This file is indexed.

/usr/include/openvdb/tools/VolumeAdvect.h is in libopenvdb-dev 5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
///////////////////////////////////////////////////////////////////////////
//
/// @author Ken Museth
///
/// @file tools/VolumeAdvect.h
///
/// @brief Sparse hyperbolic advection of volumes, e.g. a density or
///        velocity (vs a level set interface).

#ifndef OPENVDB_TOOLS_VOLUME_ADVECT_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_VOLUME_ADVECT_HAS_BEEN_INCLUDED

#include <tbb/parallel_for.h>
#include <openvdb/Types.h>
#include <openvdb/math/Math.h>
#include <openvdb/util/NullInterrupter.h>
#include "Interpolation.h"// for Sampler
#include "VelocityFields.h" // for VelocityIntegrator
#include "Morphology.h"//for dilateActiveValues and dilateVoxels
#include "Prune.h"// for prune
#include "Statistics.h" // for extrema
#include <functional>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

namespace Scheme {
    /// @brief Numerical advections schemes.
    enum SemiLagrangian { SEMI, MID, RK3, RK4, MAC, BFECC };
    /// @brief Flux-limiters employed to stabalize the second-order
    /// advection schemes MacCormack and BFECC.
    enum Limiter { NO_LIMITER, CLAMP, REVERT };
}

/// @brief Performs advections of an arbitrary type of volume in a
///        static velocity field. The advections are performed by means
///        of various derivatives of Semi-Lagrangian integration, i.e.
///        backwards tracking along the hyperbolic characteristics
///        followed by interpolation.
///
/// @note  Optionally a limiter can be combined with the higher-order
///        integration schemes MacCormack and BFECC. There are two
///        types of limiters (CLAMP and REVERT) that supress
///        non-physical oscillations by means of either claminging or
///        reverting to a first-order schemes when the function is not
///        bounded by the cell values used for tri-linear interpolation.
///
/// @verbatim The supported integrations schemes:
///
///    ================================================================
///    |  Lable | Accuracy |  Integration Scheme   |  Interpolations  |
///    |        |Time/Space|                       |  velocity/volume |
///    ================================================================
///    |  SEMI  |   1/1    | Semi-Lagrangian       |        1/1       |
///    |  MID   |   2/1    | Mid-Point             |        2/1       |
///    |  RK3   |   3/1    | 3rd Order Runge-Kutta |        3/1       |
///    |  RK4   |   4/1    | 4th Order Runge-Kutta |        4/1       |
///    |  MAC   |   2/2    | MacCormack            |        2/2       |
///    |  BFECC |   2/2    | BFECC                 |        3/2       |
///    ================================================================
/// @endverbatim

template<typename VelocityGridT = Vec3fGrid,
         bool StaggeredVelocity = false,
         typename InterrupterType = util::NullInterrupter>
class VolumeAdvection
{
public:

    /// @brief Constructor
    ///
    /// @param velGrid     Velocity grid responsible for the (passive) advection.
    /// @param interrupter Optional interrupter used to prematurely end computations.
    ///
    /// @note The velocity field is assumed to be constant for the duration of the
    ///       advection.
    VolumeAdvection(const VelocityGridT& velGrid, InterrupterType* interrupter = nullptr)
        : mVelGrid(velGrid)
        , mInterrupter(interrupter)
        , mIntegrator( Scheme::SEMI )
        , mLimiter( Scheme::CLAMP )
        , mGrainSize( 128 )
        , mSubSteps( 1 )
    {
        math::Extrema e = extrema(velGrid.cbeginValueAll(), /*threading*/true);
        e.add(velGrid.background().length());
        mMaxVelocity = e.max();
    }

    virtual ~VolumeAdvection()
    {
    }

    /// @brief Return the spatial order of accuracy of the advection scheme
    ///
    /// @note This is the optimal order in smooth regions. In
    /// non-smooth regions the flux-limiter will drop the order of
    /// accuracy to add numerical dissipation.
    int spatialOrder() const { return (mIntegrator == Scheme::MAC ||
                                       mIntegrator == Scheme::BFECC) ? 2 : 1; }

    /// @brief Return the temporal order of accuracy of the advection scheme
    ///
    /// @note This is the optimal order in smooth regions. In
    /// non-smooth regions the flux-limiter will drop the order of
    /// accuracy to add numerical dissipation.
    int temporalOrder() const {
        switch (mIntegrator) {
        case Scheme::SEMI: return 1;
        case Scheme::MID:  return 2;
        case Scheme::RK3:  return 3;
        case Scheme::RK4:  return 4;
        case Scheme::BFECC:return 2;
        case Scheme::MAC:  return 2;
        }
        return 0;//should never reach this point
    }

    /// @brief Set the integrator (see details in the table above)
    void setIntegrator(Scheme::SemiLagrangian integrator) { mIntegrator = integrator; }

    /// @brief Return the integrator (see details in the table above)
    Scheme::SemiLagrangian getIntegrator() const { return mIntegrator; }

    /// @brief Set the limiter (see details above)
    void setLimiter(Scheme::Limiter limiter) { mLimiter = limiter; }

    /// @brief Retrun the limiter (see details above)
    Scheme::Limiter getLimiter() const { return mLimiter; }

    /// @brief Return @c true if a limiter will be applied based on
    /// the current settings.
    bool isLimiterOn() const { return this->spatialOrder()>1 &&
                                      mLimiter != Scheme::NO_LIMITER; }

    /// @return the grain-size used for multi-threading
    /// @note A grainsize of 0 implies serial execution
    size_t getGrainSize() const { return mGrainSize; }

    /// @brief Set the grain-size used for multi-threading
    /// @note A grainsize of 0 disables multi-threading
    /// @warning A small grainsize can degrade performance,
    ///          both in terms of time and memory footprint!
    void setGrainSize(size_t grainsize) { mGrainSize = grainsize; }

    /// @return the number of sub-steps per integration (always larger
    /// than or equal to 1).
    int getSubSteps() const { return mSubSteps; }

    /// @brief Set the number of sub-steps per integration.
    /// @note The only reason to increase the sub-step above its
    ///       default value of one is to reduce the memory footprint
    ///       due to significant dilation. Values smaller than 1 will
    ///       be clamped to 1!
    void setSubSteps(int substeps) { mSubSteps = math::Max(1, substeps); }

    /// @brief Return the maximum magnitude of the velocity in the
    /// advection velocity field defined during construction.
    double getMaxVelocity() const { return mMaxVelocity; }

    /// @return Returns the maximum distance in voxel units of @a inGrid
    /// that a particle can travel in the time-step @a dt when advected
    /// in the velocity field defined during construction.
    ///
    /// @details This method is useful when dilating sparse volume
    /// grids to pad boundary regions. Excessive dilation can be
    /// computationally expensive so use this method to prevent
    /// or warn against run-away computation.
    ///
    /// @throw RuntimeError if @a inGrid does not have uniform voxels.
    template<typename VolumeGridT>
    int getMaxDistance(const VolumeGridT& inGrid, double dt) const
    {
        if (!inGrid.hasUniformVoxels()) {
            OPENVDB_THROW(RuntimeError, "Volume grid does not have uniform voxels!");
        }
        const double d = mMaxVelocity*math::Abs(dt)/inGrid.voxelSize()[0];
        return static_cast<int>( math::RoundUp(d) );
    }

    /// @return Returns a new grid that is the result of passive advection
    ///         of all the active values the input grid by @a timeStep.
    ///
    /// @param inGrid   The input grid to be advected (unmodified)
    /// @param timeStep Time-step of the Runge-Kutta integrator.
    ///
    /// @details This method will advect all of the active values in
    ///          the input @a inGrid. To achieve this a
    ///          deep-copy is dilated to account for the material
    ///          transport. This dilation step can be slow for large
    ///          time steps @a dt or a velocity field with large magnitudes.
    ///
    /// @warning If the VolumeSamplerT is of higher order than one
    ///          (i.e. tri-linear interpolation) instabilities are
    ///          known to occure. To suppress those monotonicity
    ///          constrains or flux-limiters need to be applies.
    ///
    /// @throw RuntimeError if @a inGrid does not have uniform voxels.
    template<typename VolumeGridT,
             typename VolumeSamplerT>//only C++11 allows for a default argument
    typename VolumeGridT::Ptr advect(const VolumeGridT& inGrid, double timeStep)
    {
        typename VolumeGridT::Ptr outGrid = inGrid.deepCopy();
        const double dt = timeStep/mSubSteps;
        const int n = this->getMaxDistance(inGrid, dt);
        dilateActiveValues( outGrid->tree(), n, NN_FACE, EXPAND_TILES);
        this->template cook<VolumeGridT, VolumeSamplerT>(*outGrid, inGrid, dt);
        for (int step = 1; step < mSubSteps; ++step) {
            typename VolumeGridT::Ptr tmpGrid = outGrid->deepCopy();
            dilateActiveValues( tmpGrid->tree(), n, NN_FACE, EXPAND_TILES);
            this->template cook<VolumeGridT, VolumeSamplerT>(*tmpGrid, *outGrid, dt);
            outGrid.swap( tmpGrid );
        }

        return outGrid;
    }

    /// @return Returns a new grid that is the result of
    ///         passive advection of the active values in @a inGrid
    ///         that intersect the active values in @c mask. The time
    ///         of the output grid is incremented by @a timeStep.
    ///
    /// @param inGrid   The input grid to be advected (unmodified).
    /// @param mask     The mask of active values defining the active voxels
    ///                 in @c inGrid on which to perform advection. Only
    ///                 if a value is active in both grids will it be modified.
    /// @param timeStep Time-step for a single Runge-Kutta integration step.
    ///
    ///
    /// @details This method will advect all of the active values in
    ///          the input @a inGrid that intersects with the
    ///          active values in @a mask. To achieve this a
    ///          deep-copy is dilated to account for the material
    ///          transport and finally cropped to the intersection
    ///          with @a mask. The dilation step can be slow for large
    ///          time steps @a dt or fast moving velocity fields.
    ///
    /// @warning If the VolumeSamplerT is of higher order the one
    ///          (i.e. tri-linear interpolation) instabilities are
    ///          known to occure. To suppress those monotonicity
    ///          constrains or flux-limiters need to be applies.
    ///
    /// @throw RuntimeError if @a inGrid is not aligned with @a mask
    ///        or if its voxels are not uniform.
    template<typename VolumeGridT,
             typename MaskGridT,
             typename VolumeSamplerT>//only C++11 allows for a default argument
    typename VolumeGridT::Ptr advect(const VolumeGridT& inGrid, const MaskGridT& mask, double timeStep)
    {
        if (inGrid.transform() != mask.transform()) {
            OPENVDB_THROW(RuntimeError, "Volume grid and mask grid are misaligned! Consider "
                          "resampling either of the two grids into the index space of the other.");
        }
        typename VolumeGridT::Ptr outGrid = inGrid.deepCopy();
        const double dt = timeStep/mSubSteps;
        const int n = this->getMaxDistance(inGrid, dt);
        dilateActiveValues( outGrid->tree(), n, NN_FACE, EXPAND_TILES);
        outGrid->topologyIntersection( mask );
        pruneInactive( outGrid->tree(), mGrainSize>0, mGrainSize );
        this->template cook<VolumeGridT, VolumeSamplerT>(*outGrid, inGrid, dt);
        outGrid->topologyUnion( inGrid );

        for (int step = 1; step < mSubSteps; ++step) {
            typename VolumeGridT::Ptr tmpGrid = outGrid->deepCopy();
            dilateActiveValues( tmpGrid->tree(), n, NN_FACE, EXPAND_TILES);
            tmpGrid->topologyIntersection( mask );
            pruneInactive( tmpGrid->tree(), mGrainSize>0, mGrainSize );
            this->template cook<VolumeGridT, VolumeSamplerT>(*tmpGrid, *outGrid, dt);
            tmpGrid->topologyUnion( inGrid );
            outGrid.swap( tmpGrid );
        }
        return outGrid;
    }

private:
    // disallow copy construction and copy by assignment!
    VolumeAdvection(const VolumeAdvection&);// not implemented
    VolumeAdvection& operator=(const VolumeAdvection&);// not implemented

    void start(const char* str) const
    {
        if (mInterrupter) mInterrupter->start(str);
    }
    void stop() const
    {
        if (mInterrupter) mInterrupter->end();
    }
    bool interrupt() const
    {
        if (mInterrupter && util::wasInterrupted(mInterrupter)) {
            tbb::task::self().cancel_group_execution();
            return true;
        }
        return false;
    }

    template<typename VolumeGridT, typename VolumeSamplerT>
    void cook(VolumeGridT& outGrid, const VolumeGridT& inGrid, double dt)
    {
        switch (mIntegrator) {
        case Scheme::SEMI: {
            Advect<VolumeGridT, 1, VolumeSamplerT> adv(inGrid, *this);
            adv.cook(outGrid, dt);
            break;
        }
        case Scheme::MID: {
            Advect<VolumeGridT, 2, VolumeSamplerT> adv(inGrid, *this);
            adv.cook(outGrid, dt);
            break;
        }
        case Scheme::RK3: {
            Advect<VolumeGridT, 3, VolumeSamplerT> adv(inGrid, *this);
            adv.cook(outGrid, dt);
            break;
        }
        case Scheme::RK4: {
            Advect<VolumeGridT, 4, VolumeSamplerT> adv(inGrid, *this);
            adv.cook(outGrid, dt);
            break;
        }
        case Scheme::BFECC: {
            Advect<VolumeGridT, 1, VolumeSamplerT> adv(inGrid, *this);
            adv.cook(outGrid, dt);
            break;
        }
        case Scheme::MAC: {
            Advect<VolumeGridT, 1, VolumeSamplerT> adv(inGrid, *this);
            adv.cook(outGrid, dt);
            break;
        }
        default:
            OPENVDB_THROW(ValueError, "Spatial difference scheme not supported!");
        }
        pruneInactive(outGrid.tree(), mGrainSize>0, mGrainSize);
    }

    // Private class that implements the multi-threaded advection
    template<typename VolumeGridT, size_t OrderRK, typename SamplerT> struct Advect;

    // Private member data of VolumeAdvection
    const VelocityGridT&   mVelGrid;
    double                 mMaxVelocity;
    InterrupterType*       mInterrupter;
    Scheme::SemiLagrangian mIntegrator;
    Scheme::Limiter        mLimiter;
    size_t                 mGrainSize;
    int                    mSubSteps;
};//end of VolumeAdvection class

// Private class that implements the multi-threaded advection
template<typename VelocityGridT, bool StaggeredVelocity, typename InterrupterType>
template<typename VolumeGridT, size_t OrderRK, typename SamplerT>
struct VolumeAdvection<VelocityGridT, StaggeredVelocity, InterrupterType>::Advect
{
    using TreeT = typename VolumeGridT::TreeType;
    using AccT = typename VolumeGridT::ConstAccessor;
    using ValueT = typename TreeT::ValueType;
    using LeafManagerT = typename tree::LeafManager<TreeT>;
    using LeafNodeT = typename LeafManagerT::LeafNodeType;
    using LeafRangeT = typename LeafManagerT::LeafRange;
    using VelocityIntegratorT = VelocityIntegrator<VelocityGridT, StaggeredVelocity>;
    using RealT = typename VelocityIntegratorT::ElementType;
    using VoxelIterT = typename TreeT::LeafNodeType::ValueOnIter;

    Advect(const VolumeGridT& inGrid, const VolumeAdvection& parent)
        : mTask(0)
        , mInGrid(&inGrid)
        , mVelocityInt(parent.mVelGrid)
        , mParent(&parent)
    {
    }
    inline void cook(const LeafRangeT& range)
    {
        if (mParent->mGrainSize > 0) {
            tbb::parallel_for(range, *this);
        } else {
            (*this)(range);
        }
    }
    void operator()(const LeafRangeT& range) const
    {
        assert(mTask);
        mTask(const_cast<Advect*>(this), range);
    }
    void cook(VolumeGridT& outGrid, double time_step)
    {
        namespace ph = std::placeholders;

        mParent->start("Advecting volume");
        LeafManagerT manager(outGrid.tree(), mParent->spatialOrder()==2 ? 1 : 0);
        const LeafRangeT range = manager.leafRange(mParent->mGrainSize);
        const RealT dt = static_cast<RealT>(-time_step);//method of characteristics backtracks
        if (mParent->mIntegrator == Scheme::MAC) {
            mTask = std::bind(&Advect::rk, ph::_1, ph::_2, dt, 0, mInGrid);//out[0]=forward
            this->cook(range);
            mTask = std::bind(&Advect::rk, ph::_1, ph::_2,-dt, 1, &outGrid);//out[1]=backward
            this->cook(range);
            mTask = std::bind(&Advect::mac, ph::_1, ph::_2);//out[0] = out[0] + (in[0] - out[1])/2
            this->cook(range);
        } else if (mParent->mIntegrator == Scheme::BFECC) {
            mTask = std::bind(&Advect::rk, ph::_1, ph::_2, dt, 0, mInGrid);//out[0]=forward
            this->cook(range);
            mTask = std::bind(&Advect::rk, ph::_1, ph::_2,-dt, 1, &outGrid);//out[1]=backward
            this->cook(range);
            mTask = std::bind(&Advect::bfecc, ph::_1, ph::_2);//out[0] = (3*in[0] - out[1])/2
            this->cook(range);
            mTask = std::bind(&Advect::rk, ph::_1, ph::_2, dt, 1, &outGrid);//out[1]=forward
            this->cook(range);
            manager.swapLeafBuffer(1);// out[0] = out[1]
        } else {// SEMI, MID, RK3 and RK4
            mTask = std::bind(&Advect::rk, ph::_1, ph::_2,  dt, 0, mInGrid);//forward
            this->cook(range);
        }

        if (mParent->spatialOrder()==2) manager.removeAuxBuffers();

        mTask = std::bind(&Advect::limiter, ph::_1, ph::_2, dt);// out[0] = limiter( out[0] )
        this->cook(range);

        mParent->stop();
    }
    // Last step of the MacCormack scheme: out[0] = out[0] + (in[0] - out[1])/2
    void mac(const LeafRangeT& range) const
    {
        if (mParent->interrupt()) return;
        assert( mParent->mIntegrator == Scheme::MAC );
        AccT acc = mInGrid->getAccessor();
        for (typename LeafRangeT::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
            ValueT* out0 = leafIter.buffer( 0 ).data();// forward
            const ValueT* out1 = leafIter.buffer( 1 ).data();// backward
            const LeafNodeT* leaf = acc.probeConstLeaf( leafIter->origin() );
            if (leaf != nullptr) {
                const ValueT* in0 = leaf->buffer().data();
                for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
                    const Index i = voxelIter.pos();
                    out0[i] += RealT(0.5) * ( in0[i] - out1[i] );
                }
            } else {
                for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
                    const Index i = voxelIter.pos();
                    out0[i] += RealT(0.5) * ( acc.getValue(voxelIter.getCoord()) - out1[i] );
                }//loop over active voxels
            }
        }//loop over leaf nodes
    }
    // Intermediate step in the BFECC scheme: out[0] = (3*in[0] - out[1])/2
    void bfecc(const LeafRangeT& range) const
    {
        if (mParent->interrupt()) return;
        assert( mParent->mIntegrator == Scheme::BFECC );
        AccT acc = mInGrid->getAccessor();
        for (typename LeafRangeT::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
            ValueT* out0 = leafIter.buffer( 0 ).data();// forward
            const ValueT* out1 = leafIter.buffer( 1 ).data();// backward
            const LeafNodeT* leaf = acc.probeConstLeaf(leafIter->origin());
            if (leaf != nullptr) {
                const ValueT* in0 = leaf->buffer().data();
                for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
                    const Index i = voxelIter.pos();
                    out0[i] = RealT(0.5)*( RealT(3)*in0[i] - out1[i] );
                }//loop over active voxels
            } else {
                for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
                    const Index i = voxelIter.pos();
                    out0[i] = RealT(0.5)*( RealT(3)*acc.getValue(voxelIter.getCoord()) - out1[i] );
                }//loop over active voxels
            }
        }//loop over leaf nodes
    }
    // Semi-Lagrangian integration with Runge-Kutta of various orders (1->4)
    void rk(const LeafRangeT& range, RealT dt, size_t n, const VolumeGridT* grid) const
    {
        if (mParent->interrupt()) return;
        const math::Transform& xform = mInGrid->transform();
        AccT acc = grid->getAccessor();
        for (typename LeafRangeT::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
            ValueT* phi = leafIter.buffer( n ).data();
            for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
                ValueT& value = phi[voxelIter.pos()];
                Vec3d wPos = xform.indexToWorld(voxelIter.getCoord());
                mVelocityInt.template rungeKutta<OrderRK, Vec3d>(dt, wPos);
                value = SamplerT::sample(acc, xform.worldToIndex(wPos));
            }//loop over active voxels
        }//loop over leaf nodes
    }
    void limiter(const LeafRangeT& range, RealT dt) const
    {
        if (mParent->interrupt()) return;
        const bool doLimiter = mParent->isLimiterOn();
        const bool doClamp = mParent->mLimiter == Scheme::CLAMP;
        ValueT data[2][2][2], vMin, vMax;
        const math::Transform& xform = mInGrid->transform();
        AccT acc = mInGrid->getAccessor();
        const ValueT backg = mInGrid->background();
        for (typename LeafRangeT::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
            ValueT* phi = leafIter.buffer( 0 ).data();
            for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
                ValueT& value = phi[voxelIter.pos()];

                if ( doLimiter ) {
                    assert(OrderRK == 1);
                    Vec3d wPos = xform.indexToWorld(voxelIter.getCoord());
                    mVelocityInt.template rungeKutta<1, Vec3d>(dt, wPos);// Explicit Euler
                    Vec3d iPos = xform.worldToIndex(wPos);
                    Coord ijk  = Coord::floor( iPos );
                    BoxSampler::getValues(data, acc, ijk);
                    BoxSampler::extrema(data, vMin, vMax);
                    if ( doClamp ) {
                        value = math::Clamp( value, vMin, vMax);
                    } else if (value < vMin || value > vMax ) {
                        iPos -= Vec3R(ijk[0], ijk[1], ijk[2]);//unit coordinates
                        value = BoxSampler::trilinearInterpolation( data, iPos );
                    }
                }

                if (math::isApproxEqual(value, backg, math::Delta<ValueT>::value())) {
                    value = backg;
                    leafIter->setValueOff( voxelIter.pos() );
                }
            }//loop over active voxels
        }//loop over leaf nodes
    }
    // Public member data of the private Advect class

    typename std::function<void (Advect*, const LeafRangeT&)> mTask;
    const VolumeGridT*        mInGrid;
    const VelocityIntegratorT mVelocityInt;// lightweight!
    const VolumeAdvection*    mParent;
};// end of private member class Advect

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_VOLUME_ADVECT_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )