max.x() - padded_min.x() + 1 ) / mWidth;
const Index yleafCount = ( padded_max.y() - padded_min.y() + 1 ) / mWidth;
const Index zleafCount = ( padded_max.z() - padded_min.z() + 1 ) / mWidth;
mMin = padded_min;
Range3d leafRange(0, xleafCount, 1,
0, yleafCount, 1,
0, zleafCount, 1);
// Iterate over the leafnodes applying *this as a functor.
if (threaded) {
tbb::parallel_reduce(leafRange, *this);
} else {
(*this)(leafRange);
}
return mMask;
}
void operator()(const Range3d& range) {
ResultLeafNodeType* leaf = NULL;
// Unpack the range3d item.
const Index imin = range.pages().begin();
const Index imax = range.pages().end();
const Index jmin = range.rows().begin();
const Index jmax = range.rows().end();
const Index kmin = range.cols().begin();
const Index kmax = range.cols().end();
// loop over all the candidate leafs. Adding only those with 'true' values
// to the tree
for (Index i = imin; i < imax; ++i) {
for (Index j = jmin; j < jmax; ++j) {
for (Index k = kmin; k < kmax; ++k) {
// Calculate the origin of candidate leaf
const openvdb::math::Coord origin =
mMin + openvdb::math::Coord(mWidth * i,
mWidth * j,
mWidth * k );
if (leaf == NULL) {
leaf = new ResultLeafNodeType(origin, mBackground);
} else {
leaf->setOrigin(origin);
leaf->fill(mBackground);
leaf->setValuesOff();
}
// The bounding box for this leaf
openvdb::math::CoordBBox localBBox = leaf->getNodeBoundingBox();
// Shrink to the intersection with mBBox (i.e. the dense
// volume)
localBBox.intersect(mBBox);
// Early out for non-intersecting leafs
if (localBBox.empty()) continue;
const openvdb::math::Coord start = localBBox.getStart();
const openvdb::math::Coord end = localBBox.getEnd();
// Order the looping to respect the memory layout in
// the Dense source
if (mDense.memoryLayout() == openvdb::tools::LayoutZYX) {
openvdb::math::Coord ijk;
Index offset;
const DenseValueType* dp;
for (ijk[0] = start.x(); ijk[0] < end.x(); ++ijk[0] ) {
for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1] ) {
for (ijk[2] = start.z(),
offset = ResultLeafNodeType::coordToOffset(ijk),
dp = &mDense.getValue(ijk);
ijk[2] < end.z(); ++ijk[2], ++offset, ++dp) {
mFunctor(*dp, offset, leaf);
}
}
}
} else {
openvdb::math::Coord ijk;
const DenseValueType* dp;
for (ijk[2] = start.z(); ijk[2] < end.z(); ++ijk[2]) {
for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1]) {
for (ijk[0] = start.x(),
dp = &mDense.getValue(ijk);
ijk[0] < end.x(); ++ijk[0], ++dp) {
mFunctor(*dp, ijk, leaf);
}
}
}
}
// Only add non-empty leafs (empty is defined as all inactive)
if (!leaf->isEmpty()) {
mMask->addLeaf(leaf);
leaf = NULL;
}
}
}
}
// Clean up an unused leaf.
if (leaf != NULL) delete leaf;
}
void join(SparseExtractor& rhs) {
mMask->merge(*rhs.mMask);
}
}; // class SparseExtractor
template<typename OpType, typename DenseType>
typename OpType::ResultTreeType::Ptr
extractSparseTree(const DenseType& dense, const OpType& functor,
const typename OpType::ResultValueType& background,
bool threaded)
{
// Construct the mask using a parallel reduce pattern.
// Each thread computes disjoint mask-trees. The join merges
// into a single tree.
SparseExtractor<OpType, DenseType> extractor(dense, functor, background);
return extractor.extract(threaded);
}
/// @brief Functor-based class used to extract data from a dense grid, at
/// the index-space intersection with a supplied mask in the form of a sparse tree.
/// The @c extractSparseTreeWithMask function wraps this class.
template <typename DenseType, typename MaskTreeType>
class SparseMaskedExtractor
{
public:
typedef typename DSConverter<DenseType, MaskTreeType>::Type _ResultTreeType;
typedef _ResultTreeType ResultTreeType;
typedef typename ResultTreeType::LeafNodeType ResultLeafNodeType;
typedef typename ResultTreeType::ValueType ResultValueType;
typedef ResultValueType DenseValueType;
typedef typename ResultTreeType::template ValueConverter<ValueMask>::Type MaskTree;
typedef typename MaskTree::LeafCIter MaskLeafCIter;
typedef std::vector<const typename MaskTree::LeafNodeType*> MaskLeafVec;
SparseMaskedExtractor(const DenseType& dense,
const ResultValueType& background,
const MaskLeafVec& leafVec
):
mDense(dense), mBackground(background), mBBox(dense.bbox()),
mLeafVec(leafVec),
mResult(new ResultTreeType(mBackground))
{}
SparseMaskedExtractor(const SparseMaskedExtractor& other, tbb::split):
mDense(other.mDense), mBackground(other.mBackground), mBBox(other.mBBox),
mLeafVec(other.mLeafVec), mResult( new ResultTreeType(mBackground))
{}
typename ResultTreeType::Ptr extract(bool threaded = true) {
tbb::blocked_range<size_t> range(0, mLeafVec.size());
if (threaded) {
tbb::parallel_reduce(range, *this);
} else {
(*this)(range);
}
return mResult;
}
// Used in looping over leaf nodes in the masked grid
// and using the active mask to select data to
void operator()(const tbb::blocked_range<size_t>& range) {
ResultLeafNodeType* leaf = NULL;
// loop over all the candidate leafs. Adding only those with 'true' values
// to the tree
for (size_t idx = range.begin(); idx < range.end(); ++ idx) {
const typename MaskTree::LeafNodeType* maskLeaf = mLeafVec[idx];
// The bounding box for this leaf
openvdb::math::CoordBBox localBBox = maskLeaf->getNodeBoundingBox();
// Shrink to the intersection with the dense volume
localBBox.intersect(mBBox);
// Early out if there was no intersection
if (localBBox.empty()) continue;
// Reset or allocate the target leaf
if (leaf == NULL) {
leaf = new ResultLeafNodeType(maskLeaf->origin(), mBackground);
} else {
leaf->setOrigin(maskLeaf->origin());
leaf->fill(mBackground);
leaf->setValuesOff();
}
// Iterate over the intersecting bounding box
// copying active values to the result tree
const openvdb::math::Coord start = localBBox.getStart();
const openvdb::math::Coord end = localBBox.getEnd();
openvdb::math::Coord ijk;
if (mDense.memoryLayout() == openvdb::tools::LayoutZYX
&& maskLeaf->isDense()) {
Index offset;
const DenseValueType* src;
for (ijk[0] = start.x(); ijk[0] < end.x(); ++ijk[0] ) {
for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1] ) {
for (ijk[2] = start.z(),
offset = ResultLeafNodeType::coordToOffset(ijk),
src = &mDense.getValue(ijk);
ijk[2] < end.z(); ++ijk[2], ++offset, ++src) {
// copy into leaf
leaf->setValueOn(offset, *src);
}
}
}
} else {
Index offset;
for (ijk[0] = start.x(); ijk[0] < end.x(); ++ijk[0] ) {
for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1] ) {
for (ijk[2] = start.z(),
offset = ResultLeafNodeType::coordToOffset(ijk);
ijk[2] < end.z(); ++ijk[2], ++offset) {
if (maskLeaf->isValueOn(offset)) {
const ResultValueType denseValue = mDense.getValue(ijk);
leaf->setValueOn(offset, denseValue);
}
}
}
}
}
// Only add non-empty leafs (empty is defined as all inactive)
if (!leaf->isEmpty()) {
mResult->addLeaf(leaf);
leaf = NULL;
}
}
// Clean up an unused leaf.
if (leaf != NULL) delete leaf;
}
void join(SparseMaskedExtractor& rhs) {
mResult->merge(*rhs.mResult);
}
private:
const DenseType& mDense;
const ResultValueType mBackground;
const openvdb::math::CoordBBox& mBBox;
const MaskLeafVec& mLeafVec;
typename ResultTreeType::Ptr mResult;
}; // class SparseMaskedExtractor
/// @brief a simple utility class used by @c extractSparseTreeWithMask
template<typename _ResultTreeType, typename DenseValueType>
struct ExtractAll
{
typedef _ResultTreeType ResultTreeType;
typedef typename ResultTreeType::LeafNodeType ResultLeafNodeType;
template<typename CoordOrIndex> inline void
operator()(const DenseValueType& a, const CoordOrIndex& offset, ResultLeafNodeType* leaf) const
{
leaf->setValueOn(offset, a);
}
};
template <typename DenseType, typename MaskTreeType>
typename DSConverter<DenseType, MaskTreeType>::Type::Ptr
extractSparseTreeWithMask(const DenseType& dense,
const MaskTreeType& maskProxy,
const typename DenseType::ValueType& background,
bool threaded)
{
typedef SparseMaskedExtractor<DenseType, MaskTreeType> LeafExtractor;
typedef typename LeafExtractor::DenseValueType DenseValueType;
typedef typename LeafExtractor::ResultTreeType ResultTreeType;
typedef typename LeafExtractor::MaskLeafVec MaskLeafVec;
typedef typename LeafExtractor::MaskTree MaskTree;
typedef typename LeafExtractor::MaskLeafCIter MaskLeafCIter;
typedef ExtractAll<ResultTreeType, DenseValueType> ExtractionRule;
// Use Mask tree to hold the topology
MaskTree maskTree(maskProxy, false, TopologyCopy());
// Construct an array of pointers to the mask leafs.
const size_t leafCount = maskTree.leafCount();
MaskLeafVec leafarray(leafCount);
MaskLeafCIter leafiter = maskTree.cbeginLeaf();
for (size_t n = 0; n != leafCount; ++n, ++leafiter) {
leafarray[n] = leafiter.getLeaf();
}
// Extract the data that is masked leaf nodes in the mask.
LeafExtractor leafextractor(dense, background, leafarray);
typename ResultTreeType::Ptr resultTree = leafextractor.extract(threaded);
// Extract data that is masked by tiles in the mask.
// Loop over the mask tiles, extracting the data into new trees.
// These trees will be leaf-orthogonal to the leafTree (i.e. no leaf
// nodes will overlap). Merge these trees into the result.
typename MaskTreeType::ValueOnCIter tileIter(maskProxy);
tileIter.setMaxDepth(MaskTreeType::ValueOnCIter::LEAF_DEPTH - 1);
// Return the leaf tree if the mask had no tiles
if (!tileIter) return resultTree;
ExtractionRule allrule;
// Loop over the tiles in series, but the actual data extraction
// is in parallel.
CoordBBox bbox;
for ( ; tileIter; ++tileIter) {
// Find the intersection of the tile with the dense grid.
tileIter.getBoundingBox(bbox);
bbox.intersect(dense.bbox());
if (bbox.empty()) continue;
SparseExtractor<ExtractionRule, DenseType> copyData(dense, bbox, allrule, background);
typename ResultTreeType::Ptr fromTileTree = copyData.extract(threaded);
resultTree->merge(*fromTileTree);
}
return resultTree;
}
/// @brief Class that applies a functor to the index space intersection
/// of a prescribed bounding box and the dense grid.
/// NB: This class only supports DenseGrids with ZYX memory layout.
template <typename _ValueT, typename OpType>
class DenseTransformer
{
public:
typedef _ValueT ValueT;
typedef Dense<ValueT, openvdb::tools::LayoutZYX> DenseT;
typedef openvdb::math::Coord::ValueType IntType;
typedef tbb::blocked_range2d<IntType, IntType> RangeType;
private:
DenseT& mDense;
const OpType& mOp;
openvdb::math::CoordBBox mBBox;
public:
DenseTransformer(DenseT& dense,
const openvdb::math::CoordBBox& bbox,
const OpType& functor):
mDense(dense), mOp(functor), mBBox(dense.bbox())
{
// The iteration space is the intersection of the
// input bbox and the index-space covered by the dense grid
mBBox.intersect(bbox);
}
DenseTransformer(const DenseTransformer& other) :
mDense(other.mDense), mOp(other.mOp), mBBox(other.mBBox) {}
void apply(bool threaded = true) {
// Early out if the iteration space is empty
if (mBBox.empty()) return;
const openvdb::math::Coord start = mBBox.getStart();
const openvdb::math::Coord end = mBBox.getEnd();
// The iteration range only the slower two directions.
const RangeType range(start.x(), end.x(), 1,
start.y(), end.y(), 1);
if (threaded) {
tbb::parallel_for(range, *this);
} else {
(*this)(range);
}
}
void operator()(const RangeType& range) const {
// The stride in the z-direction.
// Note: the bbox is [inclusive, inclusive]
const size_t zlength = size_t(mBBox.max().z() - mBBox.min().z() + 1);
const IntType imin = range.rows().begin();
const IntType imax = range.rows().end();
const IntType jmin = range.cols().begin();
const IntType jmax = range.cols().end();
openvdb::math::Coord xyz(imin, jmin, mBBox.min().z());
for (xyz[0] = imin; xyz[0] != imax; ++xyz[0]) {
for (xyz[1] = jmin; xyz[1] != jmax; ++xyz[1]) {
mOp.transform(mDense, xyz, zlength);
}
}
}
}; // class DenseTransformer
/// @brief a wrapper struct used to avoid unnecessary computation of
/// memory access from @c Coord when all offsets are guaranteed to be
/// within the dense grid.
template <typename ValueT, typename PointWiseOp>
struct ContiguousOp
{
ContiguousOp(const PointWiseOp& op) : mOp(op){}
typedef Dense<ValueT, openvdb::tools::LayoutZYX> DenseT;
inline void transform(DenseT& dense, openvdb::math::Coord& ijk, size_t size) const
{
ValueT* dp = const_cast<ValueT*>(&dense.getValue(ijk));
for (size_t offset = 0; offset < size; ++offset) {
dp[offset] = mOp(dp[offset]);
}
}
const PointWiseOp mOp;
};
/// Apply a point-wise functor to the intersection of a dense grid and a given bounding box
template <typename ValueT, typename PointwiseOpT>
void
transformDense(Dense<ValueT, openvdb::tools::LayoutZYX>& dense,
const openvdb::CoordBBox& bbox,
const PointwiseOpT& functor, bool parallel)
{
typedef ContiguousOp<ValueT, PointwiseOpT> OpT;
// Convert the Op so it operates on a contiguous line in memory
OpT op(functor);
// Apply to the index space intersection in the dense grid
DenseTransformer<ValueT, OpT> transformer(dense, bbox, op);
transformer.apply(parallel);
}
template <typename CompositeMethod, typename _TreeT>
class SparseToDenseCompositor
{
public:
typedef _TreeT TreeT;
typedef typename TreeT::ValueType ValueT;
typedef typename TreeT::LeafNodeType LeafT;
typedef typename TreeT::template ValueConverter<ValueMask>::Type MaskTreeT;
typedef typename MaskTreeT::LeafNodeType MaskLeafT;
typedef Dense<ValueT, openvdb::tools::LayoutZYX> DenseT;
typedef openvdb::math::Coord::ValueType Index;
typedef tbb::blocked_range3d<Index, Index, Index> Range3d;
SparseToDenseCompositor(DenseT& dense, const TreeT& source, const TreeT& alpha,
const ValueT beta, const ValueT strength) :
mDense(dense), mSource(source), mAlpha(alpha), mBeta(beta), mStrength(strength)
{}
SparseToDenseCompositor(const SparseToDenseCompositor& other):
mDense(other.mDense), mSource(other.mSource), mAlpha(other.mAlpha),
mBeta(other.mBeta), mStrength(other.mStrength) {}
void sparseComposite(bool threaded) {
const ValueT beta = mBeta;
const ValueT strenght = mStrength;
// construct a tree that defines the iteration space
MaskTreeT maskTree(mSource, false /*background*/, openvdb::TopologyCopy());
maskTree.topologyUnion(mAlpha);
// Composite regions that are represented by leafnodes in either mAlpha or mSource
// Parallelize over bool-leafs
openvdb::tree::LeafManager<const MaskTreeT> maskLeafs(maskTree);
maskLeafs.foreach(*this, threaded);
// Composite regions that are represented by tiles
// Parallelize within each tile.
typename MaskTreeT::ValueOnCIter citer = maskTree.cbeginValueOn();
citer.setMaxDepth(MaskTree::ValueOnCIter::LEAF_DEPTH - 1);
if (!citer) return;
typename tree::ValueAccessor<const TreeT> alphaAccessor(mAlpha);
typename tree::ValueAccessor<const TreeT> sourceAccessor(mSource);
for (; citer; ++citer) {
const openvdb::math::Coord org = citer.getCoord();
// Early out if both alpha and source are zero in this tile.
const ValueT alphaValue = alphaAccessor.getValue(org);
const ValueT sourceValue = sourceAccessor.getValue(org);
if (openvdb::math::isZero(alphaValue) &&
openvdb::math::isZero(sourceValue) ) continue;
// Compute overlap of tile with the dense grid
openvdb::math::CoordBBox localBBox = citer.getBoundingBox();
localBBox.intersect(mDense.bbox());
// Early out if there is no intersection
if (localBBox.empty()) continue;
// Composite the tile-uniform values into the dense grid.
compositeFromTile(mDense, localBBox, sourceValue,
alphaValue, beta, strenght, threaded);
}
}
// Composites leaf values where the alpha values are active.
// Used in sparseComposite
void inline operator()(const MaskLeafT& maskLeaf, size_t /*i*/) const
{
typedef UniformLeaf ULeaf;
openvdb::math::CoordBBox localBBox = maskLeaf.getNodeBoundingBox();
localBBox.intersect(mDense.bbox());
// Early out for non-overlapping leafs
if (localBBox.empty()) return;
const openvdb::math::Coord org = maskLeaf.origin();
const LeafT* alphaLeaf = mAlpha.probeLeaf(org);
const LeafT* sourceLeaf = mSource.probeLeaf(org);
if (!sourceLeaf) {
// Create a source leaf proxy with the correct value
ULeaf uniformSource(mSource.getValue(org));
if (!alphaLeaf) {
// Create an alpha leaf proxy with the correct value
ULeaf uniformAlpha(mAlpha.getValue(org));
compositeFromLeaf(mDense, localBBox, uniformSource, uniformAlpha,
mBeta, mStrength);
} else {
compositeFromLeaf(mDense, localBBox, uniformSource, *alphaLeaf,
mBeta, mStrength);
}
} else {
if (!alphaLeaf) {
// Create an alpha leaf proxy with the correct value
ULeaf uniformAlpha(mAlpha.getValue(org));
compositeFromLeaf(mDense, localBBox, *sourceLeaf, uniformAlpha,
mBeta, mStrength);
} else {
compositeFromLeaf(mDense, localBBox, *sourceLeaf, *alphaLeaf,
mBeta, mStrength);
}
}
}
// i.e. it assumes that all valueOff Alpha voxels have value 0.
template <typename LeafT1, typename LeafT2>
inline static void compositeFromLeaf(DenseT& dense, const openvdb::math::CoordBBox& bbox,
const LeafT1& source, const LeafT2& alpha,
const ValueT beta, const ValueT strength)
{
typedef openvdb::math::Coord::ValueType IntType;
const ValueT sbeta = strength * beta;
openvdb::math::Coord ijk = bbox.min();
if (alpha.isDense() /*all active values*/) {
// Optimal path for dense alphaLeaf
const IntType size = bbox.max().z() + 1 - bbox.min().z();
for (ijk[0] = bbox.min().x(); ijk[0] < bbox.max().x() + 1; ++ijk[0]) {
for (ijk[1] = bbox.min().y(); ijk[1] < bbox.max().y() + 1; ++ijk[1]) {
ValueT* d = const_cast<ValueT*>(&dense.getValue(ijk));
const ValueT* a = &alpha.getValue(ijk);
const ValueT* s = &source.getValue(ijk);
for (IntType idx = 0; idx < size; ++idx) {
d[idx] = CompositeMethod::apply(d[idx], a[idx], s[idx],
strength, beta, sbeta);
}
}
}
} else {
// AlphaLeaf has non-active cells.
for (ijk[0] = bbox.min().x(); ijk[0] < bbox.max().x() + 1; ++ijk[0]) {
for (ijk[1] = bbox.min().y(); ijk[1] < bbox.max().y() + 1; ++ijk[1]) {
for (ijk[2] = bbox.min().z(); ijk[2] < bbox.max().z() + 1; ++ijk[2]) {
if (alpha.isValueOn(ijk)) {
dense.setValue(ijk,
CompositeMethod::apply(dense.getValue(ijk),
alpha.getValue(ijk), source.getValue(ijk),
strength, beta, sbeta)
);
}
}
}
}
}
}
inline static void compositeFromTile(DenseT& dense, openvdb::math::CoordBBox& bbox,
const ValueT& sourceValue, const ValueT& alphaValue,
const ValueT& beta, const ValueT& strength,
bool threaded)
{
typedef UniformTransformer TileTransformer;
TileTransformer functor(sourceValue, alphaValue, beta, strength);
// Transform the data inside the bbox according to the TileTranformer.
transformDense(dense, bbox, functor, threaded);
}
void denseComposite(bool threaded)
{
/// Construct a range that corresponds to the
/// bounding box of the dense volume
const openvdb::math::CoordBBox& bbox = mDense.bbox();
Range3d range(bbox.min().x(), bbox.max().x(), LeafT::DIM,
bbox.min().y(), bbox.max().y(), LeafT::DIM,
bbox.min().z(), bbox.max().z(), LeafT::DIM);
// Iterate over the range, compositing into
// the dense grid using value accessors for
// sparse the grids.
if (threaded) {
tbb::parallel_for(range, *this);
} else {
(*this)(range);
}
}
// Composites a dense region using value accessors
// into a dense grid
void inline operator()(const Range3d& range) const
{
// Use value accessors to alpha and source
typename tree::ValueAccessor<const TreeT> alphaAccessor(mAlpha);
typename tree::ValueAccessor<const TreeT> sourceAccessor(mSource);
const ValueT strength = mStrength;
const ValueT beta = mBeta;
const ValueT sbeta = strength * beta;
// Unpack the range3d item.
const Index imin = range.pages().begin();
const Index imax = range.pages().end();
const Index jmin = range.rows().begin();
const Index jmax = range.rows().end();
const Index kmin = range.cols().begin();
const Index kmax = range.cols().end();
openvdb::Coord ijk;
for (ijk[0] = imin; ijk[0] < imax; ++ijk[0]) {
for (ijk[1] = jmin; ijk[1] < jmax; ++ijk[1]) {
for (ijk[2] = kmin; ijk[2] < kmax; ++ijk[2]) {
const ValueT d_old = mDense.getValue(ijk);
const ValueT& alpha = alphaAccessor.getValue(ijk);
const ValueT& src = sourceAccessor.getValue(ijk);
mDense.setValue(ijk, CompositeMethod::apply(d_old, alpha, src,
strength, beta, sbeta));
}
}
}
}
private:
// Internal class that wraps the templated composite method
// for use when both alpha and source are uniform over
// a prescribed bbox (e.g. a tile).
class UniformTransformer
{
public:
UniformTransformer(const ValueT& source, const ValueT& alpha, const ValueT& _beta,
const ValueT& _strength) :
mSource(source), mAlpha(alpha), mBeta(_beta),
mStrength(_strength), mSBeta(_strength * _beta)
{}
ValueT operator()(const ValueT& input) const
{
return CompositeMethod::apply(input, mAlpha, mSource,
mStrength, mBeta, mSBeta);
}
private:
const ValueT mSource; const ValueT mAlpha; const ValueT mBeta;
const ValueT mStrength; const ValueT mSBeta;
};
// Simple Class structure that mimics a leaf
// with uniform values. Holds LeafT::DIM copies
// of a value in an array.
struct Line { ValueT mValues[LeafT::DIM]; };
class UniformLeaf : private Line
{
public:
typedef typename LeafT::ValueType ValueT;
typedef Line BaseT;
UniformLeaf(const ValueT& value) : BaseT(init(value)) {}
static const BaseT init(const ValueT& value) {
BaseT tmp;
for (openvdb::Index i = 0; i < LeafT::DIM; ++i) {
tmp.mValues[i] = value;
}
return tmp;
}
bool isDense() const { return true; }
bool isValueOn(openvdb::math::Coord&) const { return true; }
inline const ValueT& getValue(const openvdb::math::Coord& ) const
{return BaseT::mValues[0];}
};
private:
DenseT& mDense;
const TreeT& mSource;
const TreeT& mAlpha;
ValueT mBeta;
ValueT mStrength;
}; // class SparseToDenseCompositor
namespace ds
{
//@{
/// @brief Point wise methods used to apply various compositing operations.
template <typename ValueT>
struct OpOver
{
static inline ValueT apply(const ValueT u, const ValueT alpha,
const ValueT v,
const ValueT strength,
const ValueT beta,
const ValueT /*sbeta*/)
{ return (u + strength * alpha * (beta * v - u)); }
};
template <typename ValueT>
struct OpAdd
{
static inline ValueT apply(const ValueT u, const ValueT alpha,
const ValueT v,
const ValueT /*strength*/,
const ValueT /*beta*/,
const ValueT sbeta)
{ return (u + sbeta * alpha * v); }
};
template <typename ValueT>
struct OpSub
{
static inline ValueT apply(const ValueT u, const ValueT alpha,
const ValueT v,
const ValueT /*strength*/,
const ValueT /*beta*/,
const ValueT sbeta)
{ return (u - sbeta * alpha * v); }
};
template <typename ValueT>
struct OpMin
{
static inline ValueT apply(const ValueT u, const ValueT alpha,
const ValueT v,
const ValueT s /*trength*/,
const ValueT beta,
const ValueT /*sbeta*/)
{ return ( ( 1 - s * alpha) * u + s * alpha * std::min(u, beta * v) ); }
};
template <typename ValueT>
struct OpMax
{
static inline ValueT apply(const ValueT u, const ValueT alpha,
const ValueT v,
const ValueT s/*trength*/,
const ValueT beta,
const ValueT /*sbeta*/)
{ return ( ( 1 - s * alpha ) * u + s * alpha * std::min(u, beta * v) ); }
};
template <typename ValueT>
struct OpMult
{
static inline ValueT apply(const ValueT u, const ValueT alpha,
const ValueT v,
const ValueT s/*trength*/,
const ValueT /*beta*/,
const ValueT sbeta)
{ return ( ( 1 + alpha * (sbeta * v - s)) * u ); }
};
//@}
//@{
/// Translator that converts an enum to compositing functor types
template <DSCompositeOp OP, typename ValueT>
struct CompositeFunctorTranslator{};
template <typename ValueT>
struct CompositeFunctorTranslator<DS_OVER, ValueT>{ typedef OpOver<ValueT> OpT; };
template <typename ValueT>
struct CompositeFunctorTranslator<DS_ADD, ValueT>{ typedef OpAdd<ValueT> OpT; };
template <typename ValueT>
struct CompositeFunctorTranslator<DS_SUB, ValueT>{ typedef OpSub<ValueT> OpT; };
template <typename ValueT>
struct CompositeFunctorTranslator<DS_MIN, ValueT>{ typedef OpMin<ValueT> OpT; };
template <typename ValueT>
struct CompositeFunctorTranslator<DS_MAX, ValueT>{ typedef OpMax<ValueT> OpT; };
template <typename ValueT>
struct CompositeFunctorTranslator<DS_MULT, ValueT>{ typedef OpMult<ValueT> OpT; };
//@}
} // namespace ds
template <DSCompositeOp OpT, typename TreeT>
void compositeToDense(
Dense<typename TreeT::ValueType, LayoutZYX>& dense,
const TreeT& source, const TreeT& alpha,
const typename TreeT::ValueType beta,
const typename TreeT::ValueType strength,
bool threaded)
{
typedef typename TreeT::ValueType ValueT;
typedef ds::CompositeFunctorTranslator<OpT, ValueT> Translator;
typedef typename Translator::OpT Method;
if (openvdb::math::isZero(strength)) return;
SparseToDenseCompositor<Method, TreeT> tool(dense, source, alpha, beta, strength);
if (openvdb::math::isZero(alpha.background()) &&
openvdb::math::isZero(source.background()))
{
// Use the sparsity of (alpha U source) as the iteration space.
tool.sparseComposite(threaded);
} else {
// Use the bounding box of dense as the iteration space.
tool.denseComposite(threaded);
}
}
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif //OPENVDB_TOOLS_DENSESPARSETOOLS_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|