/usr/include/openvdb/tools/PotentialFlow.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
/// @file tools/PotentialFlow.h
///
/// @brief Tools for creating potential flow fields through solving Laplace's equation
///
/// @authors Todd Keeler, Dan Bailey
#ifndef OPENVDB_TOOLS_POTENTIAL_FLOW_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_POTENTIAL_FLOW_HAS_BEEN_INCLUDED
#include <openvdb/openvdb.h>
#include "GridOperators.h"
#include "GridTransformer.h"
#include "Mask.h" // interiorMask
#include "Morphology.h" // dilateVoxels, erodeVoxels
#include "PoissonSolver.h"
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
/// @brief Metafunction to convert a vector-valued grid type to a scalar grid type
template<typename VecGridT>
struct VectorToScalarGrid {
using Type =
typename VecGridT::template ValueConverter<typename VecGridT::ValueType::value_type>::Type;
using Ptr = typename Type::Ptr;
using ConstPtr = typename Type::ConstPtr;
};
/// @brief Construct a mask for the Potential Flow domain.
/// @details For a level set, this represents a rebuilt exterior narrow band.
/// For any other grid it is a new region that surrounds the active voxels.
/// @param grid source grid to use for computing the mask
/// @param dilation dilation in voxels of the source grid to form the new potential flow mask
template<typename GridT, typename MaskT = typename GridT::template ValueConverter<ValueMask>::Type>
inline typename MaskT::Ptr
createPotentialFlowMask(const GridT& grid, int dilation = 5);
/// @brief Create a Potential Flow velocities grid for the Neumann boundary.
/// @param collider a level set that represents the boundary
/// @param domain a mask to represent the potential flow domain
/// @param boundaryVelocity an optional grid pointer to stores the velocities of the boundary
/// @param backgroundVelocity a background velocity value
/// @details Typically this method involves supplying a velocity grid for the
/// collider boundary, however it can also be used for a global wind field
/// around the collider by supplying an empty boundary Velocity and a
/// non-zero background velocity.
template<typename Vec3T, typename GridT, typename MaskT>
inline typename GridT::template ValueConverter<Vec3T>::Type::Ptr
createPotentialFlowNeumannVelocities(const GridT& collider, const MaskT& domain,
const typename GridT::template ValueConverter<Vec3T>::Type::ConstPtr boundaryVelocity,
const Vec3T& backgroundVelocity);
/// @brief Compute the Potential on the domain using the Neumann boundary conditions on
/// solid boundaries
/// @param domain a mask to represent the domain in which to perform the solve
/// @param neumann the topology of this grid defines where the solid boundaries are and grid
/// values give the Neumann boundaries that should be applied there
/// @param state the solver parameters for computing the solution
/// @param interrupter pointer to an optional interrupter adhering to the
/// util::NullInterrupter interface
/// @details On input, the State object should specify convergence criteria
/// (minimum error and maximum number of iterations); on output, it gives
/// the actual termination conditions.
template<typename Vec3GridT, typename MaskT, typename InterrupterT = util::NullInterrupter>
inline typename VectorToScalarGrid<Vec3GridT>::Ptr
computeScalarPotential(const MaskT& domain, const Vec3GridT& neumann, math::pcg::State& state,
InterrupterT* interrupter = nullptr);
/// @brief Compute a vector Flow Field comprising the gradient of the potential with Neumann
/// boundary conditions applied
/// @param potential scalar potential, typically computed from computeScalarPotential()
/// @param neumann the topology of this grid defines where the solid boundaries are and grid
/// values give the Neumann boundaries that should be applied there
/// @param backgroundVelocity a background velocity value
template<typename Vec3GridT>
inline typename Vec3GridT::Ptr
computePotentialFlow(const typename VectorToScalarGrid<Vec3GridT>::Type& potential,
const Vec3GridT& neumann,
const typename Vec3GridT::ValueType backgroundVelocity =
zeroVal<typename Vec3GridT::TreeType::ValueType>());
//////////////////////////////////////////////////////////
namespace potential_flow_internal {
/// @private
// helper function for retrieving a mask that comprises the outer-most layer of voxels
template<typename GridT>
inline typename GridT::TreeType::template ValueConverter<ValueMask>::Type::Ptr
extractOuterVoxelMask(GridT& inGrid)
{
using MaskTreeT = typename GridT::TreeType::template ValueConverter<ValueMask>::Type;
typename MaskTreeT::Ptr interiorMask(new MaskTreeT(inGrid.tree(), false, TopologyCopy()));
typename MaskTreeT::Ptr boundaryMask(new MaskTreeT(inGrid.tree(), false, TopologyCopy()));
erodeVoxels(*interiorMask, 1, NN_FACE);
boundaryMask->topologyDifference(*interiorMask);
return boundaryMask;
}
// computes Neumann velocities through sampling the gradient and velocities
template<typename Vec3GridT, typename GradientT>
struct ComputeNeumannVelocityOp
{
using ValueT = typename Vec3GridT::ValueType;
using VelocityAccessor = typename Vec3GridT::ConstAccessor;
using VelocitySamplerT = GridSampler<
typename Vec3GridT::ConstAccessor, BoxSampler>;
using GradientValueT = typename GradientT::TreeType::ValueType;
ComputeNeumannVelocityOp( const GradientT& gradient,
const Vec3GridT& velocity,
const ValueT& backgroundVelocity)
: mGradient(gradient)
, mVelocity(&velocity)
, mBackgroundVelocity(backgroundVelocity) { }
ComputeNeumannVelocityOp( const GradientT& gradient,
const ValueT& backgroundVelocity)
: mGradient(gradient)
, mBackgroundVelocity(backgroundVelocity) { }
void operator()(typename Vec3GridT::TreeType::LeafNodeType& leaf, size_t) const {
auto gradientAccessor = mGradient.getConstAccessor();
std::unique_ptr<VelocityAccessor> velocityAccessor;
std::unique_ptr<VelocitySamplerT> velocitySampler;
if (mVelocity) {
velocityAccessor.reset(new VelocityAccessor(mVelocity->getConstAccessor()));
velocitySampler.reset(new VelocitySamplerT(*velocityAccessor, mVelocity->transform()));
}
for (auto it = leaf.beginValueOn(); it; ++it) {
Coord ijk = it.getCoord();
auto gradient = gradientAccessor.getValue(ijk);
if (gradient.normalize()) {
const Vec3d xyz = mGradient.transform().indexToWorld(ijk);
const ValueT sampledVelocity = velocitySampler ?
velocitySampler->wsSample(xyz) : zeroVal<ValueT>();
auto velocity = sampledVelocity + mBackgroundVelocity;
auto value = gradient.dot(velocity) * gradient;
it.setValue(value);
}
else {
it.setValueOff();
}
}
}
private:
const GradientT& mGradient;
const Vec3GridT* mVelocity = nullptr;
const ValueT& mBackgroundVelocity;
}; // struct ComputeNeumannVelocityOp
// initalizes the boundary conditions for use in the Poisson Solver
template<typename Vec3GridT, typename MaskT>
struct SolveBoundaryOp
{
SolveBoundaryOp(const Vec3GridT& velGrid, const MaskT& domainGrid)
: mVoxelSize(domainGrid.voxelSize()[0])
, mVelGrid(velGrid)
, mDomainGrid(domainGrid)
{ }
void operator()(const Coord& ijk, const Coord& neighbor,
double& source, double& diagonal) const {
typename Vec3GridT::ConstAccessor velGridAccessor = mVelGrid.getAccessor();
const Coord diff = (ijk - neighbor);
if (velGridAccessor.isValueOn(ijk)) { // Neumann
const typename Vec3GridT::ValueType& sampleVel = velGridAccessor.getValue(ijk);
source += mVoxelSize*diff[0]*sampleVel[0];
source += mVoxelSize*diff[1]*sampleVel[1];
source += mVoxelSize*diff[2]*sampleVel[2];
} else {
diagonal -= 1; // Zero Dirichlet
}
}
const double& mVoxelSize;
const Vec3GridT& mVelGrid;
const MaskT& mDomainGrid;
}; // struct SolveBoundaryOp
} // namespace potential_flow_internal
////////////////////////////////////////////////////////////////////////////
template<typename GridT, typename MaskT>
inline typename MaskT::Ptr
createPotentialFlowMask(const GridT& grid, int dilation)
{
using MaskTreeT = typename MaskT::TreeType;
if (!grid.hasUniformVoxels()) {
OPENVDB_THROW(ValueError, "Transform must have uniform voxels for Potential Flow mask.");
}
// construct a new mask grid representing the interior region
auto interior = interiorMask(grid);
// create a new mask grid from the interior topology
typename MaskTreeT::Ptr maskTree(new MaskTreeT(interior->tree(), false, TopologyCopy()));
typename MaskT::Ptr mask = MaskT::create(maskTree);
mask->setTransform(grid.transform().copy());
dilateActiveValues(*maskTree, dilation, NN_FACE_EDGE);
// subtract the interior region from the mask to leave just the exterior narrow band
mask->tree().topologyDifference(interior->tree());
return mask;
}
template<typename Vec3T, typename GridT, typename MaskT>
typename GridT::template ValueConverter<Vec3T>::Type::Ptr createPotentialFlowNeumannVelocities(
const GridT& collider,
const MaskT& domain,
const typename GridT::template ValueConverter<Vec3T>::Type::ConstPtr boundaryVelocity,
const Vec3T& backgroundVelocity)
{
using Vec3GridT = typename GridT::template ValueConverter<Vec3T>::Type;
using TreeT = typename Vec3GridT::TreeType;
using ValueT = typename TreeT::ValueType;
using GradientT = typename ScalarToVectorConverter<GridT>::Type;
using potential_flow_internal::ComputeNeumannVelocityOp;
// this method requires the collider to be a level set to generate the gradient
// use the tools::topologyToLevelset() method if you need to convert a mask into a level set
if (collider.getGridClass() != GRID_LEVEL_SET ||
!std::is_floating_point<typename GridT::TreeType::ValueType>::value) {
OPENVDB_THROW(TypeError, "Potential Flow expecting the collider to be a level set.");
}
// empty grid if there are no velocities
if (backgroundVelocity == zeroVal<Vec3T>() &&
(!boundaryVelocity || boundaryVelocity->empty())) {
auto neumann = Vec3GridT::create();
neumann->setTransform(collider.transform().copy());
return neumann;
}
// extract the intersection between the collider and the domain
using MaskTreeT = typename GridT::TreeType::template ValueConverter<ValueMask>::Type;
typename MaskTreeT::Ptr boundary(new MaskTreeT(domain.tree(), false, TopologyCopy()));
boundary->topologyIntersection(collider.tree());
typename TreeT::Ptr neumannTree(new TreeT(*boundary, zeroVal<ValueT>(), TopologyCopy()));
neumannTree->voxelizeActiveTiles();
// compute the gradient from the collider
const typename GradientT::Ptr gradient = tools::gradient(collider);
typename tree::LeafManager<TreeT> leafManager(*neumannTree);
if (boundaryVelocity && !boundaryVelocity->empty()) {
ComputeNeumannVelocityOp<Vec3GridT, GradientT>
neumannOp(*gradient, *boundaryVelocity, backgroundVelocity);
leafManager.foreach(neumannOp, false);
}
else {
ComputeNeumannVelocityOp<Vec3GridT, GradientT>
neumannOp(*gradient, backgroundVelocity);
leafManager.foreach(neumannOp, false);
}
// prune any inactive values
tools::pruneInactive(*neumannTree);
typename Vec3GridT::Ptr neumann(Vec3GridT::create(neumannTree));
neumann->setTransform(collider.transform().copy());
return neumann;
}
template<typename Vec3GridT, typename MaskT, typename InterrupterT>
inline typename VectorToScalarGrid<Vec3GridT>::Ptr
computeScalarPotential(const MaskT& domain, const Vec3GridT& neumann,
math::pcg::State& state, InterrupterT* interrupter)
{
using ScalarT = typename Vec3GridT::ValueType::value_type;
using ScalarTreeT = typename Vec3GridT::TreeType::template ValueConverter<ScalarT>::Type;
using ScalarGridT = typename Vec3GridT::template ValueConverter<ScalarT>::Type;
using potential_flow_internal::SolveBoundaryOp;
// create the solution tree and activate using domain topology
ScalarTreeT solveTree(domain.tree(), zeroVal<ScalarT>(), TopologyCopy());
solveTree.voxelizeActiveTiles();
util::NullInterrupter nullInterrupt;
if (!interrupter) interrupter = &nullInterrupt;
// solve for scalar potential
SolveBoundaryOp<Vec3GridT, MaskT> solve(neumann, domain);
typename ScalarTreeT::Ptr potentialTree =
poisson::solveWithBoundaryConditions(solveTree, solve, state, *interrupter, true);
auto potential = ScalarGridT::create(potentialTree);
potential->setTransform(domain.transform().copy());
return potential;
}
template<typename Vec3GridT>
inline typename Vec3GridT::Ptr
computePotentialFlow(const typename VectorToScalarGrid<Vec3GridT>::Type& potential,
const Vec3GridT& neumann,
const typename Vec3GridT::ValueType backgroundVelocity)
{
using Vec3T = const typename Vec3GridT::ValueType;
using potential_flow_internal::extractOuterVoxelMask;
// The VDB gradient op uses the background grid value, which is zero by default, when
// computing the gradient at the boundary. This works at the zero-dirichlet boundaries, but
// give spurious values at Neumann ones as the potential should be non-zero there. To avoid
// the extra error, we just substitute the Neumann condition on the boundaries.
// Technically, we should allow for some tangential velocity, coming from the gradient of
// potential. However, considering the voxelized nature of our solve, a decent approximation
// to a tangential derivative isn't probably worth our time. Any tangential component will be
// found in the next interior ring of voxels.
auto gradient = tools::gradient(potential);
// apply Neumann values to the gradient
auto applyNeumann = [&gradient, &neumann] (
const MaskGrid::TreeType::LeafNodeType& leaf, size_t)
{
typename Vec3GridT::Accessor gradientAccessor = gradient->getAccessor();
typename Vec3GridT::ConstAccessor neumannAccessor = neumann.getAccessor();
for (auto it = leaf.beginValueOn(); it; ++it) {
const Coord ijk = it.getCoord();
typename Vec3GridT::ValueType value;
if (neumannAccessor.probeValue(ijk, value)) {
gradientAccessor.setValue(ijk, value);
}
}
};
const MaskGrid::TreeType::Ptr boundary = extractOuterVoxelMask(*gradient);
typename tree::LeafManager<const typename MaskGrid::TreeType> leafManager(*boundary);
leafManager.foreach(applyNeumann);
// apply the background value to the gradient if supplied
if (backgroundVelocity != zeroVal<Vec3T>()) {
auto applyBackgroundVelocity = [&backgroundVelocity] (
typename Vec3GridT::TreeType::LeafNodeType& leaf, size_t)
{
for (auto it = leaf.beginValueOn(); it; ++it) {
it.setValue(it.getValue() - backgroundVelocity);
}
};
typename tree::LeafManager<typename Vec3GridT::TreeType> leafManager2(gradient->tree());
leafManager2.foreach(applyBackgroundVelocity);
}
return gradient;
}
////////////////////////////////////////
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_POTENTIAL_FLOW_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|