/usr/include/openvdb/tree/LeafManager.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
/// @file LeafManager.h
///
/// @brief A LeafManager manages a linear array of pointers to a given tree's
/// leaf nodes, as well as optional auxiliary buffers (one or more per leaf)
/// that can be swapped with the leaf nodes' voxel data buffers.
/// @details The leaf array is useful for multithreaded computations over
/// leaf voxels in a tree with static topology but varying voxel values.
/// The auxiliary buffers are convenient for temporal integration.
/// Efficient methods are provided for multithreaded swapping and synching
/// (i.e., copying the contents) of these buffers.
#ifndef OPENVDB_TREE_LEAFMANAGER_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_LEAFMANAGER_HAS_BEEN_INCLUDED
#include <openvdb/Types.h>
#include "TreeIterator.h" // for CopyConstness
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <functional>
#include <type_traits>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {
namespace leafmgr {
//@{
/// Useful traits for Tree types
template<typename TreeT> struct TreeTraits {
static const bool IsConstTree = false;
using LeafIterType = typename TreeT::LeafIter;
};
template<typename TreeT> struct TreeTraits<const TreeT> {
static const bool IsConstTree = true;
using LeafIterType = typename TreeT::LeafCIter;
};
//@}
} // namespace leafmgr
/// This helper class implements LeafManager methods that need to be
/// specialized for const vs. non-const trees.
template<typename ManagerT>
struct LeafManagerImpl
{
using RangeT = typename ManagerT::RangeType;
using LeafT = typename ManagerT::LeafType;
using BufT = typename ManagerT::BufferType;
static inline void doSwapLeafBuffer(const RangeT& r, size_t auxBufferIdx,
LeafT** leafs, BufT* bufs, size_t bufsPerLeaf)
{
for (size_t n = r.begin(), m = r.end(), N = bufsPerLeaf; n != m; ++n) {
leafs[n]->swap(bufs[n * N + auxBufferIdx]);
}
}
};
////////////////////////////////////////
/// @brief This class manages a linear array of pointers to a given tree's
/// leaf nodes, as well as optional auxiliary buffers (one or more per leaf)
/// that can be swapped with the leaf nodes' voxel data buffers.
/// @details The leaf array is useful for multithreaded computations over
/// leaf voxels in a tree with static topology but varying voxel values.
/// The auxiliary buffers are convenient for temporal integration.
/// Efficient methods are provided for multithreaded swapping and sync'ing
/// (i.e., copying the contents) of these buffers.
///
/// @note Buffer index 0 denotes a leaf node's internal voxel data buffer.
/// Any auxiliary buffers are indexed starting from one.
template<typename TreeT>
class LeafManager
{
public:
using TreeType = TreeT;
using ValueType = typename TreeT::ValueType;
using RootNodeType = typename TreeT::RootNodeType;
using NonConstLeafType = typename TreeType::LeafNodeType;
using LeafType = typename CopyConstness<TreeType, NonConstLeafType>::Type;
using LeafNodeType = LeafType;
using LeafIterType = typename leafmgr::TreeTraits<TreeT>::LeafIterType;
using NonConstBufferType = typename LeafType::Buffer;
using BufferType = typename CopyConstness<TreeType, NonConstBufferType>::Type;
using RangeType = tbb::blocked_range<size_t>; // leaf index range
static const Index DEPTH = 2; // root + leaf nodes
static const bool IsConstTree = leafmgr::TreeTraits<TreeT>::IsConstTree;
class LeafRange
{
public:
class Iterator
{
public:
Iterator(const LeafRange& range, size_t pos): mRange(range), mPos(pos)
{
assert(this->isValid());
}
Iterator(const Iterator&) = default;
Iterator& operator=(const Iterator&) = default;
/// Advance to the next leaf node.
Iterator& operator++() { ++mPos; return *this; }
/// Return a reference to the leaf node to which this iterator is pointing.
LeafType& operator*() const { return mRange.mLeafManager.leaf(mPos); }
/// Return a pointer to the leaf node to which this iterator is pointing.
LeafType* operator->() const { return &(this->operator*()); }
/// @brief Return the nth buffer for the leaf node to which this iterator is pointing,
/// where n = @a bufferIdx and n = 0 corresponds to the leaf node's own buffer.
BufferType& buffer(size_t bufferIdx)
{
return mRange.mLeafManager.getBuffer(mPos, bufferIdx);
}
/// Return the index into the leaf array of the current leaf node.
size_t pos() const { return mPos; }
/// Return @c true if the position of this iterator is in a valid range.
bool isValid() const { return mPos>=mRange.mBegin && mPos<=mRange.mEnd; }
/// Return @c true if this iterator is not yet exhausted.
bool test() const { return mPos < mRange.mEnd; }
/// Return @c true if this iterator is not yet exhausted.
operator bool() const { return this->test(); }
/// Return @c true if this iterator is exhausted.
bool empty() const { return !this->test(); }
bool operator!=(const Iterator& other) const
{
return (mPos != other.mPos) || (&mRange != &other.mRange);
}
bool operator==(const Iterator& other) const { return !(*this != other); }
const LeafRange& leafRange() const { return mRange; }
private:
const LeafRange& mRange;
size_t mPos;
};// end Iterator
LeafRange(size_t begin, size_t end, const LeafManager& leafManager, size_t grainSize=1)
: mEnd(end)
, mBegin(begin)
, mGrainSize(grainSize)
, mLeafManager(leafManager)
{
}
Iterator begin() const {return Iterator(*this, mBegin);}
Iterator end() const {return Iterator(*this, mEnd);}
size_t size() const { return mEnd - mBegin; }
size_t grainsize() const { return mGrainSize; }
const LeafManager& leafManager() const { return mLeafManager; }
bool empty() const {return !(mBegin < mEnd);}
bool is_divisible() const {return mGrainSize < this->size();}
LeafRange(LeafRange& r, tbb::split)
: mEnd(r.mEnd)
, mBegin(doSplit(r))
, mGrainSize(r.mGrainSize)
, mLeafManager(r.mLeafManager)
{
}
private:
size_t mEnd, mBegin, mGrainSize;
const LeafManager& mLeafManager;
static size_t doSplit(LeafRange& r)
{
assert(r.is_divisible());
size_t middle = r.mBegin + (r.mEnd - r.mBegin) / 2u;
r.mEnd = middle;
return middle;
}
};// end of LeafRange
/// @brief Constructor from a tree reference and an auxiliary buffer count
/// @note The default is no auxiliary buffers
LeafManager(TreeType& tree, size_t auxBuffersPerLeaf=0, bool serial=false)
: mTree(&tree)
, mLeafCount(0)
, mAuxBufferCount(0)
, mAuxBuffersPerLeaf(auxBuffersPerLeaf)
, mLeafs(nullptr)
, mAuxBuffers(nullptr)
, mTask(0)
, mIsMaster(true)
{
this->rebuild(serial);
}
/// @brief Construct directly from an existing array of leafnodes.
/// @warning The leafnodes are implicitly assumed to exist in the
/// input @a tree.
LeafManager(TreeType& tree, LeafType** begin, LeafType** end,
size_t auxBuffersPerLeaf=0, bool serial=false)
: mTree(&tree)
, mLeafCount(end-begin)
, mAuxBufferCount(0)
, mAuxBuffersPerLeaf(auxBuffersPerLeaf)
, mLeafs(new LeafType*[mLeafCount])
, mAuxBuffers(nullptr)
, mTask(0)
, mIsMaster(true)
{
size_t n = mLeafCount;
LeafType **target = mLeafs, **source = begin;
while (n--) *target++ = *source++;
if (auxBuffersPerLeaf) this->initAuxBuffers(serial);
}
/// Shallow copy constructor called by tbb::parallel_for() threads
///
/// @note This should never get called directly
LeafManager(const LeafManager& other)
: mTree(other.mTree)
, mLeafCount(other.mLeafCount)
, mAuxBufferCount(other.mAuxBufferCount)
, mAuxBuffersPerLeaf(other.mAuxBuffersPerLeaf)
, mLeafs(other.mLeafs)
, mAuxBuffers(other.mAuxBuffers)
, mTask(other.mTask)
, mIsMaster(false)
{
}
virtual ~LeafManager()
{
if (mIsMaster) {
delete [] mLeafs;
delete [] mAuxBuffers;
}
}
/// @brief (Re)initialize by resizing (if necessary) and repopulating the leaf array
/// and by deleting existing auxiliary buffers and allocating new ones.
/// @details Call this method if the tree's topology, and therefore the number
/// of leaf nodes, changes. New auxiliary buffers are initialized with copies
/// of corresponding leaf node buffers.
void rebuild(bool serial=false)
{
this->initLeafArray();
this->initAuxBuffers(serial);
}
//@{
/// Repopulate the leaf array and delete and reallocate auxiliary buffers.
void rebuild(size_t auxBuffersPerLeaf, bool serial=false)
{
mAuxBuffersPerLeaf = auxBuffersPerLeaf;
this->rebuild(serial);
}
void rebuild(TreeType& tree, bool serial=false)
{
mTree = &tree;
this->rebuild(serial);
}
void rebuild(TreeType& tree, size_t auxBuffersPerLeaf, bool serial=false)
{
mTree = &tree;
mAuxBuffersPerLeaf = auxBuffersPerLeaf;
this->rebuild(serial);
}
//@}
/// @brief Change the number of auxiliary buffers.
/// @details If auxBuffersPerLeaf is 0, all existing auxiliary buffers are deleted.
/// New auxiliary buffers are initialized with copies of corresponding leaf node buffers.
/// This method does not rebuild the leaf array.
void rebuildAuxBuffers(size_t auxBuffersPerLeaf, bool serial=false)
{
mAuxBuffersPerLeaf = auxBuffersPerLeaf;
this->initAuxBuffers(serial);
}
/// @brief Remove the auxiliary buffers, but don't rebuild the leaf array.
void removeAuxBuffers() { this->rebuildAuxBuffers(0); }
/// @brief Remove the auxiliary buffers and rebuild the leaf array.
void rebuildLeafArray()
{
this->removeAuxBuffers();
this->initLeafArray();
}
/// @brief Return the total number of allocated auxiliary buffers.
size_t auxBufferCount() const { return mAuxBufferCount; }
/// @brief Return the number of auxiliary buffers per leaf node.
size_t auxBuffersPerLeaf() const { return mAuxBuffersPerLeaf; }
/// @brief Return the number of leaf nodes.
size_t leafCount() const { return mLeafCount; }
/// @brief Return the number of active voxels in the leaf nodes.
/// @note Multi-threaded for better performance than Tree::activeLeafVoxelCount
Index64 activeLeafVoxelCount() const
{
return tbb::parallel_reduce(this->leafRange(), Index64(0),
[] (const LeafRange& range, Index64 sum) -> Index64 {
for (const auto& leaf: range) { sum += leaf.onVoxelCount(); }
return sum;
},
[] (Index64 n, Index64 m) -> Index64 { return n + m; });
}
/// Return a const reference to tree associated with this manager.
const TreeType& tree() const { return *mTree; }
/// Return a reference to the tree associated with this manager.
TreeType& tree() { return *mTree; }
/// Return a const reference to root node associated with this manager.
const RootNodeType& root() const { return mTree->root(); }
/// Return a reference to the root node associated with this manager.
RootNodeType& root() { return mTree->root(); }
/// Return @c true if the tree associated with this manager is immutable.
bool isConstTree() const { return this->IsConstTree; }
/// @brief Return a pointer to the leaf node at index @a leafIdx in the array.
/// @note For performance reasons no range check is performed (other than an assertion)!
LeafType& leaf(size_t leafIdx) const { assert(leafIdx<mLeafCount); return *mLeafs[leafIdx]; }
/// @brief Return the leaf or auxiliary buffer for the leaf node at index @a leafIdx.
/// If @a bufferIdx is zero, return the leaf buffer, otherwise return the nth
/// auxiliary buffer, where n = @a bufferIdx - 1.
///
/// @note For performance reasons no range checks are performed on the inputs
/// (other than assertions)! Since auxiliary buffers, unlike leaf buffers,
/// might not exist, be especially careful when specifying the @a bufferIdx.
/// @note For const trees, this method always returns a reference to a const buffer.
/// It is safe to @c const_cast and modify any auxiliary buffer (@a bufferIdx > 0),
/// but it is not safe to modify the leaf buffer (@a bufferIdx = 0).
BufferType& getBuffer(size_t leafIdx, size_t bufferIdx) const
{
assert(leafIdx < mLeafCount);
assert(bufferIdx == 0 || bufferIdx - 1 < mAuxBuffersPerLeaf);
return bufferIdx == 0 ? mLeafs[leafIdx]->buffer()
: mAuxBuffers[leafIdx * mAuxBuffersPerLeaf + bufferIdx - 1];
}
/// @brief Return a @c tbb::blocked_range of leaf array indices.
///
/// @note Consider using leafRange() instead, which provides access methods
/// to leaf nodes and buffers.
RangeType getRange(size_t grainsize = 1) const { return RangeType(0, mLeafCount, grainsize); }
/// Return a TBB-compatible LeafRange.
LeafRange leafRange(size_t grainsize = 1) const
{
return LeafRange(0, mLeafCount, *this, grainsize);
}
/// @brief Swap each leaf node's buffer with the nth corresponding auxiliary buffer,
/// where n = @a bufferIdx.
/// @return @c true if the swap was successful
/// @param bufferIdx index of the buffer that will be swapped with
/// the corresponding leaf node buffer
/// @param serial if false, swap buffers in parallel using multiple threads.
/// @note Recall that the indexing of auxiliary buffers is 1-based, since
/// buffer index 0 denotes the leaf node buffer. So buffer index 1 denotes
/// the first auxiliary buffer.
bool swapLeafBuffer(size_t bufferIdx, bool serial = false)
{
namespace ph = std::placeholders;
if (bufferIdx == 0 || bufferIdx > mAuxBuffersPerLeaf || this->isConstTree()) return false;
mTask = std::bind(&LeafManager::doSwapLeafBuffer, ph::_1, ph::_2, bufferIdx - 1);
this->cook(serial ? 0 : 512);
return true;//success
}
/// @brief Swap any two buffers for each leaf node.
/// @note Recall that the indexing of auxiliary buffers is 1-based, since
/// buffer index 0 denotes the leaf node buffer. So buffer index 1 denotes
/// the first auxiliary buffer.
bool swapBuffer(size_t bufferIdx1, size_t bufferIdx2, bool serial = false)
{
namespace ph = std::placeholders;
const size_t b1 = std::min(bufferIdx1, bufferIdx2);
const size_t b2 = std::max(bufferIdx1, bufferIdx2);
if (b1 == b2 || b2 > mAuxBuffersPerLeaf) return false;
if (b1 == 0) {
if (this->isConstTree()) return false;
mTask = std::bind(&LeafManager::doSwapLeafBuffer, ph::_1, ph::_2, b2-1);
} else {
mTask = std::bind(&LeafManager::doSwapAuxBuffer, ph::_1, ph::_2, b1-1, b2-1);
}
this->cook(serial ? 0 : 512);
return true;//success
}
/// @brief Sync up the specified auxiliary buffer with the corresponding leaf node buffer.
/// @return @c true if the sync was successful
/// @param bufferIdx index of the buffer that will contain a
/// copy of the corresponding leaf node buffer
/// @param serial if false, sync buffers in parallel using multiple threads.
/// @note Recall that the indexing of auxiliary buffers is 1-based, since
/// buffer index 0 denotes the leaf node buffer. So buffer index 1 denotes
/// the first auxiliary buffer.
bool syncAuxBuffer(size_t bufferIdx, bool serial = false)
{
namespace ph = std::placeholders;
if (bufferIdx == 0 || bufferIdx > mAuxBuffersPerLeaf) return false;
mTask = std::bind(&LeafManager::doSyncAuxBuffer, ph::_1, ph::_2, bufferIdx - 1);
this->cook(serial ? 0 : 64);
return true;//success
}
/// @brief Sync up all auxiliary buffers with their corresponding leaf node buffers.
/// @return true if the sync was successful
/// @param serial if false, sync buffers in parallel using multiple threads.
bool syncAllBuffers(bool serial = false)
{
namespace ph = std::placeholders;
switch (mAuxBuffersPerLeaf) {
case 0: return false;//nothing to do
case 1: mTask = std::bind(&LeafManager::doSyncAllBuffers1, ph::_1, ph::_2); break;
case 2: mTask = std::bind(&LeafManager::doSyncAllBuffers2, ph::_1, ph::_2); break;
default: mTask = std::bind(&LeafManager::doSyncAllBuffersN, ph::_1, ph::_2); break;
}
this->cook(serial ? 0 : 64);
return true;//success
}
/// @brief Threaded method that applies a user-supplied functor
/// to each leaf node in the LeafManager.
///
/// @details The user-supplied functor needs to define the methods
/// required for tbb::parallel_for.
///
/// @param op user-supplied functor, see examples for interface details.
/// @param threaded optional toggle to disable threading, on by default.
/// @param grainSize optional parameter to specify the grainsize
/// for threading, one by default.
///
/// @warning The functor object is deep-copied to create TBB tasks.
/// This allows the function to use non-thread-safe members
/// like a ValueAccessor.
///
/// @par Example:
/// @code
/// // Functor to offset a tree's voxel values with values from another tree.
/// template<typename TreeType>
/// struct OffsetOp
/// {
/// using Accessor = tree::ValueAccessor<const TreeType>;
///
/// OffsetOp(const TreeType& tree): mRhsTreeAcc(tree) {}
///
/// template <typename LeafNodeType>
/// void operator()(LeafNodeType &lhsLeaf, size_t) const
/// {
/// const LeafNodeType *rhsLeaf = mRhsTreeAcc.probeConstLeaf(lhsLeaf.origin());
/// if (rhsLeaf) {
/// typename LeafNodeType::ValueOnIter iter = lhsLeaf.beginValueOn();
/// for (; iter; ++iter) {
/// iter.setValue(iter.getValue() + rhsLeaf->getValue(iter.pos()));
/// }
/// }
/// }
/// Accessor mRhsTreeAcc;
/// };
///
/// // usage:
/// tree::LeafManager<FloatTree> leafNodes(lhsTree);
/// leafNodes.foreach(OffsetOp<FloatTree>(rhsTree));
///
/// // A functor that performs a min operation between different auxiliary buffers.
/// template<typename LeafManagerType>
/// struct MinOp
/// {
/// using BufferType = typename LeafManagerType::BufferType;
///
/// MinOp(LeafManagerType& leafNodes): mLeafs(leafNodes) {}
///
/// template <typename LeafNodeType>
/// void operator()(LeafNodeType &leaf, size_t leafIndex) const
/// {
/// // get the first buffer
/// BufferType& buffer = mLeafs.getBuffer(leafIndex, 1);
///
/// // min ...
/// }
/// LeafManagerType& mLeafs;
/// };
/// @endcode
template<typename LeafOp>
void foreach(const LeafOp& op, bool threaded = true, size_t grainSize=1)
{
LeafTransformer<LeafOp> transform(op);
transform.run(this->leafRange(grainSize), threaded);
}
/// @brief Threaded method that applies a user-supplied functor
/// to each leaf node in the LeafManager. Unlike foreach
/// (defined above) this method performs a reduction on
/// all the leaf nodes.
///
/// @details The user-supplied functor needs to define the methods
/// required for tbb::parallel_reduce.
///
/// @param op user-supplied functor, see examples for interface details.
/// @param threaded optional toggle to disable threading, on by default.
/// @param grainSize optional parameter to specify the grainsize
/// for threading, one by default.
///
/// @warning The functor object is deep-copied to create TBB tasks.
/// This allows the function to use non-thread-safe members
/// like a ValueAccessor.
///
/// @par Example:
/// @code
/// // Functor to count the number of negative (active) leaf values
/// struct CountOp
/// {
/// CountOp() : mCounter(0) {}
/// CountOp(const CountOp &other) : mCounter(other.mCounter) {}
/// CountOp(const CountOp &other, tbb::split) : mCounter(0) {}
/// template <typename LeafNodeType>
/// void operator()(LeafNodeType &leaf, size_t)
/// {
/// typename LeafNodeType::ValueOnIter iter = leaf.beginValueOn();
/// for (; iter; ++iter) if (*iter < 0.0f) ++mCounter;
/// }
/// void join(const CountOp &other) {mCounter += other.mCounter;}
/// size_t mCounter;
/// };
///
/// // usage:
/// tree::LeafManager<FloatTree> leafNodes(tree);
/// MinValueOp min;
/// leafNodes.reduce(min);
/// std::cerr << "Number of negative active voxels = " << min.mCounter << std::endl;
///
/// @endcode
template<typename LeafOp>
void reduce(LeafOp& op, bool threaded = true, size_t grainSize=1)
{
LeafReducer<LeafOp> transform(op);
transform.run(this->leafRange(grainSize), threaded);
}
/// @brief Insert pointers to nodes of the specified type into the array.
/// @details The type of node pointer is defined by the type
/// ArrayT::value_type. If the node type is a LeafNode the nodes
/// are inserted from this LeafManager, else of the corresponding tree.
template<typename ArrayT>
void getNodes(ArrayT& array)
{
using T = typename ArrayT::value_type;
static_assert(std::is_pointer<T>::value, "argument to getNodes() must be a pointer array");
using LeafT = typename std::conditional<std::is_const<
typename std::remove_pointer<T>::type>::value, const LeafType, LeafType>::type;
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (std::is_same<T, LeafT*>::value) {
array.resize(mLeafCount);
for (size_t i=0; i<mLeafCount; ++i) array[i] = reinterpret_cast<T>(mLeafs[i]);
} else {
mTree->getNodes(array);
}
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
/// @brief Insert node pointers of the specified type into the array.
/// @details The type of node pointer is defined by the type
/// ArrayT::value_type. If the node type is a LeafNode the nodes
/// are inserted from this LeafManager, else of the corresponding tree.
template<typename ArrayT>
void getNodes(ArrayT& array) const
{
using T = typename ArrayT::value_type;
static_assert(std::is_pointer<T>::value, "argument to getNodes() must be a pointer array");
static_assert(std::is_const<typename std::remove_pointer<T>::type>::value,
"argument to getNodes() must be an array of const node pointers");
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (std::is_same<T, const LeafType*>::value) {
array.resize(mLeafCount);
for (size_t i=0; i<mLeafCount; ++i) array[i] = reinterpret_cast<T>(mLeafs[i]);
} else {
mTree->getNodes(array);
}
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
/// @brief Generate a linear array of prefix sums of offsets into the
/// active voxels in the leafs. So @a offsets[n]+m is the offset to the
/// mth active voxel in the nth leaf node (useful for
/// user-managed value buffers, e.g. in tools/LevelSetAdvect.h).
/// @return The total number of active values in the leaf nodes
/// @param offsets array of prefix sums of offsets to active voxels
/// @param size on input, the size of @a offsets; on output, its new size
/// @param grainSize optional grain size for threading
/// @details If @a offsets is @c nullptr or @a size is smaller than the
/// total number of active voxels (the return value) then @a offsets
/// is reallocated and @a size equals the total number of active voxels.
size_t getPrefixSum(size_t*& offsets, size_t& size, size_t grainSize=1) const
{
if (offsets == nullptr || size < mLeafCount) {
delete [] offsets;
offsets = new size_t[mLeafCount];
size = mLeafCount;
}
size_t prefix = 0;
if ( grainSize > 0 ) {
PrefixSum tmp(this->leafRange( grainSize ), offsets, prefix);
} else {// serial
for (size_t i=0; i<mLeafCount; ++i) {
offsets[i] = prefix;
prefix += mLeafs[i]->onVoxelCount();
}
}
return prefix;
}
////////////////////////////////////////////////////////////////////////////////////
// All methods below are for internal use only and should never be called directly
/// Used internally by tbb::parallel_for() - never call it directly!
void operator()(const RangeType& r) const
{
if (mTask) mTask(const_cast<LeafManager*>(this), r);
else OPENVDB_THROW(ValueError, "task is undefined");
}
private:
// This a simple wrapper for a c-style array so it mimics the api
// of a std container, e.g. std::vector or std::deque, and can be
// passed to Tree::getNodes().
struct MyArray {
using value_type = LeafType*;//required by Tree::getNodes
value_type* ptr;
MyArray(value_type* array) : ptr(array) {}
void push_back(value_type leaf) { *ptr++ = leaf; }//required by Tree::getNodes
};
void initLeafArray()
{
const size_t leafCount = mTree->leafCount();
if (leafCount != mLeafCount) {
delete [] mLeafs;
mLeafs = (leafCount == 0) ? nullptr : new LeafType*[leafCount];
mLeafCount = leafCount;
}
MyArray a(mLeafs);
mTree->getNodes(a);
}
void initAuxBuffers(bool serial)
{
const size_t auxBufferCount = mLeafCount * mAuxBuffersPerLeaf;
if (auxBufferCount != mAuxBufferCount) {
delete [] mAuxBuffers;
mAuxBuffers = (auxBufferCount == 0) ? nullptr : new NonConstBufferType[auxBufferCount];
mAuxBufferCount = auxBufferCount;
}
this->syncAllBuffers(serial);
}
void cook(size_t grainsize)
{
if (grainsize>0) {
tbb::parallel_for(this->getRange(grainsize), *this);
} else {
(*this)(this->getRange());
}
}
void doSwapLeafBuffer(const RangeType& r, size_t auxBufferIdx)
{
LeafManagerImpl<LeafManager>::doSwapLeafBuffer(
r, auxBufferIdx, mLeafs, mAuxBuffers, mAuxBuffersPerLeaf);
}
void doSwapAuxBuffer(const RangeType& r, size_t auxBufferIdx1, size_t auxBufferIdx2)
{
for (size_t N = mAuxBuffersPerLeaf, n = N*r.begin(), m = N*r.end(); n != m; n+=N) {
mAuxBuffers[n + auxBufferIdx1].swap(mAuxBuffers[n + auxBufferIdx2]);
}
}
void doSyncAuxBuffer(const RangeType& r, size_t auxBufferIdx)
{
for (size_t n = r.begin(), m = r.end(), N = mAuxBuffersPerLeaf; n != m; ++n) {
mAuxBuffers[n*N + auxBufferIdx] = mLeafs[n]->buffer();
}
}
void doSyncAllBuffers1(const RangeType& r)
{
for (size_t n = r.begin(), m = r.end(); n != m; ++n) {
mAuxBuffers[n] = mLeafs[n]->buffer();
}
}
void doSyncAllBuffers2(const RangeType& r)
{
for (size_t n = r.begin(), m = r.end(); n != m; ++n) {
const BufferType& leafBuffer = mLeafs[n]->buffer();
mAuxBuffers[2*n ] = leafBuffer;
mAuxBuffers[2*n+1] = leafBuffer;
}
}
void doSyncAllBuffersN(const RangeType& r)
{
for (size_t n = r.begin(), m = r.end(), N = mAuxBuffersPerLeaf; n != m; ++n) {
const BufferType& leafBuffer = mLeafs[n]->buffer();
for (size_t i=n*N, j=i+N; i!=j; ++i) mAuxBuffers[i] = leafBuffer;
}
}
/// @brief Private member class that applies a user-defined
/// functor to perform parallel_for on all the leaf nodes.
template<typename LeafOp>
struct LeafTransformer
{
LeafTransformer(const LeafOp &leafOp) : mLeafOp(leafOp)
{
}
void run(const LeafRange &range, bool threaded) const
{
threaded ? tbb::parallel_for(range, *this) : (*this)(range);
}
void operator()(const LeafRange &range) const
{
for (typename LeafRange::Iterator it = range.begin(); it; ++it) mLeafOp(*it, it.pos());
}
const LeafOp mLeafOp;
};// LeafTransformer
/// @brief Private member class that applies a user-defined
/// functor to perform parallel_reduce on all the leaf nodes.
template<typename LeafOp>
struct LeafReducer
{
LeafReducer(LeafOp &leafOp) : mLeafOp(&leafOp), mOwnsOp(false)
{
}
LeafReducer(const LeafReducer &other, tbb::split)
: mLeafOp(new LeafOp(*(other.mLeafOp), tbb::split())), mOwnsOp(true)
{
}
~LeafReducer() { if (mOwnsOp) delete mLeafOp; }
void run(const LeafRange& range, bool threaded)
{
threaded ? tbb::parallel_reduce(range, *this) : (*this)(range);
}
void operator()(const LeafRange& range)
{
LeafOp &op = *mLeafOp;//local registry
for (typename LeafRange::Iterator it = range.begin(); it; ++it) op(*it, it.pos());
}
void join(const LeafReducer& other) { mLeafOp->join(*(other.mLeafOp)); }
LeafOp *mLeafOp;
const bool mOwnsOp;
};// LeafReducer
// Helper class to compute a prefix sum of offsets to active voxels
struct PrefixSum
{
PrefixSum(const LeafRange& r, size_t* offsets, size_t& prefix)
: mOffsets(offsets)
{
tbb::parallel_for( r, *this);
for (size_t i=0, leafCount = r.size(); i<leafCount; ++i) {
size_t tmp = offsets[i];
offsets[i] = prefix;
prefix += tmp;
}
}
inline void operator()(const LeafRange& r) const {
for (typename LeafRange::Iterator i = r.begin(); i; ++i) {
mOffsets[i.pos()] = i->onVoxelCount();
}
}
size_t* mOffsets;
};// PrefixSum
using FuncType = typename std::function<void (LeafManager*, const RangeType&)>;
TreeType* mTree;
size_t mLeafCount, mAuxBufferCount, mAuxBuffersPerLeaf;
LeafType** mLeafs;//array of LeafNode pointers
NonConstBufferType* mAuxBuffers;//array of auxiliary buffers
FuncType mTask;
const bool mIsMaster;
};//end of LeafManager class
// Partial specializations of LeafManager methods for const trees
template<typename TreeT>
struct LeafManagerImpl<LeafManager<const TreeT> >
{
using ManagerT = LeafManager<const TreeT>;
using RangeT = typename ManagerT::RangeType;
using LeafT = typename ManagerT::LeafType;
using BufT = typename ManagerT::BufferType;
static inline void doSwapLeafBuffer(const RangeT&, size_t /*auxBufferIdx*/,
LeafT**, BufT*, size_t /*bufsPerLeaf*/)
{
// Buffers can't be swapped into const trees.
}
};
} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TREE_LEAFMANAGER_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|