/usr/include/openvdb/tools/ParticleAtlas.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
/// @file ParticleAtlas.h
///
/// @brief Space-partitioning acceleration structure for particles, points with
/// radius. Partitions particle indices into voxels to accelerate range
/// and nearest neighbor searches.
///
/// @note This acceleration structure only stores integer offsets into an external particle
/// data structure that conforms to the ParticleArray interface.
///
/// @details Constructs and maintains a sequence of @c PointIndexGrids each of progressively
/// lower resolution. Particles are uniquely assigned to a particular resolution
/// level based on their radius. This strategy has proven efficient for accelerating
/// spatial queries on particle data sets with varying radii.
///
/// @details The data structure automatically detects and adapts to particle data sets with
/// uniform radii. The construction is simplified and spatial queries pre-cache the
/// uniform particle radius to avoid redundant access calls to the
/// ParticleArray::getRadius method.
///
/// @author Mihai Alden
#ifndef OPENVDB_TOOLS_PARTICLE_ATLAS_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_PARTICLE_ATLAS_HAS_BEEN_INCLUDED
#include "PointIndexGrid.h"
#include <openvdb/Grid.h>
#include <openvdb/Types.h>
#include <openvdb/math/Transform.h>
#include <openvdb/tree/Tree.h>
#include <openvdb/tree/LeafNode.h>
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <algorithm> // for std::min(), std::max()
#include <cmath> // for std::sqrt()
#include <deque>
#include <limits>
#include <memory>
#include <utility> // for std::pair
#include <vector>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
////////////////////////////////////////
/// @brief Partition particles and performs range and nearest-neighbor searches.
///
/// @interface ParticleArray
/// Expected interface for the ParticleArray container:
/// @code
/// template<typename VectorType>
/// struct ParticleArray
/// {
/// // The type used to represent world-space positions
/// using PosType = VectorType;
/// using ScalarType = typename PosType::value_type;
///
/// // Return the number of particles in the array
/// size_t size() const;
///
/// // Return the world-space position for the nth particle.
/// void getPos(size_t n, PosType& xyz) const;
///
/// // Return the world-space radius for the nth particle.
/// void getRadius(size_t n, ScalarType& radius) const;
/// };
/// @endcode
///
/// @details Constructs a collection of @c PointIndexGrids of different resolutions
/// to accelerate spatial searches for particles with varying radius.
template<typename PointIndexGridType = PointIndexGrid>
struct ParticleAtlas
{
using Ptr = SharedPtr<ParticleAtlas>;
using ConstPtr = SharedPtr<const ParticleAtlas>;
using PointIndexGridPtr = typename PointIndexGridType::Ptr;
using IndexType = typename PointIndexGridType::ValueType;
struct Iterator;
//////////
ParticleAtlas() : mIndexGridArray(), mMinRadiusArray(), mMaxRadiusArray() {}
/// @brief Partitions particle indices
///
/// @param particles container conforming to the ParticleArray interface
/// @param minVoxelSize minimum voxel size limit
/// @param maxLevels maximum number of resolution levels
template<typename ParticleArrayType>
void construct(const ParticleArrayType& particles, double minVoxelSize, size_t maxLevels = 50);
/// @brief Create a new @c ParticleAtlas from the given @a particles.
///
/// @param particles container conforming to the ParticleArray interface
/// @param minVoxelSize minimum voxel size limit
/// @param maxLevels maximum number of resolution levels
template<typename ParticleArrayType>
static Ptr create(const ParticleArrayType& particles,
double minVoxelSize, size_t maxLevels = 50);
/// @brief Returns the number of resolution levels.
size_t levels() const { return mIndexGridArray.size(); }
/// @brief true if the container size is 0, false otherwise.
bool empty() const { return mIndexGridArray.empty(); }
/// @brief Returns minimum particle radius for level @a n.
double minRadius(size_t n) const { return mMinRadiusArray[n]; }
/// @brief Returns maximum particle radius for level @a n.
double maxRadius(size_t n) const { return mMaxRadiusArray[n]; }
/// @brief Returns the @c PointIndexGrid that represents the given level @a n.
PointIndexGridType& pointIndexGrid(size_t n) { return *mIndexGridArray[n]; }
/// @brief Returns the @c PointIndexGrid that represents the given level @a n.
const PointIndexGridType& pointIndexGrid(size_t n) const { return *mIndexGridArray[n]; }
private:
// Disallow copying
ParticleAtlas(const ParticleAtlas&);
ParticleAtlas& operator=(const ParticleAtlas&);
std::vector<PointIndexGridPtr> mIndexGridArray;
std::vector<double> mMinRadiusArray, mMaxRadiusArray;
}; // struct ParticleAtlas
using ParticleIndexAtlas = ParticleAtlas<PointIndexGrid>;
////////////////////////////////////////
/// @brief Provides accelerated range and nearest-neighbor searches for
/// particles that are partitioned using the ParticleAtlas.
///
/// @note Prefer to construct the iterator object once and reuse it
/// for subsequent queries.
template<typename PointIndexGridType>
struct ParticleAtlas<PointIndexGridType>::Iterator
{
using TreeType = typename PointIndexGridType::TreeType;
using ConstAccessor = tree::ValueAccessor<const TreeType>;
using ConstAccessorPtr = std::unique_ptr<ConstAccessor>;
/////
/// @brief Construct an iterator from the given @a atlas.
explicit Iterator(const ParticleAtlas& atlas);
/// @brief Clear the iterator and update it with the result of the given
/// world-space radial query.
/// @param center world-space center
/// @param radius world-space search radius
/// @param particles container conforming to the ParticleArray interface
template<typename ParticleArrayType>
void worldSpaceSearchAndUpdate(const Vec3d& center, double radius,
const ParticleArrayType& particles);
/// @brief Clear the iterator and update it with the result of the given
/// world-space radial query.
/// @param bbox world-space bounding box
/// @param particles container conforming to the ParticleArray interface
template<typename ParticleArrayType>
void worldSpaceSearchAndUpdate(const BBoxd& bbox, const ParticleArrayType& particles);
/// @brief Returns the total number of resolution levels.
size_t levels() const { return mAtlas->levels(); }
/// @brief Clear the iterator and update it with all particles that reside
/// at the given resolution @a level.
void updateFromLevel(size_t level);
/// Reset the iterator to point to the first item.
void reset();
/// Return a const reference to the item to which this iterator is pointing.
const IndexType& operator*() const { return *mRange.first; }
/// @{
/// @brief Return @c true if this iterator is not yet exhausted.
bool test() const { return mRange.first < mRange.second || mIter != mRangeList.end(); }
operator bool() const { return this->test(); }
/// @}
/// Advance iterator to next item.
void increment();
/// Advance iterator to next item.
void operator++() { this->increment(); }
/// @brief Advance iterator to next item.
/// @return @c true if this iterator is not yet exhausted.
bool next();
/// Return the number of point indices in the iterator range.
size_t size() const;
/// Return @c true if both iterators point to the same element.
bool operator==(const Iterator& p) const { return mRange.first == p.mRange.first; }
bool operator!=(const Iterator& p) const { return !this->operator==(p); }
private:
Iterator(const Iterator& rhs);
Iterator& operator=(const Iterator& rhs);
void clear();
using Range = std::pair<const IndexType*, const IndexType*>;
using RangeDeque = std::deque<Range>;
using RangeDequeCIter = typename RangeDeque::const_iterator;
using IndexArray = std::unique_ptr<IndexType[]>;
ParticleAtlas const * const mAtlas;
std::unique_ptr<ConstAccessorPtr[]> mAccessorList;
// Primary index collection
Range mRange;
RangeDeque mRangeList;
RangeDequeCIter mIter;
// Secondary index collection
IndexArray mIndexArray;
size_t mIndexArraySize, mAccessorListSize;
}; // struct ParticleAtlas::Iterator
////////////////////////////////////////
// Internal operators and implementation details
namespace particle_atlas_internal {
template<typename ParticleArrayT>
struct ComputeExtremas
{
using PosType = typename ParticleArrayT::PosType;
using ScalarType = typename PosType::value_type;
ComputeExtremas(const ParticleArrayT& particles)
: particleArray(&particles)
, minRadius(std::numeric_limits<ScalarType>::max())
, maxRadius(-std::numeric_limits<ScalarType>::max())
{
}
ComputeExtremas(ComputeExtremas& rhs, tbb::split)
: particleArray(rhs.particleArray)
, minRadius(std::numeric_limits<ScalarType>::max())
, maxRadius(-std::numeric_limits<ScalarType>::max())
{
}
void operator()(const tbb::blocked_range<size_t>& range) {
ScalarType radius, tmpMin = minRadius, tmpMax = maxRadius;
for (size_t n = range.begin(), N = range.end(); n != N; ++n) {
particleArray->getRadius(n, radius);
tmpMin = std::min(radius, tmpMin);
tmpMax = std::max(radius, tmpMax);
}
minRadius = std::min(minRadius, tmpMin);
maxRadius = std::max(maxRadius, tmpMax);
}
void join(const ComputeExtremas& rhs) {
minRadius = std::min(minRadius, rhs.minRadius);
maxRadius = std::max(maxRadius, rhs.maxRadius);
}
ParticleArrayT const * const particleArray;
ScalarType minRadius, maxRadius;
}; // struct ComputeExtremas
template<typename ParticleArrayT, typename PointIndex>
struct SplittableParticleArray
{
using Ptr = SharedPtr<SplittableParticleArray>;
using ConstPtr = SharedPtr<const SplittableParticleArray>;
using ParticleArray = ParticleArrayT;
using PosType = typename ParticleArray::PosType;
using ScalarType = typename PosType::value_type;
SplittableParticleArray(const ParticleArrayT& particles)
: mIndexMap(), mParticleArray(&particles), mSize(particles.size())
{
updateExtremas();
}
SplittableParticleArray(const ParticleArrayT& particles, double minR, double maxR)
: mIndexMap(), mParticleArray(&particles), mSize(particles.size())
{
mMinRadius = ScalarType(minR);
mMaxRadius = ScalarType(maxR);
}
const ParticleArrayT& particleArray() const { return *mParticleArray; }
size_t size() const { return mSize; }
void getPos(size_t n, PosType& xyz) const
{ return mParticleArray->getPos(getGlobalIndex(n), xyz); }
void getRadius(size_t n, ScalarType& radius) const
{ return mParticleArray->getRadius(getGlobalIndex(n), radius); }
ScalarType minRadius() const { return mMinRadius; }
ScalarType maxRadius() const { return mMaxRadius; }
size_t getGlobalIndex(size_t n) const { return mIndexMap ? size_t(mIndexMap[n]) : n; }
/// Move all particle indices that have a radius larger or equal to @a maxRadiusLimit
/// into a separate container.
Ptr split(ScalarType maxRadiusLimit) {
if (mMaxRadius < maxRadiusLimit) return Ptr();
std::unique_ptr<bool[]> mask{new bool[mSize]};
tbb::parallel_for(tbb::blocked_range<size_t>(0, mSize),
MaskParticles(*this, mask, maxRadiusLimit));
Ptr output(new SplittableParticleArray(*this, mask));
if (output->size() == 0) return Ptr();
size_t newSize = 0;
for (size_t n = 0, N = mSize; n < N; ++n) {
newSize += size_t(!mask[n]);
}
std::unique_ptr<PointIndex[]> newIndexMap{new PointIndex[newSize]};
setIndexMap(newIndexMap, mask, false);
mSize = newSize;
mIndexMap.swap(newIndexMap);
updateExtremas();
return output;
}
private:
// Disallow copying
SplittableParticleArray(const SplittableParticleArray&);
SplittableParticleArray& operator=(const SplittableParticleArray&);
// Masked copy constructor
SplittableParticleArray(const SplittableParticleArray& other,
const std::unique_ptr<bool[]>& mask)
: mIndexMap(), mParticleArray(&other.particleArray()), mSize(0)
{
for (size_t n = 0, N = other.size(); n < N; ++n) {
mSize += size_t(mask[n]);
}
if (mSize != 0) {
mIndexMap.reset(new PointIndex[mSize]);
other.setIndexMap(mIndexMap, mask, true);
}
updateExtremas();
}
struct MaskParticles {
MaskParticles(const SplittableParticleArray& particles,
const std::unique_ptr<bool[]>& mask, ScalarType radius)
: particleArray(&particles)
, particleMask(mask.get())
, radiusLimit(radius)
{
}
void operator()(const tbb::blocked_range<size_t>& range) const {
const ScalarType maxRadius = radiusLimit;
ScalarType radius;
for (size_t n = range.begin(), N = range.end(); n != N; ++n) {
particleArray->getRadius(n, radius);
particleMask[n] = !(radius < maxRadius);
}
}
SplittableParticleArray const * const particleArray;
bool * const particleMask;
ScalarType const radiusLimit;
}; // struct MaskParticles
inline void updateExtremas() {
ComputeExtremas<SplittableParticleArray> op(*this);
tbb::parallel_reduce(tbb::blocked_range<size_t>(0, mSize), op);
mMinRadius = op.minRadius;
mMaxRadius = op.maxRadius;
}
void setIndexMap(std::unique_ptr<PointIndex[]>& newIndexMap,
const std::unique_ptr<bool[]>& mask, bool maskValue) const
{
if (mIndexMap.get() != nullptr) {
const PointIndex* indices = mIndexMap.get();
for (size_t idx = 0, n = 0, N = mSize; n < N; ++n) {
if (mask[n] == maskValue) newIndexMap[idx++] = indices[n];
}
} else {
for (size_t idx = 0, n = 0, N = mSize; n < N; ++n) {
if (mask[n] == maskValue) {
newIndexMap[idx++] = PointIndex(static_cast<typename PointIndex::IntType>(n));
}
}
}
}
//////////
std::unique_ptr<PointIndex[]> mIndexMap;
ParticleArrayT const * const mParticleArray;
size_t mSize;
ScalarType mMinRadius, mMaxRadius;
}; // struct SplittableParticleArray
template<typename ParticleArrayType, typename PointIndexLeafNodeType>
struct RemapIndices {
RemapIndices(const ParticleArrayType& particles, std::vector<PointIndexLeafNodeType*>& nodes)
: mParticles(&particles)
, mNodes(nodes.empty() ? nullptr : &nodes.front())
{
}
void operator()(const tbb::blocked_range<size_t>& range) const
{
using PointIndexType = typename PointIndexLeafNodeType::ValueType;
for (size_t n = range.begin(), N = range.end(); n != N; ++n) {
PointIndexLeafNodeType& node = *mNodes[n];
const size_t numIndices = node.indices().size();
if (numIndices > 0) {
PointIndexType* begin = &node.indices().front();
const PointIndexType* end = begin + numIndices;
while (begin < end) {
*begin = PointIndexType(static_cast<typename PointIndexType::IntType>(
mParticles->getGlobalIndex(*begin)));
++begin;
}
}
}
}
ParticleArrayType const * const mParticles;
PointIndexLeafNodeType * const * const mNodes;
}; // struct RemapIndices
template<typename ParticleArrayType, typename IndexT>
struct RadialRangeFilter
{
using PosType = typename ParticleArrayType::PosType;
using ScalarType = typename PosType::value_type;
using Range = std::pair<const IndexT*, const IndexT*>;
using RangeDeque = std::deque<Range>;
using IndexDeque = std::deque<IndexT>;
RadialRangeFilter(RangeDeque& ranges, IndexDeque& indices, const PosType& xyz,
ScalarType radius, const ParticleArrayType& particles, bool hasUniformRadius = false)
: mRanges(ranges)
, mIndices(indices)
, mCenter(xyz)
, mRadius(radius)
, mParticles(&particles)
, mHasUniformRadius(hasUniformRadius)
{
if (mHasUniformRadius) {
ScalarType uniformRadius;
mParticles->getRadius(0, uniformRadius);
mRadius = mRadius + uniformRadius;
mRadius *= mRadius;
}
}
template <typename LeafNodeType>
void filterLeafNode(const LeafNodeType& leaf)
{
const size_t numIndices = leaf.indices().size();
if (numIndices > 0) {
const IndexT* begin = &leaf.indices().front();
filterVoxel(leaf.origin(), begin, begin + numIndices);
}
}
void filterVoxel(const Coord&, const IndexT* begin, const IndexT* end)
{
PosType pos;
if (mHasUniformRadius) {
const ScalarType searchRadiusSqr = mRadius;
while (begin < end) {
mParticles->getPos(size_t(*begin), pos);
const ScalarType distSqr = (mCenter - pos).lengthSqr();
if (distSqr < searchRadiusSqr) {
mIndices.push_back(*begin);
}
++begin;
}
} else {
while (begin < end) {
const size_t idx = size_t(*begin);
mParticles->getPos(idx, pos);
ScalarType radius;
mParticles->getRadius(idx, radius);
ScalarType searchRadiusSqr = mRadius + radius;
searchRadiusSqr *= searchRadiusSqr;
const ScalarType distSqr = (mCenter - pos).lengthSqr();
if (distSqr < searchRadiusSqr) {
mIndices.push_back(*begin);
}
++begin;
}
}
}
private:
RadialRangeFilter(const RadialRangeFilter&);
RadialRangeFilter& operator=(const RadialRangeFilter&);
RangeDeque& mRanges;
IndexDeque& mIndices;
PosType const mCenter;
ScalarType mRadius;
ParticleArrayType const * const mParticles;
bool const mHasUniformRadius;
}; // struct RadialRangeFilter
template<typename ParticleArrayType, typename IndexT>
struct BBoxFilter
{
using PosType = typename ParticleArrayType::PosType;
using ScalarType = typename PosType::value_type;
using Range = std::pair<const IndexT*, const IndexT*>;
using RangeDeque = std::deque<Range>;
using IndexDeque = std::deque<IndexT>;
BBoxFilter(RangeDeque& ranges, IndexDeque& indices,
const BBoxd& bbox, const ParticleArrayType& particles, bool hasUniformRadius = false)
: mRanges(ranges)
, mIndices(indices)
, mBBox(PosType(bbox.min()), PosType(bbox.max()))
, mCenter(mBBox.getCenter())
, mParticles(&particles)
, mHasUniformRadius(hasUniformRadius)
, mUniformRadiusSqr(ScalarType(0.0))
{
if (mHasUniformRadius) {
mParticles->getRadius(0, mUniformRadiusSqr);
mUniformRadiusSqr *= mUniformRadiusSqr;
}
}
template <typename LeafNodeType>
void filterLeafNode(const LeafNodeType& leaf)
{
const size_t numIndices = leaf.indices().size();
if (numIndices > 0) {
const IndexT* begin = &leaf.indices().front();
filterVoxel(leaf.origin(), begin, begin + numIndices);
}
}
void filterVoxel(const Coord&, const IndexT* begin, const IndexT* end)
{
PosType pos;
if (mHasUniformRadius) {
const ScalarType radiusSqr = mUniformRadiusSqr;
while (begin < end) {
mParticles->getPos(size_t(*begin), pos);
if (mBBox.isInside(pos)) {
mIndices.push_back(*begin++);
continue;
}
const ScalarType distSqr = pointToBBoxDistSqr(pos);
if (!(distSqr > radiusSqr)) {
mIndices.push_back(*begin);
}
++begin;
}
} else {
while (begin < end) {
const size_t idx = size_t(*begin);
mParticles->getPos(idx, pos);
if (mBBox.isInside(pos)) {
mIndices.push_back(*begin++);
continue;
}
ScalarType radius;
mParticles->getRadius(idx, radius);
const ScalarType distSqr = pointToBBoxDistSqr(pos);
if (!(distSqr > (radius * radius))) {
mIndices.push_back(*begin);
}
++begin;
}
}
}
private:
BBoxFilter(const BBoxFilter&);
BBoxFilter& operator=(const BBoxFilter&);
ScalarType pointToBBoxDistSqr(const PosType& pos) const
{
ScalarType distSqr = ScalarType(0.0);
for (int i = 0; i < 3; ++i) {
const ScalarType a = pos[i];
ScalarType b = mBBox.min()[i];
if (a < b) {
ScalarType delta = b - a;
distSqr += delta * delta;
}
b = mBBox.max()[i];
if (a > b) {
ScalarType delta = a - b;
distSqr += delta * delta;
}
}
return distSqr;
}
RangeDeque& mRanges;
IndexDeque& mIndices;
math::BBox<PosType> const mBBox;
PosType const mCenter;
ParticleArrayType const * const mParticles;
bool const mHasUniformRadius;
ScalarType mUniformRadiusSqr;
}; // struct BBoxFilter
} // namespace particle_atlas_internal
////////////////////////////////////////
template<typename PointIndexGridType>
template<typename ParticleArrayType>
inline void
ParticleAtlas<PointIndexGridType>::construct(
const ParticleArrayType& particles, double minVoxelSize, size_t maxLevels)
{
using SplittableParticleArray =
typename particle_atlas_internal::SplittableParticleArray<ParticleArrayType, IndexType>;
using SplittableParticleArrayPtr = typename SplittableParticleArray::Ptr;
using ScalarType = typename ParticleArrayType::ScalarType;
/////
particle_atlas_internal::ComputeExtremas<ParticleArrayType> extremas(particles);
tbb::parallel_reduce(tbb::blocked_range<size_t>(0, particles.size()), extremas);
const double firstMin = extremas.minRadius;
const double firstMax = extremas.maxRadius;
const double firstVoxelSize = std::max(minVoxelSize, firstMin);
if (!(firstMax < (firstVoxelSize * double(2.0))) && maxLevels > 1) {
std::vector<SplittableParticleArrayPtr> levels;
levels.push_back(SplittableParticleArrayPtr(
new SplittableParticleArray(particles, firstMin, firstMax)));
std::vector<double> voxelSizeArray;
voxelSizeArray.push_back(firstVoxelSize);
for (size_t n = 0; n < maxLevels; ++n) {
const double maxParticleRadius = double(levels.back()->maxRadius());
const double particleRadiusLimit = voxelSizeArray.back() * double(2.0);
if (maxParticleRadius < particleRadiusLimit) break;
SplittableParticleArrayPtr newLevel =
levels.back()->split(ScalarType(particleRadiusLimit));
if (!newLevel) break;
levels.push_back(newLevel);
voxelSizeArray.push_back(double(newLevel->minRadius()));
}
size_t numPoints = 0;
using PointIndexTreeType = typename PointIndexGridType::TreeType;
using PointIndexLeafNodeType = typename PointIndexTreeType::LeafNodeType;
std::vector<PointIndexLeafNodeType*> nodes;
for (size_t n = 0, N = levels.size(); n < N; ++n) {
const SplittableParticleArray& particleArray = *levels[n];
numPoints += particleArray.size();
mMinRadiusArray.push_back(double(particleArray.minRadius()));
mMaxRadiusArray.push_back(double(particleArray.maxRadius()));
PointIndexGridPtr grid =
createPointIndexGrid<PointIndexGridType>(particleArray, voxelSizeArray[n]);
nodes.clear();
grid->tree().getNodes(nodes);
tbb::parallel_for(tbb::blocked_range<size_t>(0, nodes.size()),
particle_atlas_internal::RemapIndices<SplittableParticleArray,
PointIndexLeafNodeType>(particleArray, nodes));
mIndexGridArray.push_back(grid);
}
} else {
mMinRadiusArray.push_back(firstMin);
mMaxRadiusArray.push_back(firstMax);
mIndexGridArray.push_back(
createPointIndexGrid<PointIndexGridType>(particles, firstVoxelSize));
}
}
template<typename PointIndexGridType>
template<typename ParticleArrayType>
inline typename ParticleAtlas<PointIndexGridType>::Ptr
ParticleAtlas<PointIndexGridType>::create(
const ParticleArrayType& particles, double minVoxelSize, size_t maxLevels)
{
Ptr ret(new ParticleAtlas());
ret->construct(particles, minVoxelSize, maxLevels);
return ret;
}
////////////////////////////////////////
// ParticleAtlas::Iterator implementation
template<typename PointIndexGridType>
inline
ParticleAtlas<PointIndexGridType>::Iterator::Iterator(const ParticleAtlas& atlas)
: mAtlas(&atlas)
, mAccessorList()
, mRange(static_cast<IndexType*>(nullptr), static_cast<IndexType*>(nullptr))
, mRangeList()
, mIter(mRangeList.begin())
, mIndexArray()
, mIndexArraySize(0)
, mAccessorListSize(atlas.levels())
{
if (mAccessorListSize > 0) {
mAccessorList.reset(new ConstAccessorPtr[mAccessorListSize]);
for (size_t n = 0, N = mAccessorListSize; n < N; ++n) {
mAccessorList[n].reset(new ConstAccessor(atlas.pointIndexGrid(n).tree()));
}
}
}
template<typename PointIndexGridType>
inline void
ParticleAtlas<PointIndexGridType>::Iterator::reset()
{
mIter = mRangeList.begin();
if (!mRangeList.empty()) {
mRange = mRangeList.front();
} else if (mIndexArray) {
mRange.first = mIndexArray.get();
mRange.second = mRange.first + mIndexArraySize;
} else {
mRange.first = static_cast<IndexType*>(nullptr);
mRange.second = static_cast<IndexType*>(nullptr);
}
}
template<typename PointIndexGridType>
inline void
ParticleAtlas<PointIndexGridType>::Iterator::increment()
{
++mRange.first;
if (mRange.first >= mRange.second && mIter != mRangeList.end()) {
++mIter;
if (mIter != mRangeList.end()) {
mRange = *mIter;
} else if (mIndexArray) {
mRange.first = mIndexArray.get();
mRange.second = mRange.first + mIndexArraySize;
}
}
}
template<typename PointIndexGridType>
inline bool
ParticleAtlas<PointIndexGridType>::Iterator::next()
{
if (!this->test()) return false;
this->increment();
return this->test();
}
template<typename PointIndexGridType>
inline size_t
ParticleAtlas<PointIndexGridType>::Iterator::size() const
{
size_t count = 0;
typename RangeDeque::const_iterator it =
mRangeList.begin(), end = mRangeList.end();
for ( ; it != end; ++it) {
count += it->second - it->first;
}
return count + mIndexArraySize;
}
template<typename PointIndexGridType>
inline void
ParticleAtlas<PointIndexGridType>::Iterator::clear()
{
mRange.first = static_cast<IndexType*>(nullptr);
mRange.second = static_cast<IndexType*>(nullptr);
mRangeList.clear();
mIter = mRangeList.end();
mIndexArray.reset();
mIndexArraySize = 0;
}
template<typename PointIndexGridType>
inline void
ParticleAtlas<PointIndexGridType>::Iterator::updateFromLevel(size_t level)
{
using TreeType = typename PointIndexGridType::TreeType;
using LeafNodeType = typename TreeType::LeafNodeType;
this->clear();
if (mAccessorListSize > 0) {
const size_t levelIdx = std::min(mAccessorListSize - 1, level);
const TreeType& tree = mAtlas->pointIndexGrid(levelIdx).tree();
std::vector<const LeafNodeType*> nodes;
tree.getNodes(nodes);
for (size_t n = 0, N = nodes.size(); n < N; ++n) {
const LeafNodeType& node = *nodes[n];
const size_t numIndices = node.indices().size();
if (numIndices > 0) {
const IndexType* begin = &node.indices().front();
mRangeList.push_back(Range(begin, (begin + numIndices)));
}
}
}
this->reset();
}
template<typename PointIndexGridType>
template<typename ParticleArrayType>
inline void
ParticleAtlas<PointIndexGridType>::Iterator::worldSpaceSearchAndUpdate(
const Vec3d& center, double radius, const ParticleArrayType& particles)
{
using PosType = typename ParticleArrayType::PosType;
using ScalarType = typename ParticleArrayType::ScalarType;
/////
this->clear();
std::deque<IndexType> filteredIndices;
std::vector<CoordBBox> searchRegions;
const double iRadius = radius * double(1.0 / std::sqrt(3.0));
const Vec3d ibMin(center[0] - iRadius, center[1] - iRadius, center[2] - iRadius);
const Vec3d ibMax(center[0] + iRadius, center[1] + iRadius, center[2] + iRadius);
const Vec3d bMin(center[0] - radius, center[1] - radius, center[2] - radius);
const Vec3d bMax(center[0] + radius, center[1] + radius, center[2] + radius);
const PosType pos = PosType(center);
const ScalarType dist = ScalarType(radius);
for (size_t n = 0, N = mAccessorListSize; n < N; ++n) {
const double maxRadius = mAtlas->maxRadius(n);
const bool uniformRadius = math::isApproxEqual(mAtlas->minRadius(n), maxRadius);
const openvdb::math::Transform& xform = mAtlas->pointIndexGrid(n).transform();
ConstAccessor& acc = *mAccessorList[n];
openvdb::CoordBBox inscribedRegion(
xform.worldToIndexCellCentered(ibMin),
xform.worldToIndexCellCentered(ibMax));
inscribedRegion.expand(-1); // erode by one voxel
// collect indices that don't need to be tested
point_index_grid_internal::pointIndexSearch(mRangeList, acc, inscribedRegion);
searchRegions.clear();
const openvdb::CoordBBox region(
xform.worldToIndexCellCentered(bMin - maxRadius),
xform.worldToIndexCellCentered(bMax + maxRadius));
inscribedRegion.expand(1);
point_index_grid_internal::constructExclusiveRegions(
searchRegions, region, inscribedRegion);
using FilterType = particle_atlas_internal::RadialRangeFilter<ParticleArrayType, IndexType>;
FilterType filter(mRangeList, filteredIndices, pos, dist, particles, uniformRadius);
for (size_t i = 0, I = searchRegions.size(); i < I; ++i) {
point_index_grid_internal::filteredPointIndexSearch(filter, acc, searchRegions[i]);
}
}
point_index_grid_internal::dequeToArray(filteredIndices, mIndexArray, mIndexArraySize);
this->reset();
}
template<typename PointIndexGridType>
template<typename ParticleArrayType>
inline void
ParticleAtlas<PointIndexGridType>::Iterator::worldSpaceSearchAndUpdate(
const BBoxd& bbox, const ParticleArrayType& particles)
{
this->clear();
std::deque<IndexType> filteredIndices;
std::vector<CoordBBox> searchRegions;
for (size_t n = 0, N = mAccessorListSize; n < N; ++n) {
const double maxRadius = mAtlas->maxRadius(n);
const bool uniformRadius = math::isApproxEqual(mAtlas->minRadius(n), maxRadius);
const openvdb::math::Transform& xform = mAtlas->pointIndexGrid(n).transform();
ConstAccessor& acc = *mAccessorList[n];
openvdb::CoordBBox inscribedRegion(
xform.worldToIndexCellCentered(bbox.min()),
xform.worldToIndexCellCentered(bbox.max()));
inscribedRegion.expand(-1); // erode by one voxel
// collect indices that don't need to be tested
point_index_grid_internal::pointIndexSearch(mRangeList, acc, inscribedRegion);
searchRegions.clear();
const openvdb::CoordBBox region(
xform.worldToIndexCellCentered(bbox.min() - maxRadius),
xform.worldToIndexCellCentered(bbox.max() + maxRadius));
inscribedRegion.expand(1);
point_index_grid_internal::constructExclusiveRegions(
searchRegions, region, inscribedRegion);
using FilterType = particle_atlas_internal::BBoxFilter<ParticleArrayType, IndexType>;
FilterType filter(mRangeList, filteredIndices, bbox, particles, uniformRadius);
for (size_t i = 0, I = searchRegions.size(); i < I; ++i) {
point_index_grid_internal::filteredPointIndexSearch(filter, acc, searchRegions[i]);
}
}
point_index_grid_internal::dequeToArray(filteredIndices, mIndexArray, mIndexArraySize);
this->reset();
}
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_PARTICLE_ATLAS_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|