This file is indexed.

/usr/include/openvdb/tools/PointScatter.h is in libopenvdb-dev 5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @author Ken Museth
///
/// @file tools/PointScatter.h
///
/// @brief We offer three different algorithms (each in its own class)
///        for scattering of points in active voxels:
///
/// 1) UniformPointScatter. Has two modes: Either randomly distributes
///    a fixed number of points into the active voxels, or the user can
///    specify a fixed probability of having a points per unit of volume.
///
/// 2) DenseUniformPointScatter. Randomly distributes points into active
///    voxels using a fixed number of points per voxel.
///
/// 3) NonIniformPointScatter. Define the local probability of having
///    a point in a voxel as the product of a global density and the
///    value of the voxel itself.

#ifndef OPENVDB_TOOLS_POINT_SCATTER_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_POINT_SCATTER_HAS_BEEN_INCLUDED

#include <openvdb/Types.h>
#include <openvdb/Grid.h>
#include <openvdb/math/Math.h>
#include <openvdb/util/NullInterrupter.h>
#include <tbb/parallel_sort.h>
#include <tbb/parallel_for.h>
#include <iostream>
#include <memory>
#include <string>

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

/// Forward declaration of base class
template<typename PointAccessorType,
         typename RandomGenerator,
         typename InterruptType = util::NullInterrupter>
class BasePointScatter;

/// @brief The two point scatters UniformPointScatter and
/// NonUniformPointScatter depend on the following two classes:
///
/// The @c PointAccessorType template argument below refers to any class
/// with the following interface:
/// @code
/// class PointAccessor {
///   ...
/// public:
///   void add(const openvdb::Vec3R &pos);// appends point with world positions pos
/// };
/// @endcode
///
///
/// The @c InterruptType template argument below refers to any class
/// with the following interface:
/// @code
/// class Interrupter {
///   ...
/// public:
///   void start(const char* name = nullptr) // called when computations begin
///   void end()                             // called when computations end
///   bool wasInterrupted(int percent=-1)    // return true to break computation
///};
/// @endcode
///
/// @note If no template argument is provided for this InterruptType
/// the util::NullInterrupter is used which implies that all
/// interrupter calls are no-ops (i.e. incurs no computational overhead).


/// @brief Uniformly scatters points in the active voxels.
/// The point count is either explicitly defined or implicitly
/// through the specification of a global density (=points-per-volume)
///
/// @note This uniform scattering technique assumes that the number of
/// points is generally smaller than the number of active voxels
/// (including virtual active voxels in active tiles).
template<typename PointAccessorType,
         typename RandomGenerator,
         typename InterruptType = util::NullInterrupter>
class UniformPointScatter : public BasePointScatter<PointAccessorType,
                                                    RandomGenerator,
                                                    InterruptType>
{
public:
    using BaseT = BasePointScatter<PointAccessorType, RandomGenerator, InterruptType>;

    UniformPointScatter(PointAccessorType& points,
                        Index64 pointCount,
                        RandomGenerator& randGen,
                        double spread = 1.0,
                        InterruptType* interrupt = nullptr)
        : BaseT(points, randGen, spread, interrupt)
        , mTargetPointCount(pointCount)
        , mPointsPerVolume(0.0f)
    {
    }
    UniformPointScatter(PointAccessorType& points,
                        float pointsPerVolume,
                        RandomGenerator& randGen,
                        double spread = 1.0,
                        InterruptType* interrupt = nullptr)
        : BaseT(points, randGen, spread, interrupt)
        , mTargetPointCount(0)
        , mPointsPerVolume(pointsPerVolume)
    {
    }

    /// @brief This is the main functor method implementing the actual
    /// scattering of points.
    template<typename GridT>
    bool operator()(const GridT& grid)
    {
        mVoxelCount = grid.activeVoxelCount();
        if (mVoxelCount == 0) return false;
        const Vec3d dim = grid.voxelSize();
        if (mPointsPerVolume>0) {
            BaseT::start("Uniform scattering with fixed point density");
            mTargetPointCount = Index64(mPointsPerVolume*dim[0]*dim[1]*dim[2])*mVoxelCount;
        } else if (mTargetPointCount>0) {
            BaseT::start("Uniform scattering with fixed point count");
            mPointsPerVolume = mTargetPointCount/float(dim[0]*dim[1]*dim[2] * mVoxelCount);
        } else {
            return false;
        }

        std::unique_ptr<Index64[]> idList{new Index64[mTargetPointCount]};
        math::RandInt<Index64, RandomGenerator> rand(BaseT::mRand01.engine(), 0, mVoxelCount-1);
        for (Index64 i=0; i<mTargetPointCount; ++i) idList[i] = rand();
        tbb::parallel_sort(idList.get(), idList.get() + mTargetPointCount);

        CoordBBox bbox;
        const Vec3R offset(0.5, 0.5, 0.5);
        typename GridT::ValueOnCIter valueIter = grid.cbeginValueOn();

        for (Index64 i=0, n=valueIter.getVoxelCount() ; i != mTargetPointCount; ++i) {
            if (BaseT::interrupt()) return false;
            const Index64 voxelId = idList[i];
            while ( n <= voxelId ) {
                ++valueIter;
                n += valueIter.getVoxelCount();
            }
            if (valueIter.isVoxelValue()) {// a majority is expected to be voxels
                BaseT::addPoint(grid, valueIter.getCoord() - offset);
            } else {// tiles contain multiple (virtual) voxels
                valueIter.getBoundingBox(bbox);
                BaseT::addPoint(grid, bbox.min() - offset, bbox.extents());
            }
        }//loop over all the active voxels and tiles
        //}

        BaseT::end();
        return true;
    }

    // The following methods should only be called after the
    // the operator() method was called
    void print(const std::string &name, std::ostream& os = std::cout) const
    {
        os << "Uniformly scattered " << mPointCount << " points into " << mVoxelCount
           << " active voxels in \"" << name << "\" corresponding to "
           << mPointsPerVolume << " points per volume." << std::endl;
    }

    float   getPointsPerVolume()  const { return mPointsPerVolume; }
    Index64 getTargetPointCount() const { return mTargetPointCount; }

private:

    using BaseT::mPointCount;
    using BaseT::mVoxelCount;
    Index64 mTargetPointCount;
    float mPointsPerVolume;

}; // class UniformPointScatter

/// @brief Scatters a fixed (and integer) number of points in all
/// active voxels and tiles.
template<typename PointAccessorType,
         typename RandomGenerator,
         typename InterruptType = util::NullInterrupter>
class DenseUniformPointScatter : public BasePointScatter<PointAccessorType,
                                                         RandomGenerator,
                                                         InterruptType>
{
public:
    using BaseT = BasePointScatter<PointAccessorType, RandomGenerator, InterruptType>;

    DenseUniformPointScatter(PointAccessorType& points,
                             float pointsPerVoxel,
                             RandomGenerator& randGen,
                             double spread = 1.0,
                             InterruptType* interrupt = nullptr)
        : BaseT(points, randGen, spread, interrupt)
        , mPointsPerVoxel(pointsPerVoxel)
    {
    }

    /// This is the main functor method implementing the actual scattering of points.
    template<typename GridT>
    bool operator()(const GridT& grid)
    {
        using ValueIter = typename GridT::ValueOnCIter;
        if (mPointsPerVoxel < 1.0e-6) return false;
        mVoxelCount = grid.activeVoxelCount();
        if (mVoxelCount == 0) return false;
        BaseT::start("Dense uniform scattering with fixed point count");
        CoordBBox bbox;
        const Vec3R offset(0.5, 0.5, 0.5);

        const int ppv = math::Floor(mPointsPerVoxel);
        const double delta = mPointsPerVoxel - ppv;
        const bool fractional = !math::isApproxZero(delta, 1.0e-6);

        for (ValueIter iter = grid.cbeginValueOn(); iter; ++iter) {
            if (BaseT::interrupt()) return false;
            if (iter.isVoxelValue()) {// a majority is expected to be voxels
                const Vec3R dmin = iter.getCoord() - offset;
                for (int n = 0; n != ppv; ++n) BaseT::addPoint(grid, dmin);
                if (fractional && BaseT::getRand01() < delta) BaseT::addPoint(grid, dmin);
            } else {// tiles contain multiple (virtual) voxels
                iter.getBoundingBox(bbox);
                const Coord size(bbox.extents());
                const Vec3R dmin = bbox.min() - offset;
                const double d = mPointsPerVoxel * iter.getVoxelCount();
                const int m = math::Floor(d);
                for (int n = 0; n != m; ++n)  BaseT::addPoint(grid, dmin, size);
                if (BaseT::getRand01() < d - m) BaseT::addPoint(grid, dmin, size);
            }
        }//loop over all the active voxels and tiles
        //}
        BaseT::end();
        return true;
    }

    // The following methods should only be called after the
    // the operator() method was called
    void print(const std::string &name, std::ostream& os = std::cout) const
    {
        os << "Dense uniformly scattered " << mPointCount << " points into " << mVoxelCount
           << " active voxels in \"" << name << "\" corresponding to "
           << mPointsPerVoxel << " points per voxel." << std::endl;
    }

    float getPointsPerVoxel() const { return mPointsPerVoxel; }

private:
    using BaseT::mPointCount;
    using BaseT::mVoxelCount;
    float mPointsPerVoxel;
}; // class DenseUniformPointScatter

/// @brief Non-uniform scatters of point in the active voxels.
/// The local point count is implicitly defined as a product of
/// of a global density (called pointsPerVolume) and the local voxel
/// (or tile) value.
///
/// @note This scattering technique can be significantly slower
/// than a uniform scattering since its computational complexity
/// is proportional to the active voxel (and tile) count.
template<typename PointAccessorType,
         typename RandomGenerator,
         typename InterruptType = util::NullInterrupter>
class NonUniformPointScatter : public BasePointScatter<PointAccessorType,
                                                       RandomGenerator,
                                                       InterruptType>
{
public:
    using BaseT = BasePointScatter<PointAccessorType, RandomGenerator, InterruptType>;

    NonUniformPointScatter(PointAccessorType& points,
                           float pointsPerVolume,
                           RandomGenerator& randGen,
                           double spread = 1.0,
                           InterruptType* interrupt = nullptr)
        : BaseT(points, randGen, spread, interrupt)
        , mPointsPerVolume(pointsPerVolume)//note this is merely a
                                           //multiplier for the local point density
    {
    }

    /// This is the main functor method implementing the actual scattering of points.
    template<typename GridT>
    bool operator()(const GridT& grid)
    {
        if (mPointsPerVolume <= 0.0f) return false;
        mVoxelCount = grid.activeVoxelCount();
        if (mVoxelCount == 0) return false;
        BaseT::start("Non-uniform scattering with local point density");
        const Vec3d dim = grid.voxelSize();
        const double volumePerVoxel = dim[0]*dim[1]*dim[2],
                     pointsPerVoxel = mPointsPerVolume * volumePerVoxel;
        CoordBBox bbox;
        const Vec3R offset(0.5, 0.5, 0.5);
        for (typename GridT::ValueOnCIter iter = grid.cbeginValueOn(); iter; ++iter) {
            if (BaseT::interrupt()) return false;
            const double d = (*iter) * pointsPerVoxel * iter.getVoxelCount();
            const int n = int(d);
            if (iter.isVoxelValue()) { // a majority is expected to be voxels
                const Vec3R dmin =iter.getCoord() - offset;
                for (int i = 0; i < n; ++i) BaseT::addPoint(grid, dmin);
                if (BaseT::getRand01() < (d - n)) BaseT::addPoint(grid, dmin);
            } else { // tiles contain multiple (virtual) voxels
                iter.getBoundingBox(bbox);
                const Coord size(bbox.extents());
                const Vec3R dmin = bbox.min() - offset;
                for (int i = 0; i < n; ++i) BaseT::addPoint(grid, dmin, size);
                if (BaseT::getRand01() < (d - n)) BaseT::addPoint(grid, dmin, size);
            }
        }//loop over all the active voxels and tiles
        BaseT::end();
        return true;
    }

    // The following methods should only be called after the
    // the operator() method was called
    void print(const std::string &name, std::ostream& os = std::cout) const
    {
        os << "Non-uniformly scattered " << mPointCount << " points into " << mVoxelCount
           << " active voxels in \"" << name << "\"." << std::endl;
    }

    float getPointPerVolume() const { return mPointsPerVolume; }

private:
    using BaseT::mPointCount;
    using BaseT::mVoxelCount;
    float mPointsPerVolume;

}; // class NonUniformPointScatter

/// Base class of all the point scattering classes defined above
template<typename PointAccessorType,
         typename RandomGenerator,
         typename InterruptType>
class BasePointScatter
{
public:

    Index64 getPointCount() const { return mPointCount; }
    Index64 getVoxelCount() const { return mVoxelCount; }

protected:

    PointAccessorType&        mPoints;
    InterruptType*            mInterrupter;
    Index64                   mPointCount;
    Index64                   mVoxelCount;
    Index64                   mInterruptCount;
    const double              mSpread;
    math::Rand01<double, RandomGenerator> mRand01;

    /// This is a base class so the constructor is protected
    BasePointScatter(PointAccessorType& points,
                     RandomGenerator& randGen,
                     double spread,
                     InterruptType* interrupt = nullptr)
        : mPoints(points)
        , mInterrupter(interrupt)
        , mPointCount(0)
        , mVoxelCount(0)
        , mInterruptCount(0)
        , mSpread(math::Clamp01(spread))
        , mRand01(randGen)
    {
    }

    inline void start(const char* name)
    {
        if (mInterrupter) mInterrupter->start(name);
    }

    inline void end()
    {
        if (mInterrupter) mInterrupter->end();
    }

    inline bool interrupt()
    {
        //only check interrupter for every 32'th call
        return !(mInterruptCount++ & ((1<<5)-1)) && util::wasInterrupted(mInterrupter);
    }

    /// @brief Return a random floating point number between zero and one
    inline double getRand01() { return mRand01(); }

    /// @brief Return a random floating point number between 0.5 -+ mSpread/2
    inline double getRand() { return 0.5 + mSpread * (mRand01() - 0.5); }

    template <typename GridT>
    inline void addPoint(const GridT &grid, const Vec3R &dmin)
    {
        const Vec3R pos(dmin[0] + this->getRand(),
                        dmin[1] + this->getRand(),
                        dmin[2] + this->getRand());
        mPoints.add(grid.indexToWorld(pos));
        ++mPointCount;
    }

    template <typename GridT>
    inline void addPoint(const GridT &grid, const Vec3R &dmin, const Coord &size)
    {
        const Vec3R pos(dmin[0] + size[0]*this->getRand(),
                        dmin[1] + size[1]*this->getRand(),
                        dmin[2] + size[2]*this->getRand());
        mPoints.add(grid.indexToWorld(pos));
        ++mPointCount;
    }
};// class BasePointScatter

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_POINT_SCATTER_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )