/usr/include/openvdb/tools/PointIndexGrid.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
/// @file PointIndexGrid.h
///
/// @brief Space-partitioning acceleration structure for points. Partitions
/// the points into voxels to accelerate range and nearest neighbor
/// searches.
///
/// @note Leaf nodes store a single point-index array and the voxels are only
/// integer offsets into that array. The actual points are never stored
/// in the acceleration structure, only offsets into an external array.
///
/// @author Mihai Alden
#ifndef OPENVDB_TOOLS_POINT_INDEX_GRID_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_POINT_INDEX_GRID_HAS_BEEN_INCLUDED
#include "PointPartitioner.h"
#include <openvdb/version.h>
#include <openvdb/Exceptions.h>
#include <openvdb/Grid.h>
#include <openvdb/Types.h>
#include <openvdb/math/Transform.h>
#include <openvdb/tree/LeafManager.h>
#include <openvdb/tree/LeafNode.h>
#include <openvdb/tree/Tree.h>
#include <tbb/atomic.h>
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <algorithm> // for std::min(), std::max()
#include <cmath> // for std::sqrt()
#include <deque>
#include <iostream>
#include <type_traits> // for std::is_same
#include <utility> // for std::pair
#include <vector>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {
template<Index, typename> struct SameLeafConfig; // forward declaration
}
namespace tools {
template<typename T, Index Log2Dim> struct PointIndexLeafNode; // forward declaration
/// Point index tree configured to match the default OpenVDB tree configuration
using PointIndexTree = tree::Tree<tree::RootNode<tree::InternalNode<tree::InternalNode
<PointIndexLeafNode<PointIndex32, 3>, 4>, 5>>>;
/// Point index grid
using PointIndexGrid = Grid<PointIndexTree>;
////////////////////////////////////////
/// @interface PointArray
/// Expected interface for the PointArray container:
/// @code
/// template<typename VectorType>
/// struct PointArray
/// {
/// // The type used to represent world-space point positions
/// using PosType = VectorType;
///
/// // Return the number of points in the array
/// size_t size() const;
///
/// // Return the world-space position of the nth point in the array.
/// void getPos(size_t n, PosType& xyz) const;
/// };
/// @endcode
////////////////////////////////////////
/// @brief Partition points into a point index grid to accelerate range and
/// nearest-neighbor searches.
///
/// @param points world-space point array conforming to the PointArray interface
/// @param voxelSize voxel size in world units
template<typename GridT, typename PointArrayT>
inline typename GridT::Ptr
createPointIndexGrid(const PointArrayT& points, double voxelSize);
/// @brief Partition points into a point index grid to accelerate range and
/// nearest-neighbor searches.
///
/// @param points world-space point array conforming to the PointArray interface
/// @param xform world-to-index-space transform
template<typename GridT, typename PointArrayT>
inline typename GridT::Ptr
createPointIndexGrid(const PointArrayT& points, const math::Transform& xform);
/// @brief Return @c true if the given point index grid represents a valid partitioning
/// of the given point array.
///
/// @param points world-space point array conforming to the PointArray interface
/// @param grid point index grid to validate
template<typename PointArrayT, typename GridT>
inline bool
isValidPartition(const PointArrayT& points, const GridT& grid);
/// Repartition the @a points if needed, otherwise return the input @a grid.
template<typename GridT, typename PointArrayT>
inline typename GridT::ConstPtr
getValidPointIndexGrid(const PointArrayT& points, const typename GridT::ConstPtr& grid);
/// Repartition the @a points if needed, otherwise return the input @a grid.
template<typename GridT, typename PointArrayT>
inline typename GridT::Ptr
getValidPointIndexGrid(const PointArrayT& points, const typename GridT::Ptr& grid);
////////////////////////////////////////
/// Accelerated range and nearest-neighbor searches for point index grids
template<typename TreeType = PointIndexTree>
struct PointIndexIterator
{
using ConstAccessor = tree::ValueAccessor<const TreeType>;
using LeafNodeType = typename TreeType::LeafNodeType;
using ValueType = typename TreeType::ValueType;
PointIndexIterator();
PointIndexIterator(const PointIndexIterator& rhs);
PointIndexIterator& operator=(const PointIndexIterator& rhs);
/// @brief Construct an iterator over the indices of the points contained in voxel (i, j, k).
/// @param ijk the voxel containing the points over which to iterate
/// @param acc an accessor for the grid or tree that holds the point indices
PointIndexIterator(const Coord& ijk, ConstAccessor& acc);
/// @brief Construct an iterator over the indices of the points contained in
/// the given bounding box.
/// @param bbox the bounding box of the voxels containing the points over which to iterate
/// @param acc an accessor for the grid or tree that holds the point indices
/// @note The range of the @a bbox is inclusive. Thus, a bounding box with
/// min = max is not empty but rather encloses a single voxel.
PointIndexIterator(const CoordBBox& bbox, ConstAccessor& acc);
/// @brief Clear the iterator and update it with the result of the given voxel query.
/// @param ijk the voxel containing the points over which to iterate
/// @param acc an accessor for the grid or tree that holds the point indices
void searchAndUpdate(const Coord& ijk, ConstAccessor& acc);
/// @brief Clear the iterator and update it with the result of the given voxel region query.
/// @param bbox the bounding box of the voxels containing the points over which to iterate
/// @param acc an accessor for the grid or tree that holds the point indices
/// @note The range of the @a bbox is inclusive. Thus, a bounding box with
/// min = max is not empty but rather encloses a single voxel.
void searchAndUpdate(const CoordBBox& bbox, ConstAccessor& acc);
/// @brief Clear the iterator and update it with the result of the given
/// index-space bounding box query.
/// @param bbox index-space bounding box
/// @param acc an accessor for the grid or tree that holds the point indices
/// @param points world-space point array conforming to the PointArray interface
/// @param xform linear, uniform-scale transform (i.e., cubical voxels)
template<typename PointArray>
void searchAndUpdate(const BBoxd& bbox, ConstAccessor& acc,
const PointArray& points, const math::Transform& xform);
/// @brief Clear the iterator and update it with the result of the given
/// index-space radial query.
/// @param center index-space center
/// @param radius index-space radius
/// @param acc an accessor for the grid or tree that holds the point indices
/// @param points world-space point array conforming to the PointArray interface
/// @param xform linear, uniform-scale transform (i.e., cubical voxels)
/// @param subvoxelAccuracy if true, check individual points against the search region,
/// otherwise return all points that reside in voxels that are inside
/// or intersect the search region
template<typename PointArray>
void searchAndUpdate(const Vec3d& center, double radius, ConstAccessor& acc,
const PointArray& points, const math::Transform& xform, bool subvoxelAccuracy = true);
/// @brief Clear the iterator and update it with the result of the given
/// world-space bounding box query.
/// @param bbox world-space bounding box
/// @param acc an accessor for the grid or tree that holds the point indices
/// @param points world-space point array conforming to the PointArray interface
/// @param xform linear, uniform-scale transform (i.e., cubical voxels)
template<typename PointArray>
void worldSpaceSearchAndUpdate(const BBoxd& bbox, ConstAccessor& acc,
const PointArray& points, const math::Transform& xform);
/// @brief Clear the iterator and update it with the result of the given
/// world-space radial query.
/// @param center world-space center
/// @param radius world-space radius
/// @param acc an accessor for the grid or tree that holds the point indices
/// @param points world-space point array conforming to the PointArray interface
/// @param xform linear, uniform-scale transform (i.e., cubical voxels)
/// @param subvoxelAccuracy if true, check individual points against the search region,
/// otherwise return all points that reside in voxels that are inside
/// or intersect the search region
template<typename PointArray>
void worldSpaceSearchAndUpdate(const Vec3d& center, double radius, ConstAccessor& acc,
const PointArray& points, const math::Transform& xform, bool subvoxelAccuracy = true);
/// Reset the iterator to point to the first item.
void reset();
/// Return a const reference to the item to which this iterator is pointing.
const ValueType& operator*() const { return *mRange.first; }
/// @{
/// @brief Return @c true if this iterator is not yet exhausted.
bool test() const { return mRange.first < mRange.second || mIter != mRangeList.end(); }
operator bool() const { return this->test(); }
/// @}
/// Advance iterator to next item.
void increment();
/// Advance iterator to next item.
void operator++() { this->increment(); }
/// @brief Advance iterator to next item.
/// @return @c true if this iterator is not yet exhausted.
bool next();
/// Return the number of point indices in the iterator range.
size_t size() const;
/// Return @c true if both iterators point to the same element.
bool operator==(const PointIndexIterator& p) const { return mRange.first == p.mRange.first; }
bool operator!=(const PointIndexIterator& p) const { return !this->operator==(p); }
private:
using Range = std::pair<const ValueType*, const ValueType*>;
using RangeDeque = std::deque<Range>;
using RangeDequeCIter = typename RangeDeque::const_iterator;
using IndexArray = std::unique_ptr<ValueType[]>;
void clear();
// Primary index collection
Range mRange;
RangeDeque mRangeList;
RangeDequeCIter mIter;
// Secondary index collection
IndexArray mIndexArray;
size_t mIndexArraySize;
}; // struct PointIndexIterator
/// @brief Selectively extract and filter point data using a custom filter operator.
///
/// @par FilterType example:
/// @interface FilterType
/// @code
/// template<typename T>
/// struct WeightedAverageAccumulator {
/// using ValueType = T;
///
/// WeightedAverageAccumulator(T const * const array, const T radius)
/// : mValues(array), mInvRadius(1.0/radius), mWeightSum(0.0), mValueSum(0.0) {}
///
/// void reset() { mWeightSum = mValueSum = T(0.0); }
///
/// // the following method is invoked by the PointIndexFilter
/// void operator()(const T distSqr, const size_t pointIndex) {
/// const T weight = T(1.0) - openvdb::math::Sqrt(distSqr) * mInvRadius;
/// mWeightSum += weight;
/// mValueSum += weight * mValues[pointIndex];
/// }
///
/// T result() const { return mWeightSum > T(0.0) ? mValueSum / mWeightSum : T(0.0); }
///
/// private:
/// T const * const mValues;
/// const T mInvRadius;
/// T mWeightSum, mValueSum;
/// }; // struct WeightedAverageAccumulator
/// @endcode
template<typename PointArray, typename TreeType = PointIndexTree>
struct PointIndexFilter
{
using PosType = typename PointArray::PosType;
using ScalarType = typename PosType::value_type;
using ConstAccessor = tree::ValueAccessor<const TreeType>;
/// @brief Constructor
/// @param points world-space point array conforming to the PointArray interface
/// @param tree a point index tree
/// @param xform linear, uniform-scale transform (i.e., cubical voxels)
PointIndexFilter(const PointArray& points, const TreeType& tree, const math::Transform& xform);
/// Thread safe copy constructor
PointIndexFilter(const PointIndexFilter& rhs);
/// @brief Perform a radial search query and apply the given filter
/// operator to the selected points.
/// @param center world-space center
/// @param radius world-space radius
/// @param op custom filter operator (see the FilterType example for interface details)
template<typename FilterType>
void searchAndApply(const PosType& center, ScalarType radius, FilterType& op);
private:
PointArray const * const mPoints;
ConstAccessor mAcc;
const math::Transform mXform;
const ScalarType mInvVoxelSize;
PointIndexIterator<TreeType> mIter;
}; // struct PointIndexFilter
////////////////////////////////////////
// Internal operators and implementation details
namespace point_index_grid_internal {
template<typename PointArrayT>
struct ValidPartitioningOp
{
ValidPartitioningOp(tbb::atomic<bool>& hasChanged,
const PointArrayT& points, const math::Transform& xform)
: mPoints(&points)
, mTransform(&xform)
, mHasChanged(&hasChanged)
{
}
template <typename LeafT>
void operator()(LeafT &leaf, size_t /*leafIndex*/) const
{
if ((*mHasChanged)) {
tbb::task::self().cancel_group_execution();
return;
}
using IndexArrayT = typename LeafT::IndexArray;
using IndexT = typename IndexArrayT::value_type;
using PosType = typename PointArrayT::PosType;
typename LeafT::ValueOnCIter iter;
Coord voxelCoord;
PosType point;
const IndexT
*begin = static_cast<IndexT*>(nullptr),
*end = static_cast<IndexT*>(nullptr);
for (iter = leaf.cbeginValueOn(); iter; ++iter) {
if ((*mHasChanged)) break;
voxelCoord = iter.getCoord();
leaf.getIndices(iter.pos(), begin, end);
while (begin < end) {
mPoints->getPos(*begin, point);
if (voxelCoord != mTransform->worldToIndexCellCentered(point)) {
mHasChanged->fetch_and_store(true);
break;
}
++begin;
}
}
}
private:
PointArrayT const * const mPoints;
math::Transform const * const mTransform;
tbb::atomic<bool> * const mHasChanged;
};
template<typename LeafNodeT>
struct PopulateLeafNodesOp
{
using IndexT = uint32_t;
using Partitioner = PointPartitioner<IndexT, LeafNodeT::LOG2DIM>;
PopulateLeafNodesOp(std::unique_ptr<LeafNodeT*[]>& leafNodes,
const Partitioner& partitioner)
: mLeafNodes(leafNodes.get())
, mPartitioner(&partitioner)
{
}
void operator()(const tbb::blocked_range<size_t>& range) const {
using VoxelOffsetT = typename Partitioner::VoxelOffsetType;
size_t maxPointCount = 0;
for (size_t n = range.begin(), N = range.end(); n != N; ++n) {
maxPointCount = std::max(maxPointCount, mPartitioner->indices(n).size());
}
const IndexT voxelCount = LeafNodeT::SIZE;
// allocate histogram buffers
std::unique_ptr<VoxelOffsetT[]> offsets{new VoxelOffsetT[maxPointCount]};
std::unique_ptr<IndexT[]> histogram{new IndexT[voxelCount]};
VoxelOffsetT const * const voxelOffsets = mPartitioner->voxelOffsets().get();
for (size_t n = range.begin(), N = range.end(); n != N; ++n) {
LeafNodeT* node = new LeafNodeT();
node->setOrigin(mPartitioner->origin(n));
typename Partitioner::IndexIterator it = mPartitioner->indices(n);
const size_t pointCount = it.size();
IndexT const * const indices = &*it;
// local copy of voxel offsets.
for (IndexT i = 0; i < pointCount; ++i) {
offsets[i] = voxelOffsets[ indices[i] ];
}
// compute voxel-offset histogram
memset(&histogram[0], 0, voxelCount * sizeof(IndexT));
for (IndexT i = 0; i < pointCount; ++i) {
++histogram[ offsets[i] ];
}
typename LeafNodeT::NodeMaskType& mask = node->getValueMask();
typename LeafNodeT::Buffer& buffer = node->buffer();
// scan histogram (all-prefix-sums)
IndexT count = 0, startOffset;
for (int i = 0; i < int(voxelCount); ++i) {
if (histogram[i] > 0) {
startOffset = count;
count += histogram[i];
histogram[i] = startOffset;
mask.setOn(i);
}
buffer.setValue(i, count);
}
// allocate point-index array
node->indices().resize(pointCount);
typename LeafNodeT::ValueType * const orderedIndices = node->indices().data();
// rank and permute
for (IndexT i = 0; i < pointCount; ++i) {
orderedIndices[ histogram[ offsets[i] ]++ ] = indices[i];
}
mLeafNodes[n] = node;
}
}
//////////
LeafNodeT* * const mLeafNodes;
Partitioner const * const mPartitioner;
};
/// Construct a @c PointIndexTree
template<typename TreeType, typename PointArray>
inline void
constructPointTree(TreeType& tree, const math::Transform& xform, const PointArray& points)
{
using LeafType = typename TreeType::LeafNodeType;
std::unique_ptr<LeafType*[]> leafNodes;
size_t leafNodeCount = 0;
{
// Important: Do not disable the cell-centered transform in the PointPartitioner.
// This interpretation is assumed in the PointIndexGrid and all related
// search algorithms.
PointPartitioner<uint32_t, LeafType::LOG2DIM> partitioner;
partitioner.construct(points, xform, /*voxelOrder=*/false, /*recordVoxelOffsets=*/true);
if (!partitioner.usingCellCenteredTransform()) {
OPENVDB_THROW(LookupError, "The PointIndexGrid requires a "
"cell-centered transform.");
}
leafNodeCount = partitioner.size();
leafNodes.reset(new LeafType*[leafNodeCount]);
const tbb::blocked_range<size_t> range(0, leafNodeCount);
tbb::parallel_for(range, PopulateLeafNodesOp<LeafType>(leafNodes, partitioner));
}
tree::ValueAccessor<TreeType> acc(tree);
for (size_t n = 0; n < leafNodeCount; ++n) {
acc.addLeaf(leafNodes[n]);
}
}
////////////////////////////////////////
template<typename T>
inline void
dequeToArray(const std::deque<T>& d, std::unique_ptr<T[]>& a, size_t& size)
{
size = d.size();
a.reset(new T[size]);
typename std::deque<T>::const_iterator it = d.begin(), itEnd = d.end();
T* item = a.get();
for ( ; it != itEnd; ++it, ++item) *item = *it;
}
inline void
constructExclusiveRegions(std::vector<CoordBBox>& regions,
const CoordBBox& bbox, const CoordBBox& ibox)
{
regions.clear();
regions.reserve(6);
Coord cmin = ibox.min();
Coord cmax = ibox.max();
// left-face bbox
regions.push_back(bbox);
regions.back().max().z() = cmin.z();
// right-face bbox
regions.push_back(bbox);
regions.back().min().z() = cmax.z();
--cmax.z(); // accounting for cell centered bucketing.
++cmin.z();
// front-face bbox
regions.push_back(bbox);
CoordBBox* lastRegion = ®ions.back();
lastRegion->min().z() = cmin.z();
lastRegion->max().z() = cmax.z();
lastRegion->max().x() = cmin.x();
// back-face bbox
regions.push_back(*lastRegion);
lastRegion = ®ions.back();
lastRegion->min().x() = cmax.x();
lastRegion->max().x() = bbox.max().x();
--cmax.x();
++cmin.x();
// bottom-face bbox
regions.push_back(*lastRegion);
lastRegion = ®ions.back();
lastRegion->min().x() = cmin.x();
lastRegion->max().x() = cmax.x();
lastRegion->max().y() = cmin.y();
// top-face bbox
regions.push_back(*lastRegion);
lastRegion = ®ions.back();
lastRegion->min().y() = cmax.y();
lastRegion->max().y() = bbox.max().y();
}
template<typename PointArray, typename IndexT>
struct BBoxFilter
{
using PosType = typename PointArray::PosType;
using ScalarType = typename PosType::value_type;
using Range = std::pair<const IndexT*, const IndexT*>;
using RangeDeque = std::deque<Range>;
using IndexDeque = std::deque<IndexT>;
BBoxFilter(RangeDeque& ranges, IndexDeque& indices, const BBoxd& bbox,
const PointArray& points, const math::Transform& xform)
: mRanges(ranges)
, mIndices(indices)
, mRegion(bbox)
, mPoints(points)
, mMap(*xform.baseMap())
{
}
template <typename LeafNodeType>
void filterLeafNode(const LeafNodeType& leaf)
{
typename LeafNodeType::ValueOnCIter iter;
const IndexT
*begin = static_cast<IndexT*>(nullptr),
*end = static_cast<IndexT*>(nullptr);
for (iter = leaf.cbeginValueOn(); iter; ++iter) {
leaf.getIndices(iter.pos(), begin, end);
filterVoxel(iter.getCoord(), begin, end);
}
}
void filterVoxel(const Coord&, const IndexT* begin, const IndexT* end)
{
PosType vec;
for (; begin < end; ++begin) {
mPoints.getPos(*begin, vec);
if (mRegion.isInside(mMap.applyInverseMap(vec))) {
mIndices.push_back(*begin);
}
}
}
private:
RangeDeque& mRanges;
IndexDeque& mIndices;
const BBoxd mRegion;
const PointArray& mPoints;
const math::MapBase& mMap;
};
template<typename PointArray, typename IndexT>
struct RadialRangeFilter
{
using PosType = typename PointArray::PosType;
using ScalarType = typename PosType::value_type;
using Range = std::pair<const IndexT*, const IndexT*>;
using RangeDeque = std::deque<Range>;
using IndexDeque = std::deque<IndexT>;
RadialRangeFilter(RangeDeque& ranges, IndexDeque& indices, const Vec3d& xyz, double radius,
const PointArray& points, const math::Transform& xform,
const double leafNodeDim, const bool subvoxelAccuracy)
: mRanges(ranges)
, mIndices(indices)
, mCenter(xyz)
, mWSCenter(xform.indexToWorld(xyz))
, mVoxelDist1(ScalarType(0.0))
, mVoxelDist2(ScalarType(0.0))
, mLeafNodeDist1(ScalarType(0.0))
, mLeafNodeDist2(ScalarType(0.0))
, mWSRadiusSqr(ScalarType(radius * xform.voxelSize()[0]))
, mPoints(points)
, mSubvoxelAccuracy(subvoxelAccuracy)
{
const ScalarType voxelRadius = ScalarType(std::sqrt(3.0) * 0.5);
mVoxelDist1 = voxelRadius + ScalarType(radius);
mVoxelDist1 *= mVoxelDist1;
if (radius > voxelRadius) {
mVoxelDist2 = ScalarType(radius) - voxelRadius;
mVoxelDist2 *= mVoxelDist2;
}
const ScalarType leafNodeRadius = ScalarType(leafNodeDim * std::sqrt(3.0) * 0.5);
mLeafNodeDist1 = leafNodeRadius + ScalarType(radius);
mLeafNodeDist1 *= mLeafNodeDist1;
if (radius > leafNodeRadius) {
mLeafNodeDist2 = ScalarType(radius) - leafNodeRadius;
mLeafNodeDist2 *= mLeafNodeDist2;
}
mWSRadiusSqr *= mWSRadiusSqr;
}
template <typename LeafNodeType>
void filterLeafNode(const LeafNodeType& leaf)
{
{
const Coord& ijk = leaf.origin();
PosType vec;
vec[0] = ScalarType(ijk[0]);
vec[1] = ScalarType(ijk[1]);
vec[2] = ScalarType(ijk[2]);
vec += ScalarType(LeafNodeType::DIM - 1) * 0.5;
vec -= mCenter;
const ScalarType dist = vec.lengthSqr();
if (dist > mLeafNodeDist1) return;
if (mLeafNodeDist2 > 0.0 && dist < mLeafNodeDist2) {
const IndexT* begin = &leaf.indices().front();
mRanges.push_back(Range(begin, begin + leaf.indices().size()));
return;
}
}
typename LeafNodeType::ValueOnCIter iter;
const IndexT
*begin = static_cast<IndexT*>(nullptr),
*end = static_cast<IndexT*>(nullptr);
for (iter = leaf.cbeginValueOn(); iter; ++iter) {
leaf.getIndices(iter.pos(), begin, end);
filterVoxel(iter.getCoord(), begin, end);
}
}
void filterVoxel(const Coord& ijk, const IndexT* begin, const IndexT* end)
{
PosType vec;
{
vec[0] = mCenter[0] - ScalarType(ijk[0]);
vec[1] = mCenter[1] - ScalarType(ijk[1]);
vec[2] = mCenter[2] - ScalarType(ijk[2]);
const ScalarType dist = vec.lengthSqr();
if (dist > mVoxelDist1) return;
if (!mSubvoxelAccuracy || (mVoxelDist2 > 0.0 && dist < mVoxelDist2)) {
if (!mRanges.empty() && mRanges.back().second == begin) {
mRanges.back().second = end;
} else {
mRanges.push_back(Range(begin, end));
}
return;
}
}
while (begin < end) {
mPoints.getPos(*begin, vec);
vec = mWSCenter - vec;
if (vec.lengthSqr() < mWSRadiusSqr) {
mIndices.push_back(*begin);
}
++begin;
}
}
private:
RangeDeque& mRanges;
IndexDeque& mIndices;
const PosType mCenter, mWSCenter;
ScalarType mVoxelDist1, mVoxelDist2, mLeafNodeDist1, mLeafNodeDist2, mWSRadiusSqr;
const PointArray& mPoints;
const bool mSubvoxelAccuracy;
}; // struct RadialRangeFilter
////////////////////////////////////////
template<typename RangeFilterType, typename LeafNodeType>
inline void
filteredPointIndexSearchVoxels(RangeFilterType& filter,
const LeafNodeType& leaf, const Coord& min, const Coord& max)
{
using PointIndexT = typename LeafNodeType::ValueType;
Index xPos(0), yPos(0), pos(0);
Coord ijk(0);
const PointIndexT* dataPtr = &leaf.indices().front();
PointIndexT beginOffset, endOffset;
for (ijk[0] = min[0]; ijk[0] <= max[0]; ++ijk[0]) {
xPos = (ijk[0] & (LeafNodeType::DIM - 1u)) << (2 * LeafNodeType::LOG2DIM);
for (ijk[1] = min[1]; ijk[1] <= max[1]; ++ijk[1]) {
yPos = xPos + ((ijk[1] & (LeafNodeType::DIM - 1u)) << LeafNodeType::LOG2DIM);
for (ijk[2] = min[2]; ijk[2] <= max[2]; ++ijk[2]) {
pos = yPos + (ijk[2] & (LeafNodeType::DIM - 1u));
beginOffset = (pos == 0 ? PointIndexT(0) : leaf.getValue(pos - 1));
endOffset = leaf.getValue(pos);
if (endOffset > beginOffset) {
filter.filterVoxel(ijk, dataPtr + beginOffset, dataPtr + endOffset);
}
}
}
}
}
template<typename RangeFilterType, typename ConstAccessor>
inline void
filteredPointIndexSearch(RangeFilterType& filter, ConstAccessor& acc, const CoordBBox& bbox)
{
using LeafNodeType = typename ConstAccessor::TreeType::LeafNodeType;
Coord ijk(0), ijkMax(0), ijkA(0), ijkB(0);
const Coord leafMin = bbox.min() & ~(LeafNodeType::DIM - 1);
const Coord leafMax = bbox.max() & ~(LeafNodeType::DIM - 1);
for (ijk[0] = leafMin[0]; ijk[0] <= leafMax[0]; ijk[0] += LeafNodeType::DIM) {
for (ijk[1] = leafMin[1]; ijk[1] <= leafMax[1]; ijk[1] += LeafNodeType::DIM) {
for (ijk[2] = leafMin[2]; ijk[2] <= leafMax[2]; ijk[2] += LeafNodeType::DIM) {
if (const LeafNodeType* leaf = acc.probeConstLeaf(ijk)) {
ijkMax = ijk;
ijkMax.offset(LeafNodeType::DIM - 1);
// intersect leaf bbox with search region.
ijkA = Coord::maxComponent(bbox.min(), ijk);
ijkB = Coord::minComponent(bbox.max(), ijkMax);
if (ijkA != ijk || ijkB != ijkMax) {
filteredPointIndexSearchVoxels(filter, *leaf, ijkA, ijkB);
} else { // leaf bbox is inside the search region
filter.filterLeafNode(*leaf);
}
}
}
}
}
}
////////////////////////////////////////
template<typename RangeDeque, typename LeafNodeType>
inline void
pointIndexSearchVoxels(RangeDeque& rangeList,
const LeafNodeType& leaf, const Coord& min, const Coord& max)
{
using PointIndexT = typename LeafNodeType::ValueType;
using IntT = typename PointIndexT::IntType;
using Range = typename RangeDeque::value_type;
Index xPos(0), pos(0), zStride = Index(max[2] - min[2]);
const PointIndexT* dataPtr = &leaf.indices().front();
PointIndexT beginOffset(0), endOffset(0),
previousOffset(static_cast<IntT>(leaf.indices().size() + 1u));
Coord ijk(0);
for (ijk[0] = min[0]; ijk[0] <= max[0]; ++ijk[0]) {
xPos = (ijk[0] & (LeafNodeType::DIM - 1u)) << (2 * LeafNodeType::LOG2DIM);
for (ijk[1] = min[1]; ijk[1] <= max[1]; ++ijk[1]) {
pos = xPos + ((ijk[1] & (LeafNodeType::DIM - 1u)) << LeafNodeType::LOG2DIM);
pos += (min[2] & (LeafNodeType::DIM - 1u));
beginOffset = (pos == 0 ? PointIndexT(0) : leaf.getValue(pos - 1));
endOffset = leaf.getValue(pos+zStride);
if (endOffset > beginOffset) {
if (beginOffset == previousOffset) {
rangeList.back().second = dataPtr + endOffset;
} else {
rangeList.push_back(Range(dataPtr + beginOffset, dataPtr + endOffset));
}
previousOffset = endOffset;
}
}
}
}
template<typename RangeDeque, typename ConstAccessor>
inline void
pointIndexSearch(RangeDeque& rangeList, ConstAccessor& acc, const CoordBBox& bbox)
{
using LeafNodeType = typename ConstAccessor::TreeType::LeafNodeType;
using PointIndexT = typename LeafNodeType::ValueType;
using Range = typename RangeDeque::value_type;
Coord ijk(0), ijkMax(0), ijkA(0), ijkB(0);
const Coord leafMin = bbox.min() & ~(LeafNodeType::DIM - 1);
const Coord leafMax = bbox.max() & ~(LeafNodeType::DIM - 1);
for (ijk[0] = leafMin[0]; ijk[0] <= leafMax[0]; ijk[0] += LeafNodeType::DIM) {
for (ijk[1] = leafMin[1]; ijk[1] <= leafMax[1]; ijk[1] += LeafNodeType::DIM) {
for (ijk[2] = leafMin[2]; ijk[2] <= leafMax[2]; ijk[2] += LeafNodeType::DIM) {
if (const LeafNodeType* leaf = acc.probeConstLeaf(ijk)) {
ijkMax = ijk;
ijkMax.offset(LeafNodeType::DIM - 1);
// intersect leaf bbox with search region.
ijkA = Coord::maxComponent(bbox.min(), ijk);
ijkB = Coord::minComponent(bbox.max(), ijkMax);
if (ijkA != ijk || ijkB != ijkMax) {
pointIndexSearchVoxels(rangeList, *leaf, ijkA, ijkB);
} else {
// leaf bbox is inside the search region, add all indices.
const PointIndexT* begin = &leaf->indices().front();
rangeList.push_back(Range(begin, (begin + leaf->indices().size())));
}
}
}
}
}
}
} // namespace point_index_grid_internal
// PointIndexIterator implementation
template<typename TreeType>
inline
PointIndexIterator<TreeType>::PointIndexIterator()
: mRange(static_cast<ValueType*>(nullptr), static_cast<ValueType*>(nullptr))
, mRangeList()
, mIter(mRangeList.begin())
, mIndexArray()
, mIndexArraySize(0)
{
}
template<typename TreeType>
inline
PointIndexIterator<TreeType>::PointIndexIterator(const PointIndexIterator& rhs)
: mRange(rhs.mRange)
, mRangeList(rhs.mRangeList)
, mIter(mRangeList.begin())
, mIndexArray()
, mIndexArraySize(rhs.mIndexArraySize)
{
if (rhs.mIndexArray) {
mIndexArray.reset(new ValueType[mIndexArraySize]);
memcpy(mIndexArray.get(), rhs.mIndexArray.get(), mIndexArraySize * sizeof(ValueType));
}
}
template<typename TreeType>
inline PointIndexIterator<TreeType>&
PointIndexIterator<TreeType>::operator=(const PointIndexIterator& rhs)
{
if (&rhs != this) {
mRange = rhs.mRange;
mRangeList = rhs.mRangeList;
mIter = mRangeList.begin();
mIndexArray.reset();
mIndexArraySize = rhs.mIndexArraySize;
if (rhs.mIndexArray) {
mIndexArray.reset(new ValueType[mIndexArraySize]);
memcpy(mIndexArray.get(), rhs.mIndexArray.get(), mIndexArraySize * sizeof(ValueType));
}
}
return *this;
}
template<typename TreeType>
inline
PointIndexIterator<TreeType>::PointIndexIterator(const Coord& ijk, ConstAccessor& acc)
: mRange(static_cast<ValueType*>(nullptr), static_cast<ValueType*>(nullptr))
, mRangeList()
, mIter(mRangeList.begin())
, mIndexArray()
, mIndexArraySize(0)
{
const LeafNodeType* leaf = acc.probeConstLeaf(ijk);
if (leaf && leaf->getIndices(ijk, mRange.first, mRange.second)) {
mRangeList.push_back(mRange);
mIter = mRangeList.begin();
}
}
template<typename TreeType>
inline
PointIndexIterator<TreeType>::PointIndexIterator(const CoordBBox& bbox, ConstAccessor& acc)
: mRange(static_cast<ValueType*>(nullptr), static_cast<ValueType*>(nullptr))
, mRangeList()
, mIter(mRangeList.begin())
, mIndexArray()
, mIndexArraySize(0)
{
point_index_grid_internal::pointIndexSearch(mRangeList, acc, bbox);
if (!mRangeList.empty()) {
mIter = mRangeList.begin();
mRange = mRangeList.front();
}
}
template<typename TreeType>
inline void
PointIndexIterator<TreeType>::reset()
{
mIter = mRangeList.begin();
if (!mRangeList.empty()) {
mRange = mRangeList.front();
} else if (mIndexArray) {
mRange.first = mIndexArray.get();
mRange.second = mRange.first + mIndexArraySize;
} else {
mRange.first = static_cast<ValueType*>(nullptr);
mRange.second = static_cast<ValueType*>(nullptr);
}
}
template<typename TreeType>
inline void
PointIndexIterator<TreeType>::increment()
{
++mRange.first;
if (mRange.first >= mRange.second && mIter != mRangeList.end()) {
++mIter;
if (mIter != mRangeList.end()) {
mRange = *mIter;
} else if (mIndexArray) {
mRange.first = mIndexArray.get();
mRange.second = mRange.first + mIndexArraySize;
}
}
}
template<typename TreeType>
inline bool
PointIndexIterator<TreeType>::next()
{
if (!this->test()) return false;
this->increment();
return this->test();
}
template<typename TreeType>
inline size_t
PointIndexIterator<TreeType>::size() const
{
size_t count = 0;
typename RangeDeque::const_iterator it = mRangeList.begin();
for ( ; it != mRangeList.end(); ++it) {
count += it->second - it->first;
}
return count + mIndexArraySize;
}
template<typename TreeType>
inline void
PointIndexIterator<TreeType>::clear()
{
mRange.first = static_cast<ValueType*>(nullptr);
mRange.second = static_cast<ValueType*>(nullptr);
mRangeList.clear();
mIter = mRangeList.end();
mIndexArray.reset();
mIndexArraySize = 0;
}
template<typename TreeType>
inline void
PointIndexIterator<TreeType>::searchAndUpdate(const Coord& ijk, ConstAccessor& acc)
{
this->clear();
const LeafNodeType* leaf = acc.probeConstLeaf(ijk);
if (leaf && leaf->getIndices(ijk, mRange.first, mRange.second)) {
mRangeList.push_back(mRange);
mIter = mRangeList.begin();
}
}
template<typename TreeType>
inline void
PointIndexIterator<TreeType>::searchAndUpdate(const CoordBBox& bbox, ConstAccessor& acc)
{
this->clear();
point_index_grid_internal::pointIndexSearch(mRangeList, acc, bbox);
if (!mRangeList.empty()) {
mIter = mRangeList.begin();
mRange = mRangeList.front();
}
}
template<typename TreeType>
template<typename PointArray>
inline void
PointIndexIterator<TreeType>::searchAndUpdate(const BBoxd& bbox, ConstAccessor& acc,
const PointArray& points, const math::Transform& xform)
{
this->clear();
std::vector<CoordBBox> searchRegions;
CoordBBox region(Coord::round(bbox.min()), Coord::round(bbox.max()));
const Coord dim = region.dim();
const int minExtent = std::min(dim[0], std::min(dim[1], dim[2]));
if (minExtent > 2) {
// collect indices that don't need to be tested
CoordBBox ibox = region;
ibox.expand(-1);
point_index_grid_internal::pointIndexSearch(mRangeList, acc, ibox);
// define regions for the filtered search
ibox.expand(1);
point_index_grid_internal::constructExclusiveRegions(searchRegions, region, ibox);
} else {
searchRegions.push_back(region);
}
// filtered search
std::deque<ValueType> filteredIndices;
point_index_grid_internal::BBoxFilter<PointArray, ValueType>
filter(mRangeList, filteredIndices, bbox, points, xform);
for (size_t n = 0, N = searchRegions.size(); n < N; ++n) {
point_index_grid_internal::filteredPointIndexSearch(filter, acc, searchRegions[n]);
}
point_index_grid_internal::dequeToArray(filteredIndices, mIndexArray, mIndexArraySize);
this->reset();
}
template<typename TreeType>
template<typename PointArray>
inline void
PointIndexIterator<TreeType>::searchAndUpdate(const Vec3d& center, double radius,
ConstAccessor& acc, const PointArray& points, const math::Transform& xform,
bool subvoxelAccuracy)
{
this->clear();
std::vector<CoordBBox> searchRegions;
// bounding box
CoordBBox bbox(
Coord::round(Vec3d(center[0] - radius, center[1] - radius, center[2] - radius)),
Coord::round(Vec3d(center[0] + radius, center[1] + radius, center[2] + radius)));
bbox.expand(1);
const double iRadius = radius * double(1.0 / std::sqrt(3.0));
if (iRadius > 2.0) {
// inscribed box
CoordBBox ibox(
Coord::round(Vec3d(center[0] - iRadius, center[1] - iRadius, center[2] - iRadius)),
Coord::round(Vec3d(center[0] + iRadius, center[1] + iRadius, center[2] + iRadius)));
ibox.expand(-1);
// collect indices that don't need to be tested
point_index_grid_internal::pointIndexSearch(mRangeList, acc, ibox);
ibox.expand(1);
point_index_grid_internal::constructExclusiveRegions(searchRegions, bbox, ibox);
} else {
searchRegions.push_back(bbox);
}
// filtered search
std::deque<ValueType> filteredIndices;
const double leafNodeDim = double(TreeType::LeafNodeType::DIM);
using FilterT = point_index_grid_internal::RadialRangeFilter<PointArray, ValueType>;
FilterT filter(mRangeList, filteredIndices,
center, radius, points, xform, leafNodeDim, subvoxelAccuracy);
for (size_t n = 0, N = searchRegions.size(); n < N; ++n) {
point_index_grid_internal::filteredPointIndexSearch(filter, acc, searchRegions[n]);
}
point_index_grid_internal::dequeToArray(filteredIndices, mIndexArray, mIndexArraySize);
this->reset();
}
template<typename TreeType>
template<typename PointArray>
inline void
PointIndexIterator<TreeType>::worldSpaceSearchAndUpdate(const BBoxd& bbox, ConstAccessor& acc,
const PointArray& points, const math::Transform& xform)
{
this->searchAndUpdate(
BBoxd(xform.worldToIndex(bbox.min()), xform.worldToIndex(bbox.max())), acc, points, xform);
}
template<typename TreeType>
template<typename PointArray>
inline void
PointIndexIterator<TreeType>::worldSpaceSearchAndUpdate(const Vec3d& center, double radius,
ConstAccessor& acc, const PointArray& points, const math::Transform& xform,
bool subvoxelAccuracy)
{
this->searchAndUpdate(xform.worldToIndex(center),
(radius / xform.voxelSize()[0]), acc, points, xform, subvoxelAccuracy);
}
////////////////////////////////////////
// PointIndexFilter implementation
template<typename PointArray, typename TreeType>
inline
PointIndexFilter<PointArray, TreeType>::PointIndexFilter(
const PointArray& points, const TreeType& tree, const math::Transform& xform)
: mPoints(&points), mAcc(tree), mXform(xform), mInvVoxelSize(1.0/xform.voxelSize()[0])
{
}
template<typename PointArray, typename TreeType>
inline
PointIndexFilter<PointArray, TreeType>::PointIndexFilter(const PointIndexFilter& rhs)
: mPoints(rhs.mPoints)
, mAcc(rhs.mAcc.tree())
, mXform(rhs.mXform)
, mInvVoxelSize(rhs.mInvVoxelSize)
{
}
template<typename PointArray, typename TreeType>
template<typename FilterType>
inline void
PointIndexFilter<PointArray, TreeType>::searchAndApply(
const PosType& center, ScalarType radius, FilterType& op)
{
if (radius * mInvVoxelSize < ScalarType(8.0)) {
mIter.searchAndUpdate(openvdb::CoordBBox(
mXform.worldToIndexCellCentered(center - radius),
mXform.worldToIndexCellCentered(center + radius)), mAcc);
} else {
mIter.worldSpaceSearchAndUpdate(
center, radius, mAcc, *mPoints, mXform, /*subvoxelAccuracy=*/false);
}
const ScalarType radiusSqr = radius * radius;
ScalarType distSqr = 0.0;
PosType pos;
for (; mIter; ++mIter) {
mPoints->getPos(*mIter, pos);
pos -= center;
distSqr = pos.lengthSqr();
if (distSqr < radiusSqr) {
op(distSqr, *mIter);
}
}
}
////////////////////////////////////////
template<typename GridT, typename PointArrayT>
inline typename GridT::Ptr
createPointIndexGrid(const PointArrayT& points, const math::Transform& xform)
{
typename GridT::Ptr grid = GridT::create(typename GridT::ValueType(0));
grid->setTransform(xform.copy());
if (points.size() > 0) {
point_index_grid_internal::constructPointTree(
grid->tree(), grid->transform(), points);
}
return grid;
}
template<typename GridT, typename PointArrayT>
inline typename GridT::Ptr
createPointIndexGrid(const PointArrayT& points, double voxelSize)
{
math::Transform::Ptr xform = math::Transform::createLinearTransform(voxelSize);
return createPointIndexGrid<GridT>(points, *xform);
}
template<typename PointArrayT, typename GridT>
inline bool
isValidPartition(const PointArrayT& points, const GridT& grid)
{
tree::LeafManager<const typename GridT::TreeType> leafs(grid.tree());
size_t pointCount = 0;
for (size_t n = 0, N = leafs.leafCount(); n < N; ++n) {
pointCount += leafs.leaf(n).indices().size();
}
if (points.size() != pointCount) {
return false;
}
tbb::atomic<bool> changed;
changed = false;
point_index_grid_internal::ValidPartitioningOp<PointArrayT>
op(changed, points, grid.transform());
leafs.foreach(op);
return !bool(changed);
}
template<typename GridT, typename PointArrayT>
inline typename GridT::ConstPtr
getValidPointIndexGrid(const PointArrayT& points, const typename GridT::ConstPtr& grid)
{
if (isValidPartition(points, *grid)) {
return grid;
}
return createPointIndexGrid<GridT>(points, grid->transform());
}
template<typename GridT, typename PointArrayT>
inline typename GridT::Ptr
getValidPointIndexGrid(const PointArrayT& points, const typename GridT::Ptr& grid)
{
if (isValidPartition(points, *grid)) {
return grid;
}
return createPointIndexGrid<GridT>(points, grid->transform());
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
struct PointIndexLeafNode : public tree::LeafNode<T, Log2Dim>
{
using LeafNodeType = PointIndexLeafNode<T, Log2Dim>;
using Ptr = SharedPtr<PointIndexLeafNode>;
using ValueType = T;
using IndexArray = std::vector<ValueType>;
IndexArray& indices() { return mIndices; }
const IndexArray& indices() const { return mIndices; }
bool getIndices(const Coord& ijk, const ValueType*& begin, const ValueType*& end) const;
bool getIndices(Index offset, const ValueType*& begin, const ValueType*& end) const;
void setOffsetOn(Index offset, const ValueType& val);
void setOffsetOnly(Index offset, const ValueType& val);
bool isEmpty(const CoordBBox& bbox) const;
private:
IndexArray mIndices;
////////////////////////////////////////
// The following methods had to be copied from the LeafNode class
// to make the derived PointIndexLeafNode class compatible with the tree structure.
public:
using BaseLeaf = tree::LeafNode<T, Log2Dim>;
using NodeMaskType = util::NodeMask<Log2Dim>;
using BaseLeaf::LOG2DIM;
using BaseLeaf::TOTAL;
using BaseLeaf::DIM;
using BaseLeaf::NUM_VALUES;
using BaseLeaf::NUM_VOXELS;
using BaseLeaf::SIZE;
using BaseLeaf::LEVEL;
/// Default constructor
PointIndexLeafNode() : BaseLeaf(), mIndices() {}
explicit
PointIndexLeafNode(const Coord& coords, const T& value = zeroVal<T>(), bool active = false)
: BaseLeaf(coords, value, active)
, mIndices()
{
}
#if OPENVDB_ABI_VERSION_NUMBER >= 3
PointIndexLeafNode(PartialCreate, const Coord& coords,
const T& value = zeroVal<T>(), bool active = false)
: BaseLeaf(PartialCreate(), coords, value, active)
, mIndices()
{
}
#endif
/// Deep copy constructor
PointIndexLeafNode(const PointIndexLeafNode& rhs) : BaseLeaf(rhs), mIndices(rhs.mIndices) {}
/// @brief Return @c true if the given node (which may have a different @c ValueType
/// than this node) has the same active value topology as this node.
template<typename OtherType, Index OtherLog2Dim>
bool hasSameTopology(const PointIndexLeafNode<OtherType, OtherLog2Dim>* other) const {
return BaseLeaf::hasSameTopology(other);
}
/// Check for buffer, state and origin equivalence.
bool operator==(const PointIndexLeafNode& other) const { return BaseLeaf::operator==(other); }
bool operator!=(const PointIndexLeafNode& other) const { return !(other == *this); }
template<MergePolicy Policy> void merge(const PointIndexLeafNode& rhs) {
BaseLeaf::merge<Policy>(rhs);
}
template<MergePolicy Policy> void merge(const ValueType& tileValue, bool tileActive) {
BaseLeaf::template merge<Policy>(tileValue, tileActive);
}
template<MergePolicy Policy>
void merge(const PointIndexLeafNode& other,
const ValueType& /*bg*/, const ValueType& /*otherBG*/)
{
BaseLeaf::template merge<Policy>(other);
}
void addLeaf(PointIndexLeafNode*) {}
template<typename AccessorT>
void addLeafAndCache(PointIndexLeafNode*, AccessorT&) {}
//@{
/// @brief Return a pointer to this node.
PointIndexLeafNode* touchLeaf(const Coord&) { return this; }
template<typename AccessorT>
PointIndexLeafNode* touchLeafAndCache(const Coord&, AccessorT&) { return this; }
template<typename NodeT, typename AccessorT>
NodeT* probeNodeAndCache(const Coord&, AccessorT&)
{
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (!(std::is_same<NodeT, PointIndexLeafNode>::value)) return nullptr;
return reinterpret_cast<NodeT*>(this);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
PointIndexLeafNode* probeLeaf(const Coord&) { return this; }
template<typename AccessorT>
PointIndexLeafNode* probeLeafAndCache(const Coord&, AccessorT&) { return this; }
//@}
//@{
/// @brief Return a @const pointer to this node.
const PointIndexLeafNode* probeConstLeaf(const Coord&) const { return this; }
template<typename AccessorT>
const PointIndexLeafNode* probeConstLeafAndCache(const Coord&, AccessorT&) const {return this;}
template<typename AccessorT>
const PointIndexLeafNode* probeLeafAndCache(const Coord&, AccessorT&) const { return this; }
const PointIndexLeafNode* probeLeaf(const Coord&) const { return this; }
template<typename NodeT, typename AccessorT>
const NodeT* probeConstNodeAndCache(const Coord&, AccessorT&) const
{
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (!(std::is_same<NodeT, PointIndexLeafNode>::value)) return nullptr;
return reinterpret_cast<const NodeT*>(this);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
//@}
// I/O methods
void readBuffers(std::istream& is, bool fromHalf = false);
void readBuffers(std::istream& is, const CoordBBox&, bool fromHalf = false);
void writeBuffers(std::ostream& os, bool toHalf = false) const;
Index64 memUsage() const;
////////////////////////////////////////
// Disable all write methods to avoid unintentional changes
// to the point-array offsets.
void assertNonmodifiable() {
assert(false && "Cannot modify voxel values in a PointIndexTree.");
}
void setActiveState(const Coord&, bool) { assertNonmodifiable(); }
void setActiveState(Index, bool) { assertNonmodifiable(); }
void setValueOnly(const Coord&, const ValueType&) { assertNonmodifiable(); }
void setValueOnly(Index, const ValueType&) { assertNonmodifiable(); }
void setValueOff(const Coord&) { assertNonmodifiable(); }
void setValueOff(Index) { assertNonmodifiable(); }
void setValueOff(const Coord&, const ValueType&) { assertNonmodifiable(); }
void setValueOff(Index, const ValueType&) { assertNonmodifiable(); }
void setValueOn(const Coord&) { assertNonmodifiable(); }
void setValueOn(Index) { assertNonmodifiable(); }
void setValueOn(const Coord&, const ValueType&) { assertNonmodifiable(); }
void setValueOn(Index, const ValueType&) { assertNonmodifiable(); }
void setValue(const Coord&, const ValueType&) { assertNonmodifiable(); }
void setValuesOn() { assertNonmodifiable(); }
void setValuesOff() { assertNonmodifiable(); }
template<typename ModifyOp>
void modifyValue(Index, const ModifyOp&) { assertNonmodifiable(); }
template<typename ModifyOp>
void modifyValue(const Coord&, const ModifyOp&) { assertNonmodifiable(); }
template<typename ModifyOp>
void modifyValueAndActiveState(const Coord&, const ModifyOp&) { assertNonmodifiable(); }
void clip(const CoordBBox&, const ValueType&) { assertNonmodifiable(); }
void fill(const CoordBBox&, const ValueType&, bool) { assertNonmodifiable(); }
void fill(const ValueType&) {}
void fill(const ValueType&, bool) { assertNonmodifiable(); }
template<typename AccessorT>
void setValueOnlyAndCache(const Coord&, const ValueType&, AccessorT&) {assertNonmodifiable();}
template<typename ModifyOp, typename AccessorT>
void modifyValueAndActiveStateAndCache(const Coord&, const ModifyOp&, AccessorT&) {
assertNonmodifiable();
}
template<typename AccessorT>
void setValueOffAndCache(const Coord&, const ValueType&, AccessorT&) { assertNonmodifiable(); }
template<typename AccessorT>
void setActiveStateAndCache(const Coord&, bool, AccessorT&) { assertNonmodifiable(); }
void resetBackground(const ValueType&, const ValueType&) { assertNonmodifiable(); }
void signedFloodFill(const ValueType&) { assertNonmodifiable(); }
void signedFloodFill(const ValueType&, const ValueType&) { assertNonmodifiable(); }
void negate() { assertNonmodifiable(); }
protected:
using ValueOn = typename BaseLeaf::ValueOn;
using ValueOff = typename BaseLeaf::ValueOff;
using ValueAll = typename BaseLeaf::ValueAll;
using ChildOn = typename BaseLeaf::ChildOn;
using ChildOff = typename BaseLeaf::ChildOff;
using ChildAll = typename BaseLeaf::ChildAll;
using MaskOnIterator = typename NodeMaskType::OnIterator;
using MaskOffIterator = typename NodeMaskType::OffIterator;
using MaskDenseIterator = typename NodeMaskType::DenseIterator;
// During topology-only construction, access is needed
// to protected/private members of other template instances.
template<typename, Index> friend struct PointIndexLeafNode;
friend class tree::IteratorBase<MaskOnIterator, PointIndexLeafNode>;
friend class tree::IteratorBase<MaskOffIterator, PointIndexLeafNode>;
friend class tree::IteratorBase<MaskDenseIterator, PointIndexLeafNode>;
public:
using ValueOnIter = typename BaseLeaf::template ValueIter<
MaskOnIterator, PointIndexLeafNode, const ValueType, ValueOn>;
using ValueOnCIter = typename BaseLeaf::template ValueIter<
MaskOnIterator, const PointIndexLeafNode, const ValueType, ValueOn>;
using ValueOffIter = typename BaseLeaf::template ValueIter<
MaskOffIterator, PointIndexLeafNode, const ValueType, ValueOff>;
using ValueOffCIter = typename BaseLeaf::template ValueIter<
MaskOffIterator,const PointIndexLeafNode,const ValueType, ValueOff>;
using ValueAllIter = typename BaseLeaf::template ValueIter<
MaskDenseIterator, PointIndexLeafNode, const ValueType, ValueAll>;
using ValueAllCIter = typename BaseLeaf::template ValueIter<
MaskDenseIterator,const PointIndexLeafNode,const ValueType, ValueAll>;
using ChildOnIter = typename BaseLeaf::template ChildIter<
MaskOnIterator, PointIndexLeafNode, ChildOn>;
using ChildOnCIter = typename BaseLeaf::template ChildIter<
MaskOnIterator, const PointIndexLeafNode, ChildOn>;
using ChildOffIter = typename BaseLeaf::template ChildIter<
MaskOffIterator, PointIndexLeafNode, ChildOff>;
using ChildOffCIter = typename BaseLeaf::template ChildIter<
MaskOffIterator, const PointIndexLeafNode, ChildOff>;
using ChildAllIter = typename BaseLeaf::template DenseIter<
PointIndexLeafNode, ValueType, ChildAll>;
using ChildAllCIter = typename BaseLeaf::template DenseIter<
const PointIndexLeafNode, const ValueType, ChildAll>;
#define VMASK_ this->getValueMask()
ValueOnCIter cbeginValueOn() const { return ValueOnCIter(VMASK_.beginOn(), this); }
ValueOnCIter beginValueOn() const { return ValueOnCIter(VMASK_.beginOn(), this); }
ValueOnIter beginValueOn() { return ValueOnIter(VMASK_.beginOn(), this); }
ValueOffCIter cbeginValueOff() const { return ValueOffCIter(VMASK_.beginOff(), this); }
ValueOffCIter beginValueOff() const { return ValueOffCIter(VMASK_.beginOff(), this); }
ValueOffIter beginValueOff() { return ValueOffIter(VMASK_.beginOff(), this); }
ValueAllCIter cbeginValueAll() const { return ValueAllCIter(VMASK_.beginDense(), this); }
ValueAllCIter beginValueAll() const { return ValueAllCIter(VMASK_.beginDense(), this); }
ValueAllIter beginValueAll() { return ValueAllIter(VMASK_.beginDense(), this); }
ValueOnCIter cendValueOn() const { return ValueOnCIter(VMASK_.endOn(), this); }
ValueOnCIter endValueOn() const { return ValueOnCIter(VMASK_.endOn(), this); }
ValueOnIter endValueOn() { return ValueOnIter(VMASK_.endOn(), this); }
ValueOffCIter cendValueOff() const { return ValueOffCIter(VMASK_.endOff(), this); }
ValueOffCIter endValueOff() const { return ValueOffCIter(VMASK_.endOff(), this); }
ValueOffIter endValueOff() { return ValueOffIter(VMASK_.endOff(), this); }
ValueAllCIter cendValueAll() const { return ValueAllCIter(VMASK_.endDense(), this); }
ValueAllCIter endValueAll() const { return ValueAllCIter(VMASK_.endDense(), this); }
ValueAllIter endValueAll() { return ValueAllIter(VMASK_.endDense(), this); }
ChildOnCIter cbeginChildOn() const { return ChildOnCIter(VMASK_.endOn(), this); }
ChildOnCIter beginChildOn() const { return ChildOnCIter(VMASK_.endOn(), this); }
ChildOnIter beginChildOn() { return ChildOnIter(VMASK_.endOn(), this); }
ChildOffCIter cbeginChildOff() const { return ChildOffCIter(VMASK_.endOff(), this); }
ChildOffCIter beginChildOff() const { return ChildOffCIter(VMASK_.endOff(), this); }
ChildOffIter beginChildOff() { return ChildOffIter(VMASK_.endOff(), this); }
ChildAllCIter cbeginChildAll() const { return ChildAllCIter(VMASK_.beginDense(), this); }
ChildAllCIter beginChildAll() const { return ChildAllCIter(VMASK_.beginDense(), this); }
ChildAllIter beginChildAll() { return ChildAllIter(VMASK_.beginDense(), this); }
ChildOnCIter cendChildOn() const { return ChildOnCIter(VMASK_.endOn(), this); }
ChildOnCIter endChildOn() const { return ChildOnCIter(VMASK_.endOn(), this); }
ChildOnIter endChildOn() { return ChildOnIter(VMASK_.endOn(), this); }
ChildOffCIter cendChildOff() const { return ChildOffCIter(VMASK_.endOff(), this); }
ChildOffCIter endChildOff() const { return ChildOffCIter(VMASK_.endOff(), this); }
ChildOffIter endChildOff() { return ChildOffIter(VMASK_.endOff(), this); }
ChildAllCIter cendChildAll() const { return ChildAllCIter(VMASK_.endDense(), this); }
ChildAllCIter endChildAll() const { return ChildAllCIter(VMASK_.endDense(), this); }
ChildAllIter endChildAll() { return ChildAllIter(VMASK_.endDense(), this); }
#undef VMASK_
}; // struct PointIndexLeafNode
template<typename T, Index Log2Dim>
inline bool
PointIndexLeafNode<T, Log2Dim>::getIndices(const Coord& ijk,
const ValueType*& begin, const ValueType*& end) const
{
return getIndices(LeafNodeType::coordToOffset(ijk), begin, end);
}
template<typename T, Index Log2Dim>
inline bool
PointIndexLeafNode<T, Log2Dim>::getIndices(Index offset,
const ValueType*& begin, const ValueType*& end) const
{
if (this->isValueMaskOn(offset)) {
const ValueType* dataPtr = &mIndices.front();
begin = dataPtr + (offset == 0 ? ValueType(0) : this->buffer()[offset - 1]);
end = dataPtr + this->buffer()[offset];
return true;
}
return false;
}
template<typename T, Index Log2Dim>
inline void
PointIndexLeafNode<T, Log2Dim>::setOffsetOn(Index offset, const ValueType& val)
{
this->buffer().setValue(offset, val);
this->setValueMaskOn(offset);
}
template<typename T, Index Log2Dim>
inline void
PointIndexLeafNode<T, Log2Dim>::setOffsetOnly(Index offset, const ValueType& val)
{
this->buffer().setValue(offset, val);
}
template<typename T, Index Log2Dim>
inline bool
PointIndexLeafNode<T, Log2Dim>::isEmpty(const CoordBBox& bbox) const
{
Index xPos, pos, zStride = Index(bbox.max()[2] - bbox.min()[2]);
Coord ijk;
for (ijk[0] = bbox.min()[0]; ijk[0] <= bbox.max()[0]; ++ijk[0]) {
xPos = (ijk[0] & (DIM - 1u)) << (2 * LOG2DIM);
for (ijk[1] = bbox.min()[1]; ijk[1] <= bbox.max()[1]; ++ijk[1]) {
pos = xPos + ((ijk[1] & (DIM - 1u)) << LOG2DIM);
pos += (bbox.min()[2] & (DIM - 1u));
if (this->buffer()[pos+zStride] > (pos == 0 ? T(0) : this->buffer()[pos - 1])) {
return false;
}
}
}
return true;
}
template<typename T, Index Log2Dim>
inline void
PointIndexLeafNode<T, Log2Dim>::readBuffers(std::istream& is, bool fromHalf)
{
BaseLeaf::readBuffers(is, fromHalf);
Index64 numIndices = Index64(0);
is.read(reinterpret_cast<char*>(&numIndices), sizeof(Index64));
mIndices.resize(size_t(numIndices));
is.read(reinterpret_cast<char*>(mIndices.data()), numIndices * sizeof(T));
}
template<typename T, Index Log2Dim>
inline void
PointIndexLeafNode<T, Log2Dim>::readBuffers(std::istream& is, const CoordBBox& bbox, bool fromHalf)
{
// Read and clip voxel values.
BaseLeaf::readBuffers(is, bbox, fromHalf);
Index64 numIndices = Index64(0);
is.read(reinterpret_cast<char*>(&numIndices), sizeof(Index64));
const Index64 numBytes = numIndices * sizeof(T);
if (bbox.hasOverlap(this->getNodeBoundingBox())) {
mIndices.resize(size_t(numIndices));
is.read(reinterpret_cast<char*>(mIndices.data()), numBytes);
/// @todo If any voxels were deactivated as a result of clipping in the call to
/// BaseLeaf::readBuffers(), the point index list will need to be regenerated.
} else {
// Read and discard voxel values.
std::unique_ptr<char[]> buf{new char[numBytes]};
is.read(buf.get(), numBytes);
}
// Reserved for future use
Index64 auxDataBytes = Index64(0);
is.read(reinterpret_cast<char*>(&auxDataBytes), sizeof(Index64));
if (auxDataBytes > 0) {
// For now, read and discard any auxiliary data.
std::unique_ptr<char[]> auxData{new char[auxDataBytes]};
is.read(auxData.get(), auxDataBytes);
}
}
template<typename T, Index Log2Dim>
inline void
PointIndexLeafNode<T, Log2Dim>::writeBuffers(std::ostream& os, bool toHalf) const
{
BaseLeaf::writeBuffers(os, toHalf);
Index64 numIndices = Index64(mIndices.size());
os.write(reinterpret_cast<const char*>(&numIndices), sizeof(Index64));
os.write(reinterpret_cast<const char*>(mIndices.data()), numIndices * sizeof(T));
// Reserved for future use
const Index64 auxDataBytes = Index64(0);
os.write(reinterpret_cast<const char*>(&auxDataBytes), sizeof(Index64));
}
template<typename T, Index Log2Dim>
inline Index64
PointIndexLeafNode<T, Log2Dim>::memUsage() const
{
return BaseLeaf::memUsage() + Index64((sizeof(T)*mIndices.capacity()) + sizeof(mIndices));
}
} // namespace tools
////////////////////////////////////////
namespace tree {
/// Helper metafunction used to implement LeafNode::SameConfiguration
/// (which, as an inner class, can't be independently specialized)
template<Index Dim1, typename T2>
struct SameLeafConfig<Dim1, openvdb::tools::PointIndexLeafNode<T2, Dim1> >
{
static const bool value = true;
};
} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_POINT_INDEX_GRID_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|