This file is indexed.

/usr/include/openvdb/tools/LevelSetAdvect.h is in libopenvdb-dev 5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

/// @author Ken Museth
///
/// @file tools/LevelSetAdvect.h
///
/// @brief Hyperbolic advection of narrow-band level sets

#ifndef OPENVDB_TOOLS_LEVEL_SET_ADVECT_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_LEVEL_SET_ADVECT_HAS_BEEN_INCLUDED

#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <openvdb/Platform.h>
#include "LevelSetTracker.h"
#include "VelocityFields.h" // for EnrightField
#include <openvdb/math/FiniteDifference.h>
//#include <openvdb/util/CpuTimer.h>
#include <functional>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

/// @brief  Hyperbolic advection of narrow-band level sets in an
/// external velocity field
///
/// The @c FieldType template argument below refers to any functor
/// with the following interface (see tools/VelocityFields.h
/// for examples):
///
/// @code
/// class VelocityField {
///   ...
/// public:
///   openvdb::VectorType operator() (const openvdb::Coord& xyz, ValueType time) const;
///   ...
/// };
/// @endcode
///
/// @note The functor method returns the velocity field at coordinate
/// position xyz of the advection grid, and for the specified
/// time. Note that since the velocity is returned in the local
/// coordinate space of the grid that is being advected, the functor
/// typically depends on the transformation of that grid. This design
/// is chosen for performance reasons. Finally we will assume that the
/// functor method is NOT threadsafe (typically uses a ValueAccessor)
/// and that its lightweight enough that we can copy it per thread.
///
/// The @c InterruptType template argument below refers to any class
/// with the following interface:
/// @code
/// class Interrupter {
///   ...
/// public:
///   void start(const char* name = nullptr) // called when computations begin
///   void end()                             // called when computations end
///   bool wasInterrupted(int percent=-1)    // return true to break computation
///};
/// @endcode
///
/// @note If no template argument is provided for this InterruptType
/// the util::NullInterrupter is used which implies that all
/// interrupter calls are no-ops (i.e. incurs no computational overhead).
///

template<typename GridT,
         typename FieldT     = EnrightField<typename GridT::ValueType>,
         typename InterruptT = util::NullInterrupter>
class LevelSetAdvection
{
public:
    using GridType = GridT;
    using TrackerT = LevelSetTracker<GridT, InterruptT>;
    using LeafRange = typename TrackerT::LeafRange;
    using LeafType = typename TrackerT::LeafType;
    using BufferType = typename TrackerT::BufferType;
    using ValueType = typename TrackerT::ValueType;
    using VectorType = typename FieldT::VectorType;

    /// Main constructor
    LevelSetAdvection(GridT& grid, const FieldT& field, InterruptT* interrupt = nullptr):
        mTracker(grid, interrupt), mField(field),
        mSpatialScheme(math::HJWENO5_BIAS),
        mTemporalScheme(math::TVD_RK2) {}

    virtual ~LevelSetAdvection() {}

    /// @brief Return the spatial finite difference scheme
    math::BiasedGradientScheme getSpatialScheme() const { return mSpatialScheme; }
    /// @brief Set the spatial finite difference scheme
    void setSpatialScheme(math::BiasedGradientScheme scheme) { mSpatialScheme = scheme; }

    /// @brief Return the temporal integration scheme
    math::TemporalIntegrationScheme getTemporalScheme() const { return mTemporalScheme; }
    /// @brief Set the spatial finite difference scheme
    void setTemporalScheme(math::TemporalIntegrationScheme scheme) { mTemporalScheme = scheme; }

    /// @brief Return the spatial finite difference scheme
    math::BiasedGradientScheme getTrackerSpatialScheme() const {
        return mTracker.getSpatialScheme();
    }
    /// @brief Set the spatial finite difference scheme
    void setTrackerSpatialScheme(math::BiasedGradientScheme scheme) {
        mTracker.setSpatialScheme(scheme);
    }
    /// @brief Return the temporal integration scheme
    math::TemporalIntegrationScheme getTrackerTemporalScheme() const {
        return mTracker.getTemporalScheme();
    }
    /// @brief Set the spatial finite difference scheme
    void setTrackerTemporalScheme(math::TemporalIntegrationScheme scheme) {
        mTracker.setTemporalScheme(scheme);
    }

    /// @brief Return The number of normalizations performed per track or
    /// normalize call.
    int  getNormCount() const { return mTracker.getNormCount(); }
    /// @brief Set the number of normalizations performed per track or
    /// normalize call.
    void setNormCount(int n) { mTracker.setNormCount(n); }

    /// @brief Return the grain-size used for multi-threading
    int  getGrainSize() const { return mTracker.getGrainSize(); }
    /// @brief Set the grain-size used for multi-threading.
    /// @note A grain size of 0 or less disables multi-threading!
    void setGrainSize(int grainsize) { mTracker.setGrainSize(grainsize); }

    /// Advect the level set from its current time, time0, to its
    /// final time, time1. If time0>time1 backward advection is performed.
    ///
    /// @return number of CFL iterations used to advect from time0 to time1
    size_t advect(ValueType time0, ValueType time1);

private:
    // disallow copy construction and copy by assinment!
    LevelSetAdvection(const LevelSetAdvection&);// not implemented
    LevelSetAdvection& operator=(const LevelSetAdvection&);// not implemented

    // This templated private struct implements all the level set magic.
    template<typename MapT, math::BiasedGradientScheme SpatialScheme,
             math::TemporalIntegrationScheme TemporalScheme>
    struct Advect
    {
        /// Main constructor
        Advect(LevelSetAdvection& parent);
        /// Shallow copy constructor called by tbb::parallel_for() threads
        Advect(const Advect& other);
        /// Destructor
        virtual ~Advect() { if (mIsMaster) this->clearField(); }
        /// Advect the level set from its current time, time0, to its final time, time1.
        /// @return number of CFL iterations
        size_t advect(ValueType time0, ValueType time1);
        /// Used internally by tbb::parallel_for()
        void operator()(const LeafRange& r) const
        {
            if (mTask) mTask(const_cast<Advect*>(this), r);
            else OPENVDB_THROW(ValueError, "task is undefined - don\'t call this method directly");
        }
        /// method calling tbb
        void cook(const char* msg, size_t swapBuffer = 0);
        /// Sample field and return the CFL time step
        typename GridT::ValueType sampleField(ValueType time0, ValueType time1);
        template <bool Aligned> void sample(const LeafRange& r, ValueType t0, ValueType t1);
        inline void sampleXformed(const LeafRange& r, ValueType t0, ValueType t1)
        {
            this->sample<false>(r, t0, t1);
        }
        inline void sampleAligned(const LeafRange& r, ValueType t0, ValueType t1)
        {
            this->sample<true>(r, t0, t1);
        }
        void clearField();
        // Convex combination of Phi and a forward Euler advection steps:
        // Phi(result) = alpha * Phi(phi) + (1-alpha) * (Phi(0) - dt * Speed(speed)*|Grad[Phi(0)]|);
        template <int Nominator, int Denominator>
        void euler(const LeafRange&, ValueType, Index, Index);
        inline void euler01(const LeafRange& r, ValueType t) {this->euler<0,1>(r, t, 0, 1);}
        inline void euler12(const LeafRange& r, ValueType t) {this->euler<1,2>(r, t, 1, 1);}
        inline void euler34(const LeafRange& r, ValueType t) {this->euler<3,4>(r, t, 1, 2);}
        inline void euler13(const LeafRange& r, ValueType t) {this->euler<1,3>(r, t, 1, 2);}

        LevelSetAdvection& mParent;
        VectorType*        mVelocity;
        size_t*            mOffsets;
        const MapT*        mMap;
        typename std::function<void (Advect*, const LeafRange&)> mTask;
        const bool         mIsMaster;
    }; // end of private Advect struct

    template<math::BiasedGradientScheme SpatialScheme>
    size_t advect1(ValueType time0, ValueType time1);

    template<math::BiasedGradientScheme SpatialScheme,
             math::TemporalIntegrationScheme TemporalScheme>
    size_t advect2(ValueType time0, ValueType time1);

    template<math::BiasedGradientScheme SpatialScheme,
             math::TemporalIntegrationScheme TemporalScheme,
             typename MapType>
    size_t advect3(ValueType time0, ValueType time1);

    TrackerT                        mTracker;
    //each thread needs a deep copy of the field since it might contain a ValueAccessor
    const FieldT                    mField;
    math::BiasedGradientScheme      mSpatialScheme;
    math::TemporalIntegrationScheme mTemporalScheme;

};//end of LevelSetAdvection


template<typename GridT, typename FieldT, typename InterruptT>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect(ValueType time0, ValueType time1)
{
    switch (mSpatialScheme) {
    case math::FIRST_BIAS:
        return this->advect1<math::FIRST_BIAS  >(time0, time1);
    case math::SECOND_BIAS:
        return this->advect1<math::SECOND_BIAS >(time0, time1);
    case math::THIRD_BIAS:
        return this->advect1<math::THIRD_BIAS  >(time0, time1);
    case math::WENO5_BIAS:
        return this->advect1<math::WENO5_BIAS  >(time0, time1);
    case math::HJWENO5_BIAS:
        return this->advect1<math::HJWENO5_BIAS>(time0, time1);
    default:
        OPENVDB_THROW(ValueError, "Spatial difference scheme not supported!");
    }
    return 0;
}


template<typename GridT, typename FieldT, typename InterruptT>
template<math::BiasedGradientScheme SpatialScheme>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect1(ValueType time0, ValueType time1)
{
    switch (mTemporalScheme) {
    case math::TVD_RK1:
        return this->advect2<SpatialScheme, math::TVD_RK1>(time0, time1);
    case math::TVD_RK2:
        return this->advect2<SpatialScheme, math::TVD_RK2>(time0, time1);
    case math::TVD_RK3:
        return this->advect2<SpatialScheme, math::TVD_RK3>(time0, time1);
    default:
        OPENVDB_THROW(ValueError, "Temporal integration scheme not supported!");
    }
    return 0;
}


template<typename GridT, typename FieldT, typename InterruptT>
template<math::BiasedGradientScheme SpatialScheme, math::TemporalIntegrationScheme TemporalScheme>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect2(ValueType time0, ValueType time1)
{
    const math::Transform& trans = mTracker.grid().transform();
    if (trans.mapType() == math::UniformScaleMap::mapType()) {
        return this->advect3<SpatialScheme, TemporalScheme, math::UniformScaleMap>(time0, time1);
    } else if (trans.mapType() == math::UniformScaleTranslateMap::mapType()) {
        return this->advect3<SpatialScheme, TemporalScheme, math::UniformScaleTranslateMap>(
            time0, time1);
    } else if (trans.mapType() == math::UnitaryMap::mapType()) {
        return this->advect3<SpatialScheme, TemporalScheme, math::UnitaryMap    >(time0, time1);
    } else if (trans.mapType() == math::TranslationMap::mapType()) {
        return this->advect3<SpatialScheme, TemporalScheme, math::TranslationMap>(time0, time1);
    } else {
        OPENVDB_THROW(ValueError, "MapType not supported!");
    }
    return 0;
}


template<typename GridT, typename FieldT, typename InterruptT>
template<
    math::BiasedGradientScheme SpatialScheme,
    math::TemporalIntegrationScheme TemporalScheme,
    typename MapT>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::advect3(ValueType time0, ValueType time1)
{
    Advect<MapT, SpatialScheme, TemporalScheme> tmp(*this);
    return tmp.advect(time0, time1);
}


///////////////////////////////////////////////////////////////////////


template<typename GridT, typename FieldT, typename InterruptT>
template<
    typename MapT,
    math::BiasedGradientScheme SpatialScheme,
    math::TemporalIntegrationScheme TemporalScheme>
inline
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
Advect(LevelSetAdvection& parent)
    : mParent(parent)
    , mVelocity(nullptr)
    , mOffsets(nullptr)
    , mMap(parent.mTracker.grid().transform().template constMap<MapT>().get())
    , mTask(0)
    , mIsMaster(true)
{
}


template<typename GridT, typename FieldT, typename InterruptT>
template<
    typename MapT,
    math::BiasedGradientScheme SpatialScheme,
    math::TemporalIntegrationScheme TemporalScheme>
inline
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
Advect(const Advect& other)
    : mParent(other.mParent)
    , mVelocity(other.mVelocity)
    , mOffsets(other.mOffsets)
    , mMap(other.mMap)
    , mTask(other.mTask)
    , mIsMaster(false)
{
}


template<typename GridT, typename FieldT, typename InterruptT>
template<
    typename MapT,
    math::BiasedGradientScheme SpatialScheme,
    math::TemporalIntegrationScheme TemporalScheme>
inline size_t
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
advect(ValueType time0, ValueType time1)
{
    namespace ph = std::placeholders;

    //util::CpuTimer timer;
    size_t countCFL = 0;
    if ( math::isZero(time0 - time1) ) return countCFL;
    const bool isForward = time0 < time1;
    while ((isForward ? time0<time1 : time0>time1) && mParent.mTracker.checkInterrupter()) {
        /// Make sure we have enough temporal auxiliary buffers
        //timer.start( "\nallocate buffers" );
        mParent.mTracker.leafs().rebuildAuxBuffers(TemporalScheme == math::TVD_RK3 ? 2 : 1);
        //timer.stop();

        const ValueType dt = this->sampleField(time0, time1);
        if ( math::isZero(dt) ) break;//V is essentially zero so terminate

        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN //switch is resolved at compile-time
        switch(TemporalScheme) {
        case math::TVD_RK1:
            // Perform one explicit Euler step: t1 = t0 + dt
            // Phi_t1(1) = Phi_t0(0) - dt * VdotG_t0(0)
            mTask = std::bind(&Advect::euler01, ph::_1, ph::_2, dt);

            // Cook and swap buffer 0 and 1 such that Phi_t1(0) and Phi_t0(1)
            this->cook("Advecting level set using TVD_RK1", 1);
            break;
        case math::TVD_RK2:
            // Perform one explicit Euler step: t1 = t0 + dt
            // Phi_t1(1) = Phi_t0(0) - dt * VdotG_t0(0)
            mTask = std::bind(&Advect::euler01, ph::_1, ph::_2, dt);

            // Cook and swap buffer 0 and 1 such that Phi_t1(0) and Phi_t0(1)
            this->cook("Advecting level set using TVD_RK1 (step 1 of 2)", 1);

            // Convex combine explict Euler step: t2 = t0 + dt
            // Phi_t2(1) = 1/2 * Phi_t0(1) + 1/2 * (Phi_t1(0) - dt * V.Grad_t1(0))
            mTask = std::bind(&Advect::euler12, ph::_1, ph::_2, dt);

            // Cook and swap buffer 0 and 1 such that Phi_t2(0) and Phi_t1(1)
            this->cook("Advecting level set using TVD_RK1 (step 2 of 2)", 1);
            break;
        case math::TVD_RK3:
            // Perform one explicit Euler step: t1 = t0 + dt
            // Phi_t1(1) = Phi_t0(0) - dt * VdotG_t0(0)
            mTask = std::bind(&Advect::euler01, ph::_1, ph::_2, dt);

            // Cook and swap buffer 0 and 1 such that Phi_t1(0) and Phi_t0(1)
            this->cook("Advecting level set using TVD_RK3 (step 1 of 3)", 1);

            // Convex combine explict Euler step: t2 = t0 + dt/2
            // Phi_t2(2) = 3/4 * Phi_t0(1) + 1/4 * (Phi_t1(0) - dt * V.Grad_t1(0))
            mTask = std::bind(&Advect::euler34, ph::_1, ph::_2, dt);

            // Cook and swap buffer 0 and 2 such that Phi_t2(0) and Phi_t1(2)
            this->cook("Advecting level set using TVD_RK3 (step 2 of 3)", 2);

            // Convex combine explict Euler step: t3 = t0 + dt
            // Phi_t3(2) = 1/3 * Phi_t0(1) + 2/3 * (Phi_t2(0) - dt * V.Grad_t2(0)
            mTask = std::bind(&Advect::euler13, ph::_1, ph::_2, dt);

            // Cook and swap buffer 0 and 2 such that Phi_t3(0) and Phi_t2(2)
            this->cook("Advecting level set using TVD_RK3 (step 3 of 3)", 2);
            break;
        default:
            OPENVDB_THROW(ValueError, "Temporal integration scheme not supported!");
        }//end of compile-time resolved switch
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END

        time0 += isForward ? dt : -dt;
        ++countCFL;
        mParent.mTracker.leafs().removeAuxBuffers();
        this->clearField();
        /// Track the narrow band
        mParent.mTracker.track();
    }//end wile-loop over time
    return countCFL;//number of CLF propagation steps
}


template<typename GridT, typename FieldT, typename InterruptT>
template<
    typename MapT,
    math::BiasedGradientScheme SpatialScheme,
    math::TemporalIntegrationScheme TemporalScheme>
inline typename GridT::ValueType
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
sampleField(ValueType time0, ValueType time1)
{
    namespace ph = std::placeholders;

    const int grainSize = mParent.mTracker.getGrainSize();
    const size_t leafCount = mParent.mTracker.leafs().leafCount();
    if (leafCount==0) return ValueType(0.0);

    // Compute the prefix sum of offsets to active voxels
    size_t size=0, voxelCount=mParent.mTracker.leafs().getPrefixSum(mOffsets, size, grainSize);

    // Sample the velocity field
    if (mParent.mField.transform() == mParent.mTracker.grid().transform()) {
        mTask = std::bind(&Advect::sampleAligned, ph::_1, ph::_2, time0, time1);
    } else {
        mTask = std::bind(&Advect::sampleXformed, ph::_1, ph::_2, time0, time1);
    }
    assert(voxelCount == mParent.mTracker.grid().activeVoxelCount());
    mVelocity = new VectorType[ voxelCount ];
    this->cook("Sampling advection field");

    // Find the extrema of the magnitude of the velocities
    ValueType maxAbsV = 0;
    VectorType* v = mVelocity;
    for (size_t i = 0; i < voxelCount; ++i, ++v) {
        maxAbsV = math::Max(maxAbsV, ValueType(v->lengthSqr()));
    }

    // Compute the CFL number
    if (math::isApproxZero(maxAbsV, math::Delta<ValueType>::value())) return ValueType(0);
#ifndef _MSC_VER // Visual C++ doesn't guarantee thread-safe initialization of local statics
    static
#endif
    const ValueType CFL = (TemporalScheme == math::TVD_RK1 ? ValueType(0.3) :
        TemporalScheme == math::TVD_RK2 ? ValueType(0.9) :
        ValueType(1.0))/math::Sqrt(ValueType(3.0));
    const ValueType dt = math::Abs(time1 - time0), dx = mParent.mTracker.voxelSize();
    return math::Min(dt, ValueType(CFL*dx/math::Sqrt(maxAbsV)));
}


template<typename GridT, typename FieldT, typename InterruptT>
template<
    typename MapT,
    math::BiasedGradientScheme SpatialScheme,
    math::TemporalIntegrationScheme TemporalScheme>
template<bool Aligned>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
sample(const LeafRange& range, ValueType time0, ValueType time1)
{
    const bool isForward = time0 < time1;
    using VoxelIterT = typename LeafType::ValueOnCIter;
    const MapT& map = *mMap;
    const FieldT field( mParent.mField );
    mParent.mTracker.checkInterrupter();
    for (typename LeafRange::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
        VectorType* vel = mVelocity + mOffsets[ leafIter.pos() ];
        for (VoxelIterT iter = leafIter->cbeginValueOn(); iter; ++iter, ++vel) {
            const VectorType v = Aligned ? field(iter.getCoord(), time0) ://resolved at compile time
                                 field(map.applyMap(iter.getCoord().asVec3d()), time0);
            *vel = isForward ? v : -v;
        }
    }
}


template<typename GridT, typename FieldT, typename InterruptT>
template<
    typename MapT,
    math::BiasedGradientScheme SpatialScheme,
    math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
clearField()
{
    delete [] mOffsets;
    delete [] mVelocity;
    mOffsets = nullptr;
    mVelocity = nullptr;
}


template<typename GridT, typename FieldT, typename InterruptT>
template<
    typename MapT,
    math::BiasedGradientScheme SpatialScheme,
    math::TemporalIntegrationScheme TemporalScheme>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
cook(const char* msg, size_t swapBuffer)
{
    mParent.mTracker.startInterrupter( msg );

    const int grainSize   = mParent.mTracker.getGrainSize();
    const LeafRange range = mParent.mTracker.leafs().leafRange(grainSize);

    grainSize == 0 ? (*this)(range) : tbb::parallel_for(range, *this);

    mParent.mTracker.leafs().swapLeafBuffer(swapBuffer, grainSize == 0);

    mParent.mTracker.endInterrupter();
}


// Convex combination of Phi and a forward Euler advection steps:
// Phi(result) = alpha * Phi(phi) + (1-alpha) * (Phi(0) - dt * V.Grad(0));
template<typename GridT, typename FieldT, typename InterruptT>
template<
    typename MapT,
    math::BiasedGradientScheme SpatialScheme,
    math::TemporalIntegrationScheme TemporalScheme>
template <int Nominator, int Denominator>
inline void
LevelSetAdvection<GridT, FieldT, InterruptT>::
Advect<MapT, SpatialScheme, TemporalScheme>::
euler(const LeafRange& range, ValueType dt, Index phiBuffer, Index resultBuffer)
{
    using SchemeT = math::BIAS_SCHEME<SpatialScheme>;
    using StencilT = typename SchemeT::template ISStencil<GridType>::StencilType;
    using VoxelIterT = typename LeafType::ValueOnCIter;
    using GradT = math::GradientBiased<MapT, SpatialScheme>;

    static const ValueType Alpha = ValueType(Nominator)/ValueType(Denominator);
    static const ValueType Beta  = ValueType(1) - Alpha;

    mParent.mTracker.checkInterrupter();
    const MapT& map = *mMap;
    StencilT stencil(mParent.mTracker.grid());
    for (typename LeafRange::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
        const VectorType* vel = mVelocity + mOffsets[ leafIter.pos() ];
        const ValueType* phi = leafIter.buffer(phiBuffer).data();
        ValueType* result = leafIter.buffer(resultBuffer).data();
        for (VoxelIterT voxelIter = leafIter->cbeginValueOn(); voxelIter; ++voxelIter, ++vel) {
            const Index i = voxelIter.pos();
            stencil.moveTo(voxelIter);
            const ValueType a =
                stencil.getValue() - dt * vel->dot(GradT::result(map, stencil, *vel));
            result[i] = Nominator ? Alpha * phi[i] + Beta * a : a;
        }//loop over active voxels in the leaf of the mask
    }//loop over leafs of the level set
}

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_LEVEL_SET_ADVECT_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )