This file is indexed.

/usr/include/openvdb/tools/DenseSparseTools.h is in libopenvdb-dev 5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

#ifndef OPENVDB_TOOLS_DENSESPARSETOOLS_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_DENSESPARSETOOLS_HAS_BEEN_INCLUDED

#include <tbb/parallel_reduce.h>
#include <tbb/blocked_range3d.h>
#include <tbb/blocked_range2d.h>
#include <tbb/blocked_range.h>
#include <openvdb/Types.h>
#include <openvdb/tree/LeafManager.h>
#include "Dense.h"


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

/// @brief Selectively extract and transform data from a dense grid, producing a
/// sparse tree with leaf nodes only (e.g. create a tree from the square
/// of values greater than a cutoff.)
/// @param dense       A dense grid that acts as a data source
/// @param functor     A functor that selects and transforms data for output
/// @param background  The background value of the resulting sparse grid
/// @param threaded    Option to use threaded or serial code path
/// @return @c Ptr to tree with the valuetype and configuration defined
/// by typedefs in the @c functor.
/// @note To achieve optimal sparsity  consider calling the prune()
/// method on the result.
/// @note To simply copy the all the data from a Dense grid to a
/// OpenVDB Grid, use tools::copyFromDense() for better performance.
///
/// The type of the sparse tree is determined by the specified OtpType
/// functor by means of the typedef OptType::ResultTreeType
///
/// The OptType function is responsible for the the transformation of
/// dense grid data to sparse grid data on a per-voxel basis.
///
/// Only leaf nodes with active values will be added to the sparse grid.
///
/// The OpType must struct that defines a the minimal form
/// @code
/// struct ExampleOp
/// {
///     typedef DesiredTreeType   ResultTreeType;
///
///     template<typename IndexOrCoord>
///      void OpType::operator() (const DenseValueType a, const IndexOrCoord& ijk,
///                    ResultTreeType::LeafNodeType* leaf);
/// };
/// @endcode
///
/// For example, to generate a <ValueType, 5, 4, 3> tree with valuesOn
/// at locations greater than a given maskvalue
/// @code
/// template <typename ValueType>
/// class Rule
/// {
/// public:
///     // Standard tree type (e.g. MaskTree or FloatTree in openvdb.h)
///     typedef typename openvdb::tree::Tree4<ValueType, 5, 4, 3>::Type  ResultTreeType;
///
///     typedef typename ResultTreeType::LeafNodeType  ResultLeafNodeType;
///     typedef typename ResultTreeType::ValueType     ResultValueType;
///
///     typedef float                         DenseValueType;
///
///     typedef vdbmath::Coord::ValueType     Index;
///
///     Rule(const DenseValueType& value): mMaskValue(value){};
///
///     template <typename IndexOrCoord>
///     void operator()(const DenseValueType& a, const IndexOrCoord& offset,
///                 ResultLeafNodeType* leaf) const
///     {
///             if (a > mMaskValue) {
///                 leaf->setValueOn(offset, a);
///             }
///     }
///
/// private:
///     const DenseValueType mMaskValue;
/// };
/// @endcode
template<typename OpType, typename DenseType>
typename OpType::ResultTreeType::Ptr
extractSparseTree(const DenseType& dense, const OpType& functor,
                  const typename OpType::ResultValueType& background,
                  bool threaded = true);

/// This struct that aids template resolution of a new tree type
/// has the same configuration at TreeType, but the ValueType from
/// DenseType.
template <typename DenseType, typename TreeType> struct DSConverter {
    typedef typename DenseType::ValueType  ValueType;

    typedef typename TreeType::template ValueConverter<ValueType>::Type Type;
};


/// @brief Copy data from the intersection of a sparse tree and a dense input grid.
/// The resulting tree has the same configuration as the sparse tree, but holds
/// the data type specified by the dense input.
/// @param dense       A dense grid that acts as a data source
/// @param mask        The active voxels and tiles intersected with dense define iteration mask
/// @param background  The background value of the resulting sparse grid
/// @param threaded    Option to use threaded or serial code path
/// @return @c Ptr to tree with the same configuration as @c mask but of value type
/// defined by @c dense.
template<typename DenseType, typename MaskTreeType>
typename DSConverter<DenseType, MaskTreeType>::Type::Ptr
extractSparseTreeWithMask(const DenseType& dense,
                          const MaskTreeType& mask,
                          const typename DenseType::ValueType& background,
                          bool threaded = true);


/// Apply a point-wise functor to the intersection of a dense grid and a given bounding box
/// @param dense A dense grid to be transformed
/// @param bbox  Index space bounding box, define region where the transformation is applied
/// @param op    A functor that acts on the dense grid value type
/// @param parallel Used to select multithreaded or single threaded
/// Minimally, the @c op class has to support a @c operator() method,
/// @code
/// // Square values in a grid
/// struct Op
/// {
///     ValueT operator()(const ValueT& in) const
///     {
///       // do work
///       ValueT result = in * in;
///
///       return result;
///     }
/// };
/// @endcode
/// NB: only Dense grids with memory layout zxy are supported
template<typename ValueT, typename OpType>
void transformDense(Dense<ValueT, openvdb::tools::LayoutZYX>& dense,
                    const openvdb::CoordBBox& bbox, const OpType& op, bool parallel=true);

/// We currrently support the following operations when compositing sparse
/// data into a dense grid.
enum DSCompositeOp {
    DS_OVER, DS_ADD, DS_SUB, DS_MIN, DS_MAX, DS_MULT, DS_SET
};

/// @brief Composite data from a sparse tree into a dense array of the same value type.
/// @param dense    Dense grid to be altered by the operation
/// @param source   Sparse data to composite into @c dense
/// @param alpha    Sparse Alpha mask used in compositing operations.
/// @param beta     Constant multiplier on src
/// @param strength Constant multiplier on alpha
/// @param threaded Enable threading for this operation.
template<DSCompositeOp, typename TreeT>
void compositeToDense(Dense<typename TreeT::ValueType, LayoutZYX>& dense,
                      const TreeT& source,
                      const TreeT& alpha,
                      const typename TreeT::ValueType beta,
                      const typename TreeT::ValueType strength,
                      bool threaded = true);


/// @brief Functor-based class used to extract data that satisfies some
/// criteria defined by the embedded @c OpType functor. The @c extractSparseTree
/// function wraps this class.
template<typename OpType, typename DenseType>
class SparseExtractor
{

public:

    typedef openvdb::math::Coord::ValueType              Index;

    typedef typename DenseType::ValueType                 DenseValueType;
    typedef typename OpType::ResultTreeType               ResultTreeType;
    typedef typename ResultTreeType::ValueType            ResultValueType;
    typedef typename ResultTreeType::LeafNodeType         ResultLeafNodeType;
    typedef typename ResultTreeType::template ValueConverter<ValueMask>::Type MaskTree;

    typedef tbb::blocked_range3d<Index, Index, Index>     Range3d;


private:

    const DenseType&                     mDense;
    const OpType&                        mFunctor;
    const ResultValueType                mBackground;
    const openvdb::math::CoordBBox       mBBox;
    const Index                          mWidth;
    typename ResultTreeType::Ptr         mMask;
    openvdb::math::Coord                 mMin;


public:

    SparseExtractor(const DenseType& dense, const OpType& functor,
                    const ResultValueType background) :
        mDense(dense), mFunctor(functor),
        mBackground(background),
        mBBox(dense.bbox()),
        mWidth(ResultLeafNodeType::DIM),
        mMask( new ResultTreeType(mBackground))
    {}


    SparseExtractor(const DenseType& dense,
                    const openvdb::math::CoordBBox& bbox,
                    const OpType& functor,
                    const ResultValueType background) :
        mDense(dense), mFunctor(functor),
        mBackground(background),
        mBBox(bbox),
        mWidth(ResultLeafNodeType::DIM),
        mMask( new ResultTreeType(mBackground))
    {
        // mBBox must be inside the coordinate rage of the dense grid
        if (!dense.bbox().isInside(mBBox)) {
            OPENVDB_THROW(ValueError, "Data extraction window out of bound");
        }
    }


    SparseExtractor(SparseExtractor& other, tbb::split):
        mDense(other.mDense), mFunctor(other.mFunctor),
        mBackground(other.mBackground), mBBox(other.mBBox),
        mWidth(other.mWidth),
        mMask(new ResultTreeType(mBackground)),
        mMin(other.mMin)
    {}

    typename ResultTreeType::Ptr extract(bool threaded = true) {


        // Construct 3D range of leaf nodes that
        // intersect mBBox.

        // Snap the bbox to nearest leaf nodes min and max

        openvdb::math::Coord padded_min = mBBox.min();
        openvdb::math::Coord padded_max = mBBox.max();


        padded_min &= ~(mWidth - 1);
        padded_max &= ~(mWidth - 1);

        padded_max[0] += mWidth - 1;
        padded_max[1] += mWidth - 1;
        padded_max[2] += mWidth - 1;


        // number of leaf nodes in each direction
        // division by leaf width, e.g. 8 in most cases

        const Index xleafCount = ( padded_max.x() - padded_min.x() + 1 ) / mWidth;
        const Index yleafCount = ( padded_max.y() - padded_min.y() + 1 ) / mWidth;
        const Index zleafCount = ( padded_max.z() - padded_min.z() + 1 ) / mWidth;

        mMin = padded_min;


        Range3d  leafRange(0, xleafCount, 1,
                           0, yleafCount, 1,
                           0, zleafCount, 1);


        // Iterate over the leafnodes applying *this as a functor.
        if (threaded) {
            tbb::parallel_reduce(leafRange, *this);
        } else {
            (*this)(leafRange);
        }

        return mMask;
    }


    void operator()(const Range3d& range) {

        ResultLeafNodeType* leaf = NULL;

        // Unpack the range3d item.
        const Index imin = range.pages().begin();
        const Index imax = range.pages().end();

        const Index jmin = range.rows().begin();
        const Index jmax = range.rows().end();

        const Index kmin = range.cols().begin();
        const Index kmax = range.cols().end();


        // loop over all the candidate leafs. Adding only those with 'true' values
        // to the tree

        for (Index i = imin; i < imax; ++i) {
            for (Index j = jmin; j < jmax; ++j) {
                for (Index k = kmin; k < kmax; ++k) {

                    // Calculate the origin of candidate leaf
                    const openvdb::math::Coord origin =
                        mMin + openvdb::math::Coord(mWidth * i,
                                                    mWidth * j,
                                                    mWidth * k );

                    if (leaf == NULL) {
                        leaf = new ResultLeafNodeType(origin, mBackground);
                    } else {
                        leaf->setOrigin(origin);
                        leaf->fill(mBackground);
                        leaf->setValuesOff();
                    }

                    // The bounding box for this leaf

                    openvdb::math::CoordBBox localBBox = leaf->getNodeBoundingBox();

                    // Shrink to the intersection with mBBox (i.e. the dense
                    // volume)

                    localBBox.intersect(mBBox);

                    // Early out for non-intersecting leafs

                    if (localBBox.empty()) continue;


                    const openvdb::math::Coord start = localBBox.getStart();
                    const openvdb::math::Coord end   = localBBox.getEnd();

                    // Order the looping to respect the memory layout in
                    // the Dense source

                    if (mDense.memoryLayout() == openvdb::tools::LayoutZYX) {

                        openvdb::math::Coord ijk;
                        Index offset;
                        const DenseValueType* dp;
                        for (ijk[0] = start.x(); ijk[0] < end.x(); ++ijk[0] ) {
                            for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1] ) {
                                for (ijk[2] = start.z(),
                                         offset = ResultLeafNodeType::coordToOffset(ijk),
                                         dp = &mDense.getValue(ijk);
                                     ijk[2] < end.z(); ++ijk[2], ++offset, ++dp) {

                                    mFunctor(*dp, offset, leaf);
                                }
                            }
                        }

                    } else {

                        openvdb::math::Coord ijk;
                        const DenseValueType* dp;
                        for (ijk[2] = start.z(); ijk[2] < end.z(); ++ijk[2]) {
                            for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1]) {
                                for (ijk[0] = start.x(),
                                         dp = &mDense.getValue(ijk);
                                     ijk[0] < end.x(); ++ijk[0], ++dp) {

                                    mFunctor(*dp, ijk, leaf);

                                }
                            }
                        }
                    }

                    // Only add non-empty leafs (empty is defined as all inactive)

                    if (!leaf->isEmpty()) {
                        mMask->addLeaf(leaf);
                        leaf = NULL;
                    }

                }
            }
        }

        // Clean up an unused leaf.

        if (leaf != NULL) delete leaf;
    }

    void join(SparseExtractor& rhs) {
        mMask->merge(*rhs.mMask);
    }
}; // class SparseExtractor


template<typename OpType, typename DenseType>
typename OpType::ResultTreeType::Ptr
extractSparseTree(const DenseType& dense, const OpType& functor,
                  const typename OpType::ResultValueType& background,
                  bool threaded)
{

    // Construct the mask using a parallel reduce pattern.
    // Each thread computes disjoint mask-trees.  The join merges
    // into a single tree.

    SparseExtractor<OpType, DenseType> extractor(dense, functor, background);

    return extractor.extract(threaded);
}


/// @brief Functor-based class used to extract data from a dense grid, at
/// the index-space intersection with a supplied mask in the form of a sparse tree.
/// The @c extractSparseTreeWithMask function wraps this class.
template <typename DenseType, typename MaskTreeType>
class SparseMaskedExtractor
{
public:

    typedef typename DSConverter<DenseType, MaskTreeType>::Type  _ResultTreeType;
    typedef _ResultTreeType                                      ResultTreeType;
    typedef typename ResultTreeType::LeafNodeType                ResultLeafNodeType;
    typedef typename ResultTreeType::ValueType                   ResultValueType;
    typedef ResultValueType                                      DenseValueType;

    typedef typename ResultTreeType::template ValueConverter<ValueMask>::Type  MaskTree;
    typedef typename MaskTree::LeafCIter                         MaskLeafCIter;
    typedef std::vector<const typename MaskTree::LeafNodeType*>  MaskLeafVec;


    SparseMaskedExtractor(const DenseType& dense,
                  const ResultValueType& background,
                  const MaskLeafVec& leafVec
                  ):
        mDense(dense), mBackground(background), mBBox(dense.bbox()),
        mLeafVec(leafVec),
        mResult(new ResultTreeType(mBackground))
    {}



    SparseMaskedExtractor(const SparseMaskedExtractor& other, tbb::split):
        mDense(other.mDense), mBackground(other.mBackground), mBBox(other.mBBox),
        mLeafVec(other.mLeafVec), mResult( new ResultTreeType(mBackground))
    {}

    typename ResultTreeType::Ptr extract(bool threaded = true) {

        tbb::blocked_range<size_t> range(0, mLeafVec.size());

        if (threaded) {
            tbb::parallel_reduce(range, *this);
        } else {
            (*this)(range);
        }

        return mResult;
    }


    // Used in looping over leaf nodes in the masked grid
    // and using the active mask to select data to
    void operator()(const tbb::blocked_range<size_t>& range) {

        ResultLeafNodeType* leaf = NULL;


        // loop over all the candidate leafs. Adding only those with 'true' values
        // to the tree

        for (size_t idx = range.begin(); idx < range.end(); ++ idx) {

            const typename MaskTree::LeafNodeType* maskLeaf = mLeafVec[idx];

            // The bounding box for this leaf

            openvdb::math::CoordBBox localBBox = maskLeaf->getNodeBoundingBox();

            // Shrink to the intersection with the dense volume

            localBBox.intersect(mBBox);

            // Early out if there was no intersection

            if (localBBox.empty()) continue;

            // Reset or allocate the target leaf

            if (leaf == NULL) {
                leaf = new ResultLeafNodeType(maskLeaf->origin(), mBackground);
            } else {
                leaf->setOrigin(maskLeaf->origin());
                leaf->fill(mBackground);
                leaf->setValuesOff();
            }


            // Iterate over the intersecting bounding box
            // copying active values to the result tree

            const openvdb::math::Coord start = localBBox.getStart();
            const openvdb::math::Coord end   = localBBox.getEnd();


            openvdb::math::Coord ijk;

            if (mDense.memoryLayout() == openvdb::tools::LayoutZYX
                  && maskLeaf->isDense()) {

                Index offset;
                const DenseValueType* src;
                for (ijk[0] = start.x(); ijk[0] < end.x(); ++ijk[0] ) {
                    for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1] ) {
                        for (ijk[2] = start.z(),
                                 offset = ResultLeafNodeType::coordToOffset(ijk),
                                 src  = &mDense.getValue(ijk);
                             ijk[2] < end.z(); ++ijk[2], ++offset, ++src) {

                            // copy into leaf
                            leaf->setValueOn(offset, *src);
                        }

                    }
                }

            } else {

                Index offset;
                for (ijk[0] = start.x(); ijk[0] < end.x(); ++ijk[0] ) {
                    for (ijk[1] = start.y(); ijk[1] < end.y(); ++ijk[1] ) {
                        for (ijk[2] = start.z(),
                                 offset = ResultLeafNodeType::coordToOffset(ijk);
                             ijk[2] < end.z(); ++ijk[2], ++offset) {

                            if (maskLeaf->isValueOn(offset)) {
                                const ResultValueType denseValue =  mDense.getValue(ijk);
                                leaf->setValueOn(offset, denseValue);
                            }
                        }
                    }
                }
            }
            // Only add non-empty leafs (empty is defined as all inactive)

            if (!leaf->isEmpty()) {
                mResult->addLeaf(leaf);
                leaf = NULL;
            }
        }

        // Clean up an unused leaf.

        if (leaf != NULL) delete leaf;
    }

    void join(SparseMaskedExtractor& rhs) {
        mResult->merge(*rhs.mResult);
    }


private:
    const DenseType&                   mDense;
    const ResultValueType              mBackground;
    const openvdb::math::CoordBBox&    mBBox;
    const MaskLeafVec&                 mLeafVec;

    typename ResultTreeType::Ptr       mResult;

}; // class SparseMaskedExtractor


/// @brief a simple utility class used by @c extractSparseTreeWithMask
template<typename _ResultTreeType, typename DenseValueType>
struct ExtractAll
{
    typedef  _ResultTreeType                       ResultTreeType;
    typedef typename ResultTreeType::LeafNodeType  ResultLeafNodeType;

    template<typename CoordOrIndex> inline void
    operator()(const DenseValueType& a, const CoordOrIndex& offset, ResultLeafNodeType* leaf) const
    {
        leaf->setValueOn(offset, a);
    }
};


template <typename DenseType, typename MaskTreeType>
typename DSConverter<DenseType, MaskTreeType>::Type::Ptr
extractSparseTreeWithMask(const DenseType& dense,
                          const MaskTreeType& maskProxy,
                          const typename DenseType::ValueType& background,
                          bool threaded)
{
    typedef SparseMaskedExtractor<DenseType, MaskTreeType>       LeafExtractor;
    typedef typename LeafExtractor::DenseValueType               DenseValueType;
    typedef typename LeafExtractor::ResultTreeType               ResultTreeType;
    typedef typename LeafExtractor::MaskLeafVec                  MaskLeafVec;
    typedef typename LeafExtractor::MaskTree                     MaskTree;
    typedef typename LeafExtractor::MaskLeafCIter                MaskLeafCIter;
    typedef ExtractAll<ResultTreeType, DenseValueType>           ExtractionRule;

    // Use Mask tree to hold the topology

    MaskTree maskTree(maskProxy, false, TopologyCopy());

    // Construct an array of pointers to the mask leafs.

    const size_t leafCount = maskTree.leafCount();
    MaskLeafVec leafarray(leafCount);
    MaskLeafCIter leafiter = maskTree.cbeginLeaf();
    for (size_t n = 0; n != leafCount; ++n, ++leafiter) {
        leafarray[n] = leafiter.getLeaf();
    }


    // Extract the data that is masked leaf nodes in the mask.

    LeafExtractor leafextractor(dense, background, leafarray);
    typename ResultTreeType::Ptr resultTree = leafextractor.extract(threaded);


    // Extract data that is masked by tiles in the mask.


    // Loop over the mask tiles, extracting the data into new trees.
    // These trees will be leaf-orthogonal to the leafTree (i.e. no leaf
    // nodes will overlap).  Merge these trees into the result.

    typename MaskTreeType::ValueOnCIter tileIter(maskProxy);
    tileIter.setMaxDepth(MaskTreeType::ValueOnCIter::LEAF_DEPTH - 1);

    // Return the leaf tree if the mask had no tiles

    if (!tileIter) return resultTree;

    ExtractionRule allrule;

    // Loop over the tiles in series, but the actual data extraction
    // is in parallel.

    CoordBBox bbox;
    for ( ; tileIter; ++tileIter) {

        // Find the intersection of the tile with the dense grid.

        tileIter.getBoundingBox(bbox);
        bbox.intersect(dense.bbox());

        if (bbox.empty()) continue;

        SparseExtractor<ExtractionRule, DenseType> copyData(dense, bbox, allrule, background);
        typename ResultTreeType::Ptr fromTileTree = copyData.extract(threaded);
        resultTree->merge(*fromTileTree);
    }

    return resultTree;
}


/// @brief Class that applies a functor to the index space intersection
/// of a prescribed bounding box and the dense grid.
/// NB: This class only supports DenseGrids with ZYX memory layout.
template <typename _ValueT, typename OpType>
class DenseTransformer
{
public:

    typedef _ValueT                                 ValueT;
    typedef Dense<ValueT, openvdb::tools::LayoutZYX>       DenseT;
    typedef openvdb::math::Coord::ValueType         IntType;
    typedef tbb::blocked_range2d<IntType, IntType>  RangeType;


private:

    DenseT&                  mDense;
    const OpType&            mOp;
    openvdb::math::CoordBBox mBBox;

public:
    DenseTransformer(DenseT& dense,
                     const openvdb::math::CoordBBox& bbox,
                     const OpType& functor):
        mDense(dense), mOp(functor), mBBox(dense.bbox())
    {
        // The iteration space is the intersection of the
        // input bbox and the index-space covered by the dense grid
        mBBox.intersect(bbox);
    }

    DenseTransformer(const DenseTransformer& other) :
        mDense(other.mDense), mOp(other.mOp), mBBox(other.mBBox) {}

    void apply(bool threaded = true) {

        // Early out if the iteration space is empty

        if (mBBox.empty()) return;


        const openvdb::math::Coord start = mBBox.getStart();
        const openvdb::math::Coord end   = mBBox.getEnd();

        // The iteration range only the slower two directions.
        const RangeType range(start.x(), end.x(), 1,
                              start.y(), end.y(), 1);

        if (threaded) {
            tbb::parallel_for(range, *this);
        } else {
            (*this)(range);
        }
    }

    void operator()(const RangeType& range) const {

        // The stride in the z-direction.
        // Note: the bbox is [inclusive, inclusive]

        const size_t zlength = size_t(mBBox.max().z() - mBBox.min().z() + 1);

        const IntType imin = range.rows().begin();
        const IntType imax = range.rows().end();
        const IntType jmin = range.cols().begin();
        const IntType jmax = range.cols().end();


        openvdb::math::Coord xyz(imin, jmin, mBBox.min().z());
        for (xyz[0] = imin; xyz[0] != imax; ++xyz[0]) {
            for (xyz[1] = jmin; xyz[1] != jmax; ++xyz[1]) {

                mOp.transform(mDense, xyz, zlength);
            }
        }
    }
}; // class DenseTransformer


/// @brief a wrapper struct used to avoid unnecessary computation of
/// memory access from @c Coord when all offsets are guaranteed to be
/// within the dense grid.
template <typename ValueT, typename PointWiseOp>
struct ContiguousOp
{
    ContiguousOp(const PointWiseOp& op) : mOp(op){}

    typedef Dense<ValueT, openvdb::tools::LayoutZYX>  DenseT;
    inline void transform(DenseT& dense, openvdb::math::Coord& ijk, size_t size) const
    {
        ValueT* dp = const_cast<ValueT*>(&dense.getValue(ijk));

        for (size_t offset = 0; offset < size; ++offset) {
            dp[offset] = mOp(dp[offset]);
        }
    }

    const PointWiseOp mOp;
};


/// Apply a point-wise functor to the intersection of a dense grid and a given bounding box
template <typename ValueT, typename PointwiseOpT>
void
transformDense(Dense<ValueT, openvdb::tools::LayoutZYX>& dense,
               const openvdb::CoordBBox& bbox,
               const PointwiseOpT& functor, bool parallel)
{
    typedef ContiguousOp<ValueT, PointwiseOpT>  OpT;

    // Convert the Op so it operates on a contiguous line in memory

    OpT op(functor);

    // Apply to the index space intersection in the dense grid
    DenseTransformer<ValueT, OpT> transformer(dense, bbox, op);
    transformer.apply(parallel);
}


template <typename CompositeMethod, typename _TreeT>
class SparseToDenseCompositor
{

public:
    typedef _TreeT                                               TreeT;
    typedef typename TreeT::ValueType                            ValueT;
    typedef typename TreeT::LeafNodeType                         LeafT;
    typedef typename TreeT::template ValueConverter<ValueMask>::Type  MaskTreeT;
    typedef typename MaskTreeT::LeafNodeType                     MaskLeafT;
    typedef Dense<ValueT, openvdb::tools::LayoutZYX>             DenseT;
    typedef openvdb::math::Coord::ValueType                      Index;
    typedef tbb::blocked_range3d<Index, Index, Index>            Range3d;

    SparseToDenseCompositor(DenseT& dense, const TreeT& source, const TreeT& alpha,
                            const ValueT beta, const ValueT strength) :
        mDense(dense), mSource(source), mAlpha(alpha), mBeta(beta), mStrength(strength)
    {}

    SparseToDenseCompositor(const SparseToDenseCompositor& other):
        mDense(other.mDense), mSource(other.mSource), mAlpha(other.mAlpha),
        mBeta(other.mBeta), mStrength(other.mStrength) {}



    void sparseComposite(bool threaded) {

        const ValueT beta = mBeta;
        const ValueT strenght = mStrength;

        // construct a tree that defines the iteration space

        MaskTreeT maskTree(mSource, false /*background*/, openvdb::TopologyCopy());
        maskTree.topologyUnion(mAlpha);

        // Composite regions that are represented by leafnodes in either mAlpha or mSource
        // Parallelize over bool-leafs

        openvdb::tree::LeafManager<const MaskTreeT> maskLeafs(maskTree);
        maskLeafs.foreach(*this, threaded);

        // Composite regions that are represented by tiles
        // Parallelize within each tile.

        typename MaskTreeT::ValueOnCIter citer = maskTree.cbeginValueOn();
        citer.setMaxDepth(MaskTree::ValueOnCIter::LEAF_DEPTH - 1);

        if (!citer) return;

        typename tree::ValueAccessor<const TreeT>   alphaAccessor(mAlpha);
        typename tree::ValueAccessor<const TreeT>   sourceAccessor(mSource);

        for (; citer; ++citer) {

            const openvdb::math::Coord org = citer.getCoord();

            // Early out if both alpha and source are zero in this tile.

            const ValueT alphaValue = alphaAccessor.getValue(org);
            const ValueT sourceValue = sourceAccessor.getValue(org);

            if (openvdb::math::isZero(alphaValue) &&
                openvdb::math::isZero(sourceValue) ) continue;

            // Compute overlap of tile with the dense grid

            openvdb::math::CoordBBox localBBox = citer.getBoundingBox();
            localBBox.intersect(mDense.bbox());

            // Early out if there is no intersection

            if (localBBox.empty()) continue;

            // Composite the tile-uniform values into the dense grid.
            compositeFromTile(mDense, localBBox, sourceValue,
                              alphaValue, beta, strenght, threaded);
        }
    }

    // Composites leaf values where the alpha values are active.
    // Used in sparseComposite
    void inline operator()(const MaskLeafT& maskLeaf, size_t /*i*/) const
    {

        typedef UniformLeaf   ULeaf;
        openvdb::math::CoordBBox localBBox = maskLeaf.getNodeBoundingBox();
        localBBox.intersect(mDense.bbox());

        // Early out for non-overlapping leafs

        if (localBBox.empty()) return;

        const openvdb::math::Coord org = maskLeaf.origin();
        const LeafT* alphaLeaf = mAlpha.probeLeaf(org);
        const LeafT* sourceLeaf   = mSource.probeLeaf(org);

        if (!sourceLeaf) {

            // Create a source leaf proxy with the correct value
            ULeaf uniformSource(mSource.getValue(org));

            if (!alphaLeaf) {

                // Create an alpha leaf proxy with the correct value
                ULeaf uniformAlpha(mAlpha.getValue(org));

                compositeFromLeaf(mDense, localBBox, uniformSource, uniformAlpha,
                                  mBeta, mStrength);
            } else {

                compositeFromLeaf(mDense, localBBox, uniformSource, *alphaLeaf,
                                  mBeta, mStrength);
            }
        } else {
            if (!alphaLeaf) {

                // Create an alpha leaf proxy with the correct value
                ULeaf uniformAlpha(mAlpha.getValue(org));

                compositeFromLeaf(mDense, localBBox, *sourceLeaf, uniformAlpha,
                                  mBeta, mStrength);
            } else {

                compositeFromLeaf(mDense, localBBox, *sourceLeaf, *alphaLeaf,
                                  mBeta, mStrength);
            }
        }
    }
    // i.e.  it assumes that all valueOff Alpha voxels have value 0.

    template <typename LeafT1, typename LeafT2>
    inline static void compositeFromLeaf(DenseT& dense, const openvdb::math::CoordBBox& bbox,
                                         const LeafT1& source, const LeafT2& alpha,
                                         const ValueT beta, const ValueT strength)
    {
        typedef openvdb::math::Coord::ValueType  IntType;

        const ValueT sbeta = strength * beta;
        openvdb::math::Coord ijk = bbox.min();


        if (alpha.isDense() /*all active values*/) {

            // Optimal path for dense alphaLeaf
            const IntType size = bbox.max().z() + 1 - bbox.min().z();

            for (ijk[0] = bbox.min().x(); ijk[0] < bbox.max().x() + 1; ++ijk[0]) {
                for (ijk[1] = bbox.min().y(); ijk[1] < bbox.max().y() + 1; ++ijk[1]) {

                    ValueT* d = const_cast<ValueT*>(&dense.getValue(ijk));
                    const ValueT* a = &alpha.getValue(ijk);
                    const ValueT* s = &source.getValue(ijk);

                    for (IntType idx = 0; idx < size; ++idx) {
                        d[idx] = CompositeMethod::apply(d[idx], a[idx], s[idx],
                                                        strength, beta, sbeta);
                    }
                }
            }
        }  else {

            // AlphaLeaf has non-active cells.

            for (ijk[0] = bbox.min().x(); ijk[0] < bbox.max().x() + 1; ++ijk[0]) {
                for (ijk[1] = bbox.min().y(); ijk[1] < bbox.max().y() + 1; ++ijk[1]) {
                    for (ijk[2] = bbox.min().z(); ijk[2] < bbox.max().z() + 1; ++ijk[2]) {

                        if (alpha.isValueOn(ijk)) {

                            dense.setValue(ijk,
                             CompositeMethod::apply(dense.getValue(ijk),
                                                    alpha.getValue(ijk), source.getValue(ijk),
                                                    strength, beta, sbeta)
                                           );
                        }
                    }
                }
            }
        }
    }

    inline static void compositeFromTile(DenseT& dense, openvdb::math::CoordBBox& bbox,
                                         const ValueT& sourceValue, const ValueT& alphaValue,
                                         const ValueT& beta, const ValueT& strength,
                                         bool threaded)
    {

        typedef UniformTransformer TileTransformer;
        TileTransformer functor(sourceValue, alphaValue, beta, strength);

        // Transform the data inside the bbox according to the TileTranformer.

        transformDense(dense, bbox, functor, threaded);

    }


    void denseComposite(bool threaded)
    {
        /// Construct a range that corresponds to the
        /// bounding box of the dense volume
        const openvdb::math::CoordBBox& bbox = mDense.bbox();

        Range3d  range(bbox.min().x(), bbox.max().x(), LeafT::DIM,
                       bbox.min().y(), bbox.max().y(), LeafT::DIM,
                       bbox.min().z(), bbox.max().z(), LeafT::DIM);

        // Iterate over the range, compositing into
        // the dense grid using value accessors for
        // sparse the grids.
        if (threaded) {
            tbb::parallel_for(range, *this);
        } else {
            (*this)(range);
        }

    }

    // Composites a dense region using value accessors
    // into a dense grid
    void inline operator()(const Range3d& range) const
    {
        // Use value accessors to alpha and source

        typename tree::ValueAccessor<const TreeT>   alphaAccessor(mAlpha);
        typename tree::ValueAccessor<const TreeT>   sourceAccessor(mSource);

        const ValueT strength = mStrength;
        const ValueT beta     = mBeta;
        const ValueT sbeta    = strength * beta;

        // Unpack the range3d item.
        const Index imin = range.pages().begin();
        const Index imax = range.pages().end();

        const Index jmin = range.rows().begin();
        const Index jmax = range.rows().end();

        const Index kmin = range.cols().begin();
        const Index kmax = range.cols().end();

        openvdb::Coord ijk;
        for (ijk[0] = imin; ijk[0] < imax; ++ijk[0]) {
            for (ijk[1] = jmin; ijk[1] < jmax; ++ijk[1]) {
                for (ijk[2] = kmin; ijk[2] < kmax; ++ijk[2]) {
                    const ValueT d_old = mDense.getValue(ijk);
                    const ValueT& alpha = alphaAccessor.getValue(ijk);
                    const ValueT& src   = sourceAccessor.getValue(ijk);

                    mDense.setValue(ijk, CompositeMethod::apply(d_old, alpha, src,
                                                                strength, beta, sbeta));
                }
            }
        }

    }


private:

    // Internal class that wraps the templated composite method
    // for use when both alpha and source are uniform over
    // a prescribed bbox (e.g. a tile).
    class UniformTransformer
    {
    public:
        UniformTransformer(const ValueT& source, const ValueT& alpha, const ValueT& _beta,
                           const ValueT& _strength) :
            mSource(source), mAlpha(alpha), mBeta(_beta),
            mStrength(_strength), mSBeta(_strength * _beta)
        {}

        ValueT operator()(const ValueT& input) const
        {
            return CompositeMethod::apply(input, mAlpha, mSource,
                                          mStrength, mBeta, mSBeta);
        }

    private:
        const ValueT mSource;   const ValueT mAlpha; const ValueT mBeta;
        const ValueT mStrength; const ValueT mSBeta;
    };


    // Simple Class structure that mimics a leaf
    // with uniform values. Holds LeafT::DIM copies
    // of a value in an array.
    struct Line {  ValueT mValues[LeafT::DIM]; };
    class UniformLeaf : private Line
    {
    public:
        typedef typename LeafT::ValueType ValueT;

        typedef Line   BaseT;
        UniformLeaf(const ValueT& value) : BaseT(init(value)) {}

        static const BaseT init(const ValueT& value) {
            BaseT tmp;
            for (openvdb::Index i = 0; i < LeafT::DIM; ++i) {
                tmp.mValues[i] = value;
            }
            return tmp;
        }

        bool isDense() const { return true; }
        bool isValueOn(openvdb::math::Coord&) const { return true; }

        inline const ValueT& getValue(const openvdb::math::Coord& ) const
        {return  BaseT::mValues[0];}
    };

private:
    DenseT&       mDense;
    const TreeT&  mSource;
    const TreeT&  mAlpha;
    ValueT        mBeta;
    ValueT        mStrength;
}; // class SparseToDenseCompositor


namespace ds
{
    //@{
    /// @brief Point wise methods used to apply various compositing operations.
    template <typename ValueT>
    struct OpOver
    {
        static inline ValueT apply(const ValueT u, const ValueT alpha,
                                   const ValueT v,
                                   const ValueT strength,
                                   const ValueT beta,
                                   const ValueT /*sbeta*/)
        { return (u + strength * alpha * (beta * v - u)); }
    };


    template <typename ValueT>
    struct OpAdd
    {
        static inline ValueT apply(const ValueT u, const ValueT alpha,
                                   const ValueT v,
                                   const ValueT /*strength*/,
                                   const ValueT /*beta*/,
                                   const ValueT sbeta)
        { return (u + sbeta * alpha * v); }
    };

    template <typename ValueT>
    struct OpSub
    {
        static inline ValueT apply(const ValueT u, const ValueT alpha,
                                   const ValueT v,
                                   const ValueT /*strength*/,
                                   const ValueT /*beta*/,
                                   const ValueT sbeta)
        { return (u - sbeta * alpha * v); }
    };

    template <typename ValueT>
    struct OpMin
    {
        static inline ValueT apply(const ValueT u, const ValueT alpha,
                                   const ValueT v,
                                   const ValueT s /*trength*/,
                                   const ValueT beta,
                                   const ValueT /*sbeta*/)
        { return ( ( 1 - s * alpha) * u + s * alpha * std::min(u, beta * v) ); }
    };


    template <typename ValueT>
    struct OpMax
    {
        static inline ValueT apply(const ValueT u, const ValueT alpha,
                                   const ValueT v,
                                   const ValueT s/*trength*/,
                                   const ValueT beta,
                                   const ValueT /*sbeta*/)
        { return ( ( 1 - s * alpha ) * u + s * alpha * std::min(u, beta * v) ); }
    };

    template <typename ValueT>
    struct OpMult
    {
        static inline ValueT apply(const ValueT u, const ValueT alpha,
                                   const ValueT v,
                                   const ValueT s/*trength*/,
                                   const ValueT /*beta*/,
                                   const ValueT sbeta)
        { return ( ( 1 + alpha * (sbeta * v - s)) * u ); }
    };
    //@}

    //@{
    /// Translator that converts an enum to compositing functor types
    template <DSCompositeOp OP, typename ValueT>
    struct CompositeFunctorTranslator{};

    template <typename ValueT>
    struct CompositeFunctorTranslator<DS_OVER, ValueT>{ typedef OpOver<ValueT>   OpT; };

    template <typename ValueT>
    struct CompositeFunctorTranslator<DS_ADD, ValueT>{ typedef OpAdd<ValueT>   OpT; };

    template <typename ValueT>
    struct CompositeFunctorTranslator<DS_SUB, ValueT>{ typedef OpSub<ValueT>   OpT; };

    template <typename ValueT>
    struct CompositeFunctorTranslator<DS_MIN, ValueT>{ typedef OpMin<ValueT>   OpT; };

    template <typename ValueT>
    struct CompositeFunctorTranslator<DS_MAX, ValueT>{ typedef OpMax<ValueT>   OpT; };

    template <typename ValueT>
    struct CompositeFunctorTranslator<DS_MULT, ValueT>{ typedef OpMult<ValueT>   OpT; };
    //@}

} // namespace ds


template <DSCompositeOp OpT, typename TreeT>
void compositeToDense(
    Dense<typename TreeT::ValueType, LayoutZYX>& dense,
    const TreeT& source, const TreeT& alpha,
    const typename TreeT::ValueType beta,
    const typename TreeT::ValueType strength,
    bool threaded)
{
    typedef typename TreeT::ValueType  ValueT;
    typedef ds::CompositeFunctorTranslator<OpT, ValueT> Translator;
    typedef typename Translator::OpT  Method;

    if (openvdb::math::isZero(strength)) return;

    SparseToDenseCompositor<Method, TreeT> tool(dense, source, alpha, beta, strength);

    if (openvdb::math::isZero(alpha.background()) &&
        openvdb::math::isZero(source.background()))
    {
        // Use the sparsity of (alpha U source) as the iteration space.
        tool.sparseComposite(threaded);
    } else {
        // Use the bounding box of dense as the iteration space.
        tool.denseComposite(threaded);
    }
}

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif //OPENVDB_TOOLS_DENSESPARSETOOLS_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )