This file is indexed.

/usr/include/openvdb/tree/LeafManager.h is in libopenvdb-dev 5.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

/// @file LeafManager.h
///
/// @brief A LeafManager manages a linear array of pointers to a given tree's
/// leaf nodes, as well as optional auxiliary buffers (one or more per leaf)
/// that can be swapped with the leaf nodes' voxel data buffers.
/// @details The leaf array is useful for multithreaded computations over
/// leaf voxels in a tree with static topology but varying voxel values.
/// The auxiliary buffers are convenient for temporal integration.
/// Efficient methods are provided for multithreaded swapping and synching
/// (i.e., copying the contents) of these buffers.

#ifndef OPENVDB_TREE_LEAFMANAGER_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_LEAFMANAGER_HAS_BEEN_INCLUDED

#include <openvdb/Types.h>
#include "TreeIterator.h" // for CopyConstness
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <functional>
#include <type_traits>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {

namespace leafmgr {

//@{
/// Useful traits for Tree types
template<typename TreeT> struct TreeTraits {
    static const bool IsConstTree = false;
    using LeafIterType = typename TreeT::LeafIter;
};
template<typename TreeT> struct TreeTraits<const TreeT> {
    static const bool IsConstTree = true;
    using LeafIterType = typename TreeT::LeafCIter;
};
//@}

} // namespace leafmgr


/// This helper class implements LeafManager methods that need to be
/// specialized for const vs. non-const trees.
template<typename ManagerT>
struct LeafManagerImpl
{
    using RangeT = typename ManagerT::RangeType;
    using LeafT = typename ManagerT::LeafType;
    using BufT = typename ManagerT::BufferType;

    static inline void doSwapLeafBuffer(const RangeT& r, size_t auxBufferIdx,
                                        LeafT** leafs, BufT* bufs, size_t bufsPerLeaf)
    {
        for (size_t n = r.begin(), m = r.end(), N = bufsPerLeaf; n != m; ++n) {
            leafs[n]->swap(bufs[n * N + auxBufferIdx]);
        }
    }
};


////////////////////////////////////////


/// @brief This class manages a linear array of pointers to a given tree's
/// leaf nodes, as well as optional auxiliary buffers (one or more per leaf)
/// that can be swapped with the leaf nodes' voxel data buffers.
/// @details The leaf array is useful for multithreaded computations over
/// leaf voxels in a tree with static topology but varying voxel values.
/// The auxiliary buffers are convenient for temporal integration.
/// Efficient methods are provided for multithreaded swapping and sync'ing
/// (i.e., copying the contents) of these buffers.
///
/// @note Buffer index 0 denotes a leaf node's internal voxel data buffer.
/// Any auxiliary buffers are indexed starting from one.
template<typename TreeT>
class LeafManager
{
public:
    using TreeType = TreeT;
    using ValueType = typename TreeT::ValueType;
    using RootNodeType = typename TreeT::RootNodeType;
    using NonConstLeafType = typename TreeType::LeafNodeType;
    using LeafType = typename CopyConstness<TreeType, NonConstLeafType>::Type;
    using LeafNodeType = LeafType;
    using LeafIterType = typename leafmgr::TreeTraits<TreeT>::LeafIterType;
    using NonConstBufferType = typename LeafType::Buffer;
    using BufferType = typename CopyConstness<TreeType, NonConstBufferType>::Type;
    using RangeType = tbb::blocked_range<size_t>; // leaf index range
    static const Index DEPTH = 2; // root + leaf nodes

    static const bool IsConstTree = leafmgr::TreeTraits<TreeT>::IsConstTree;

    class LeafRange
    {
    public:
        class Iterator
        {
        public:
            Iterator(const LeafRange& range, size_t pos): mRange(range), mPos(pos)
            {
                assert(this->isValid());
            }
            Iterator(const Iterator&) = default;
            Iterator& operator=(const Iterator&) = default;
            /// Advance to the next leaf node.
            Iterator& operator++() { ++mPos; return *this; }
            /// Return a reference to the leaf node to which this iterator is pointing.
            LeafType& operator*() const { return mRange.mLeafManager.leaf(mPos); }
            /// Return a pointer to the leaf node to which this iterator is pointing.
            LeafType* operator->() const { return &(this->operator*()); }
            /// @brief Return the nth buffer for the leaf node to which this iterator is pointing,
            /// where n = @a bufferIdx and n = 0 corresponds to the leaf node's own buffer.
            BufferType& buffer(size_t bufferIdx)
            {
                return mRange.mLeafManager.getBuffer(mPos, bufferIdx);
            }
            /// Return the index into the leaf array of the current leaf node.
            size_t pos() const { return mPos; }
            /// Return @c true if the position of this iterator is in a valid range.
            bool isValid() const { return mPos>=mRange.mBegin && mPos<=mRange.mEnd; }
            /// Return @c true if this iterator is not yet exhausted.
            bool test() const { return mPos < mRange.mEnd; }
            /// Return @c true if this iterator is not yet exhausted.
            operator bool() const { return this->test(); }
            /// Return @c true if this iterator is exhausted.
            bool empty() const { return !this->test(); }
            bool operator!=(const Iterator& other) const
            {
                return (mPos != other.mPos) || (&mRange != &other.mRange);
            }
            bool operator==(const Iterator& other) const { return !(*this != other); }
            const LeafRange& leafRange() const { return mRange; }

        private:
            const LeafRange& mRange;
            size_t mPos;
        };// end Iterator

        LeafRange(size_t begin, size_t end, const LeafManager& leafManager, size_t grainSize=1)
            : mEnd(end)
            , mBegin(begin)
            , mGrainSize(grainSize)
            , mLeafManager(leafManager)
        {
        }

        Iterator begin() const {return Iterator(*this, mBegin);}

        Iterator end() const {return Iterator(*this, mEnd);}

        size_t size() const { return mEnd - mBegin; }

        size_t grainsize() const { return mGrainSize; }

        const LeafManager& leafManager() const { return mLeafManager; }

        bool empty() const {return !(mBegin < mEnd);}

        bool is_divisible() const {return mGrainSize < this->size();}

        LeafRange(LeafRange& r, tbb::split)
            : mEnd(r.mEnd)
            , mBegin(doSplit(r))
            , mGrainSize(r.mGrainSize)
            , mLeafManager(r.mLeafManager)
        {
        }

    private:
        size_t mEnd, mBegin, mGrainSize;
        const LeafManager& mLeafManager;

        static size_t doSplit(LeafRange& r)
        {
            assert(r.is_divisible());
            size_t middle = r.mBegin + (r.mEnd - r.mBegin) / 2u;
            r.mEnd = middle;
            return middle;
        }
    };// end of LeafRange

    /// @brief Constructor from a tree reference and an auxiliary buffer count
    /// @note  The default is no auxiliary buffers
    LeafManager(TreeType& tree, size_t auxBuffersPerLeaf=0, bool serial=false)
        : mTree(&tree)
        , mLeafCount(0)
        , mAuxBufferCount(0)
        , mAuxBuffersPerLeaf(auxBuffersPerLeaf)
        , mLeafs(nullptr)
        , mAuxBuffers(nullptr)
        , mTask(0)
        , mIsMaster(true)
    {
        this->rebuild(serial);
    }

    /// @brief Construct directly from an existing array of leafnodes.
    /// @warning The leafnodes are implicitly assumed to exist in the
    ///          input @a tree.
    LeafManager(TreeType& tree, LeafType** begin, LeafType** end,
                size_t auxBuffersPerLeaf=0, bool serial=false)
        : mTree(&tree)
        , mLeafCount(end-begin)
        , mAuxBufferCount(0)
        , mAuxBuffersPerLeaf(auxBuffersPerLeaf)
        , mLeafs(new LeafType*[mLeafCount])
        , mAuxBuffers(nullptr)
        , mTask(0)
        , mIsMaster(true)
    {
        size_t n = mLeafCount;
        LeafType **target = mLeafs, **source = begin;
        while (n--) *target++ = *source++;
        if (auxBuffersPerLeaf) this->initAuxBuffers(serial);
    }

    /// Shallow copy constructor called by tbb::parallel_for() threads
    ///
    /// @note This should never get called directly
    LeafManager(const LeafManager& other)
        : mTree(other.mTree)
        , mLeafCount(other.mLeafCount)
        , mAuxBufferCount(other.mAuxBufferCount)
        , mAuxBuffersPerLeaf(other.mAuxBuffersPerLeaf)
        , mLeafs(other.mLeafs)
        , mAuxBuffers(other.mAuxBuffers)
        , mTask(other.mTask)
        , mIsMaster(false)
    {
    }

    virtual ~LeafManager()
    {
        if (mIsMaster) {
            delete [] mLeafs;
            delete [] mAuxBuffers;
        }
    }

    /// @brief (Re)initialize by resizing (if necessary) and repopulating the leaf array
    /// and by deleting existing auxiliary buffers and allocating new ones.
    /// @details Call this method if the tree's topology, and therefore the number
    /// of leaf nodes, changes.  New auxiliary buffers are initialized with copies
    /// of corresponding leaf node buffers.
    void rebuild(bool serial=false)
    {
        this->initLeafArray();
        this->initAuxBuffers(serial);
    }
    //@{
    /// Repopulate the leaf array and delete and reallocate auxiliary buffers.
    void rebuild(size_t auxBuffersPerLeaf, bool serial=false)
    {
        mAuxBuffersPerLeaf = auxBuffersPerLeaf;
        this->rebuild(serial);
    }
    void rebuild(TreeType& tree, bool serial=false)
    {
        mTree = &tree;
        this->rebuild(serial);
    }
    void rebuild(TreeType& tree, size_t auxBuffersPerLeaf, bool serial=false)
    {
        mTree = &tree;
        mAuxBuffersPerLeaf = auxBuffersPerLeaf;
        this->rebuild(serial);
    }
    //@}
    /// @brief Change the number of auxiliary buffers.
    /// @details If auxBuffersPerLeaf is 0, all existing auxiliary buffers are deleted.
    /// New auxiliary buffers are initialized with copies of corresponding leaf node buffers.
    /// This method does not rebuild the leaf array.
    void rebuildAuxBuffers(size_t auxBuffersPerLeaf, bool serial=false)
    {
        mAuxBuffersPerLeaf = auxBuffersPerLeaf;
        this->initAuxBuffers(serial);
    }
    /// @brief Remove the auxiliary buffers, but don't rebuild the leaf array.
    void removeAuxBuffers() { this->rebuildAuxBuffers(0); }

    /// @brief Remove the auxiliary buffers and rebuild the leaf array.
    void rebuildLeafArray()
    {
        this->removeAuxBuffers();
        this->initLeafArray();
    }

    /// @brief Return the total number of allocated auxiliary buffers.
    size_t auxBufferCount() const { return mAuxBufferCount; }
    /// @brief Return the number of auxiliary buffers per leaf node.
    size_t auxBuffersPerLeaf() const { return mAuxBuffersPerLeaf; }

    /// @brief Return the number of leaf nodes.
    size_t leafCount() const { return mLeafCount; }

    /// @brief Return the number of active voxels in the leaf nodes.
    /// @note Multi-threaded for better performance than Tree::activeLeafVoxelCount
    Index64 activeLeafVoxelCount() const
    {
        return tbb::parallel_reduce(this->leafRange(), Index64(0),
            [] (const LeafRange& range, Index64 sum) -> Index64 {
                for (const auto& leaf: range) { sum += leaf.onVoxelCount(); }
                return sum;
            },
            [] (Index64 n, Index64 m) -> Index64 { return n + m; });
    }

    /// Return a const reference to tree associated with this manager.
    const TreeType& tree() const { return *mTree; }

    /// Return a reference to the tree associated with this manager.
    TreeType& tree() { return *mTree; }

    /// Return a const reference to root node associated with this manager.
    const RootNodeType& root() const { return mTree->root(); }

    /// Return a reference to the root node associated with this manager.
    RootNodeType& root() { return mTree->root(); }

    /// Return @c true if the tree associated with this manager is immutable.
    bool isConstTree() const { return this->IsConstTree; }

    /// @brief Return a pointer to the leaf node at index @a leafIdx in the array.
    /// @note For performance reasons no range check is performed (other than an assertion)!
    LeafType& leaf(size_t leafIdx) const { assert(leafIdx<mLeafCount); return *mLeafs[leafIdx]; }

    /// @brief Return the leaf or auxiliary buffer for the leaf node at index @a leafIdx.
    /// If @a bufferIdx is zero, return the leaf buffer, otherwise return the nth
    /// auxiliary buffer, where n = @a bufferIdx - 1.
    ///
    /// @note For performance reasons no range checks are performed on the inputs
    /// (other than assertions)! Since auxiliary buffers, unlike leaf buffers,
    /// might not exist, be especially careful when specifying the @a bufferIdx.
    /// @note For const trees, this method always returns a reference to a const buffer.
    /// It is safe to @c const_cast and modify any auxiliary buffer (@a bufferIdx > 0),
    /// but it is not safe to modify the leaf buffer (@a bufferIdx = 0).
    BufferType& getBuffer(size_t leafIdx, size_t bufferIdx) const
    {
        assert(leafIdx < mLeafCount);
        assert(bufferIdx == 0 || bufferIdx - 1 < mAuxBuffersPerLeaf);
        return bufferIdx == 0 ? mLeafs[leafIdx]->buffer()
             : mAuxBuffers[leafIdx * mAuxBuffersPerLeaf + bufferIdx - 1];
    }

    /// @brief Return a @c tbb::blocked_range of leaf array indices.
    ///
    /// @note Consider using leafRange() instead, which provides access methods
    /// to leaf nodes and buffers.
    RangeType getRange(size_t grainsize = 1) const { return RangeType(0, mLeafCount, grainsize); }

    /// Return a TBB-compatible LeafRange.
    LeafRange leafRange(size_t grainsize = 1) const
    {
        return LeafRange(0, mLeafCount, *this, grainsize);
    }

    /// @brief Swap each leaf node's buffer with the nth corresponding auxiliary buffer,
    /// where n = @a bufferIdx.
    /// @return @c true if the swap was successful
    /// @param bufferIdx  index of the buffer that will be swapped with
    ///                   the corresponding leaf node buffer
    /// @param serial     if false, swap buffers in parallel using multiple threads.
    /// @note Recall that the indexing of auxiliary buffers is 1-based, since
    /// buffer index 0 denotes the leaf node buffer.  So buffer index 1 denotes
    /// the first auxiliary buffer.
    bool swapLeafBuffer(size_t bufferIdx, bool serial = false)
    {
        namespace ph = std::placeholders;
        if (bufferIdx == 0 || bufferIdx > mAuxBuffersPerLeaf || this->isConstTree()) return false;
        mTask = std::bind(&LeafManager::doSwapLeafBuffer, ph::_1, ph::_2, bufferIdx - 1);
        this->cook(serial ? 0 : 512);
        return true;//success
    }
    /// @brief Swap any two buffers for each leaf node.
    /// @note Recall that the indexing of auxiliary buffers is 1-based, since
    /// buffer index 0 denotes the leaf node buffer.  So buffer index 1 denotes
    /// the first auxiliary buffer.
    bool swapBuffer(size_t bufferIdx1, size_t bufferIdx2, bool serial = false)
    {
        namespace ph = std::placeholders;
        const size_t b1 = std::min(bufferIdx1, bufferIdx2);
        const size_t b2 = std::max(bufferIdx1, bufferIdx2);
        if (b1 == b2 || b2 > mAuxBuffersPerLeaf) return false;
        if (b1 == 0) {
            if (this->isConstTree()) return false;
            mTask = std::bind(&LeafManager::doSwapLeafBuffer, ph::_1, ph::_2, b2-1);
        } else {
            mTask = std::bind(&LeafManager::doSwapAuxBuffer, ph::_1, ph::_2, b1-1, b2-1);
        }
        this->cook(serial ? 0 : 512);
        return true;//success
    }

    /// @brief Sync up the specified auxiliary buffer with the corresponding leaf node buffer.
    /// @return @c true if the sync was successful
    /// @param bufferIdx index of the buffer that will contain a
    ///                  copy of the corresponding leaf node buffer
    /// @param serial    if false, sync buffers in parallel using multiple threads.
    /// @note Recall that the indexing of auxiliary buffers is 1-based, since
    /// buffer index 0 denotes the leaf node buffer.  So buffer index 1 denotes
    /// the first auxiliary buffer.
    bool syncAuxBuffer(size_t bufferIdx, bool serial = false)
    {
        namespace ph = std::placeholders;
        if (bufferIdx == 0 || bufferIdx > mAuxBuffersPerLeaf) return false;
        mTask = std::bind(&LeafManager::doSyncAuxBuffer, ph::_1, ph::_2, bufferIdx - 1);
        this->cook(serial ? 0 : 64);
        return true;//success
    }

    /// @brief Sync up all auxiliary buffers with their corresponding leaf node buffers.
    /// @return true if the sync was successful
    /// @param serial  if false, sync buffers in parallel using multiple threads.
    bool syncAllBuffers(bool serial = false)
    {
        namespace ph = std::placeholders;
        switch (mAuxBuffersPerLeaf) {
            case 0: return false;//nothing to do
            case 1: mTask = std::bind(&LeafManager::doSyncAllBuffers1, ph::_1, ph::_2); break;
            case 2: mTask = std::bind(&LeafManager::doSyncAllBuffers2, ph::_1, ph::_2); break;
            default: mTask = std::bind(&LeafManager::doSyncAllBuffersN, ph::_1, ph::_2); break;
        }
        this->cook(serial ? 0 : 64);
        return true;//success
    }

    /// @brief   Threaded method that applies a user-supplied functor
    ///          to each leaf node in the LeafManager.
    ///
    /// @details The user-supplied functor needs to define the methods
    ///          required for tbb::parallel_for.
    ///
    /// @param op        user-supplied functor, see examples for interface details.
    /// @param threaded  optional toggle to disable threading, on by default.
    /// @param grainSize optional parameter to specify the grainsize
    ///                  for threading, one by default.
    ///
    /// @warning The functor object is deep-copied to create TBB tasks.
    ///          This allows the function to use non-thread-safe members
    ///          like a ValueAccessor.
    ///
    /// @par Example:
    /// @code
    /// // Functor to offset a tree's voxel values with values from another tree.
    /// template<typename TreeType>
    /// struct OffsetOp
    /// {
    ///     using Accessor = tree::ValueAccessor<const TreeType>;
    ///
    ///     OffsetOp(const TreeType& tree): mRhsTreeAcc(tree) {}
    ///
    ///     template <typename LeafNodeType>
    ///     void operator()(LeafNodeType &lhsLeaf, size_t) const
    ///     {
    ///         const LeafNodeType *rhsLeaf = mRhsTreeAcc.probeConstLeaf(lhsLeaf.origin());
    ///         if (rhsLeaf) {
    ///             typename LeafNodeType::ValueOnIter iter = lhsLeaf.beginValueOn();
    ///             for (; iter; ++iter) {
    ///                 iter.setValue(iter.getValue() + rhsLeaf->getValue(iter.pos()));
    ///             }
    ///         }
    ///     }
    ///     Accessor mRhsTreeAcc;
    /// };
    ///
    /// // usage:
    /// tree::LeafManager<FloatTree> leafNodes(lhsTree);
    /// leafNodes.foreach(OffsetOp<FloatTree>(rhsTree));
    ///
    /// // A functor that performs a min operation between different auxiliary buffers.
    /// template<typename LeafManagerType>
    /// struct MinOp
    /// {
    ///     using BufferType = typename LeafManagerType::BufferType;
    ///
    ///     MinOp(LeafManagerType& leafNodes): mLeafs(leafNodes) {}
    ///
    ///     template <typename LeafNodeType>
    ///     void operator()(LeafNodeType &leaf, size_t leafIndex) const
    ///     {
    ///         // get the first buffer
    ///         BufferType& buffer = mLeafs.getBuffer(leafIndex, 1);
    ///
    ///         // min ...
    ///     }
    ///     LeafManagerType& mLeafs;
    /// };
    /// @endcode
    template<typename LeafOp>
    void foreach(const LeafOp& op, bool threaded = true, size_t grainSize=1)
    {
        LeafTransformer<LeafOp> transform(op);
        transform.run(this->leafRange(grainSize), threaded);
    }

    /// @brief   Threaded method that applies a user-supplied functor
    ///          to each leaf node in the LeafManager. Unlike foreach
    ///          (defined above) this method performs a reduction on
    ///          all the leaf nodes.
    ///
    /// @details The user-supplied functor needs to define the methods
    ///          required for tbb::parallel_reduce.
    ///
    /// @param op        user-supplied functor, see examples for interface details.
    /// @param threaded  optional toggle to disable threading, on by default.
    /// @param grainSize optional parameter to specify the grainsize
    ///                  for threading, one by default.
    ///
    /// @warning The functor object is deep-copied to create TBB tasks.
    ///          This allows the function to use non-thread-safe members
    ///          like a ValueAccessor.
    ///
    /// @par Example:
    /// @code
    /// // Functor to count the number of negative (active) leaf values
    /// struct CountOp
    /// {
    ///     CountOp() : mCounter(0) {}
    ///     CountOp(const CountOp &other) : mCounter(other.mCounter) {}
    ///     CountOp(const CountOp &other, tbb::split) : mCounter(0) {}
    ///     template <typename LeafNodeType>
    ///     void operator()(LeafNodeType &leaf, size_t)
    ///     {
    ///       typename LeafNodeType::ValueOnIter iter = leaf.beginValueOn();
    ///       for (; iter; ++iter) if (*iter < 0.0f) ++mCounter;
    ///     }
    ///     void join(const CountOp &other) {mCounter += other.mCounter;}
    ///     size_t mCounter;
    /// };
    ///
    /// // usage:
    /// tree::LeafManager<FloatTree> leafNodes(tree);
    /// MinValueOp min;
    /// leafNodes.reduce(min);
    /// std::cerr << "Number of negative active voxels = " << min.mCounter << std::endl;
    ///
    /// @endcode
    template<typename LeafOp>
    void reduce(LeafOp& op, bool threaded = true, size_t grainSize=1)
    {
        LeafReducer<LeafOp> transform(op);
        transform.run(this->leafRange(grainSize), threaded);
    }


    /// @brief Insert pointers to nodes of the specified type into the array.
    /// @details The type of node pointer is defined by the type
    /// ArrayT::value_type. If the node type is a LeafNode the nodes
    /// are inserted from this LeafManager, else of the corresponding tree.
    template<typename ArrayT>
    void getNodes(ArrayT& array)
    {
        using T = typename ArrayT::value_type;
        static_assert(std::is_pointer<T>::value, "argument to getNodes() must be a pointer array");
        using LeafT = typename std::conditional<std::is_const<
            typename std::remove_pointer<T>::type>::value, const LeafType, LeafType>::type;

        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
        if (std::is_same<T, LeafT*>::value) {
            array.resize(mLeafCount);
            for (size_t i=0; i<mLeafCount; ++i) array[i] = reinterpret_cast<T>(mLeafs[i]);
        } else {
            mTree->getNodes(array);
        }
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
    }

    /// @brief Insert node pointers of the specified type into the array.
    /// @details The type of node pointer is defined by the type
    /// ArrayT::value_type. If the node type is a LeafNode the nodes
    /// are inserted from this LeafManager, else of the corresponding tree.
    template<typename ArrayT>
    void getNodes(ArrayT& array) const
    {
        using T = typename ArrayT::value_type;
        static_assert(std::is_pointer<T>::value, "argument to getNodes() must be a pointer array");
        static_assert(std::is_const<typename std::remove_pointer<T>::type>::value,
            "argument to getNodes() must be an array of const node pointers");

        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
        if (std::is_same<T, const LeafType*>::value) {
            array.resize(mLeafCount);
            for (size_t i=0; i<mLeafCount; ++i) array[i] = reinterpret_cast<T>(mLeafs[i]);
        } else {
            mTree->getNodes(array);
        }
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
    }

    /// @brief Generate a linear array of prefix sums of offsets into the
    /// active voxels in the leafs. So @a offsets[n]+m is the offset to the
    /// mth active voxel in the nth leaf node (useful for
    /// user-managed value buffers, e.g. in tools/LevelSetAdvect.h).
    /// @return The total number of active values in the leaf nodes
    /// @param offsets    array of prefix sums of offsets to active voxels
    /// @param size       on input, the size of @a offsets; on output, its new size
    /// @param grainSize  optional grain size for threading
    /// @details If @a offsets is @c nullptr or @a size is smaller than the
    /// total number of active voxels (the return value) then @a offsets
    /// is reallocated and @a size equals the total number of active voxels.
    size_t getPrefixSum(size_t*& offsets, size_t& size, size_t grainSize=1) const
    {
        if (offsets == nullptr || size < mLeafCount) {
            delete [] offsets;
            offsets = new size_t[mLeafCount];
            size = mLeafCount;
        }
        size_t prefix = 0;
        if ( grainSize > 0 ) {
            PrefixSum tmp(this->leafRange( grainSize ), offsets, prefix);
        } else {// serial
            for (size_t i=0; i<mLeafCount; ++i) {
                offsets[i] = prefix;
                prefix += mLeafs[i]->onVoxelCount();
            }
        }
        return prefix;
    }

    ////////////////////////////////////////////////////////////////////////////////////
    // All methods below are for internal use only and should never be called directly

    /// Used internally by tbb::parallel_for() - never call it directly!
    void operator()(const RangeType& r) const
    {
        if (mTask) mTask(const_cast<LeafManager*>(this), r);
        else OPENVDB_THROW(ValueError, "task is undefined");
    }

private:

    // This a simple wrapper for a c-style array so it mimics the api
    // of a std container, e.g. std::vector or std::deque, and can be
    // passed to Tree::getNodes().
    struct MyArray {
        using value_type = LeafType*;//required by Tree::getNodes
        value_type* ptr;
        MyArray(value_type* array) : ptr(array) {}
        void push_back(value_type leaf) { *ptr++ = leaf; }//required by Tree::getNodes
    };

    void initLeafArray()
    {
        const size_t leafCount = mTree->leafCount();
        if (leafCount != mLeafCount) {
            delete [] mLeafs;
            mLeafs = (leafCount == 0) ? nullptr : new LeafType*[leafCount];
            mLeafCount = leafCount;
        }
        MyArray a(mLeafs);
        mTree->getNodes(a);
    }

    void initAuxBuffers(bool serial)
    {
        const size_t auxBufferCount = mLeafCount * mAuxBuffersPerLeaf;
        if (auxBufferCount != mAuxBufferCount) {
            delete [] mAuxBuffers;
            mAuxBuffers = (auxBufferCount == 0) ? nullptr : new NonConstBufferType[auxBufferCount];
            mAuxBufferCount = auxBufferCount;
        }
        this->syncAllBuffers(serial);
    }

    void cook(size_t grainsize)
    {
        if (grainsize>0) {
            tbb::parallel_for(this->getRange(grainsize), *this);
        } else {
            (*this)(this->getRange());
        }
    }

    void doSwapLeafBuffer(const RangeType& r, size_t auxBufferIdx)
    {
        LeafManagerImpl<LeafManager>::doSwapLeafBuffer(
            r, auxBufferIdx, mLeafs, mAuxBuffers, mAuxBuffersPerLeaf);
    }

    void doSwapAuxBuffer(const RangeType& r, size_t auxBufferIdx1, size_t auxBufferIdx2)
    {
        for (size_t N = mAuxBuffersPerLeaf, n = N*r.begin(), m = N*r.end(); n != m; n+=N) {
            mAuxBuffers[n + auxBufferIdx1].swap(mAuxBuffers[n + auxBufferIdx2]);
        }
    }

    void doSyncAuxBuffer(const RangeType& r, size_t auxBufferIdx)
    {
        for (size_t n = r.begin(), m = r.end(), N = mAuxBuffersPerLeaf; n != m; ++n) {
            mAuxBuffers[n*N + auxBufferIdx] = mLeafs[n]->buffer();
        }
    }

    void doSyncAllBuffers1(const RangeType& r)
    {
        for (size_t n = r.begin(), m = r.end(); n != m; ++n) {
            mAuxBuffers[n] = mLeafs[n]->buffer();
        }
    }

    void doSyncAllBuffers2(const RangeType& r)
    {
        for (size_t n = r.begin(), m = r.end(); n != m; ++n) {
            const BufferType& leafBuffer = mLeafs[n]->buffer();
            mAuxBuffers[2*n  ] = leafBuffer;
            mAuxBuffers[2*n+1] = leafBuffer;
        }
    }

    void doSyncAllBuffersN(const RangeType& r)
    {
        for (size_t n = r.begin(), m = r.end(), N = mAuxBuffersPerLeaf; n != m; ++n) {
            const BufferType& leafBuffer = mLeafs[n]->buffer();
            for (size_t i=n*N, j=i+N; i!=j; ++i) mAuxBuffers[i] = leafBuffer;
        }
    }

    /// @brief Private member class that applies a user-defined
    /// functor to perform parallel_for on all the leaf nodes.
    template<typename LeafOp>
    struct LeafTransformer
    {
        LeafTransformer(const LeafOp &leafOp) : mLeafOp(leafOp)
        {
        }
        void run(const LeafRange &range, bool threaded) const
        {
            threaded ? tbb::parallel_for(range, *this) : (*this)(range);
        }
        void operator()(const LeafRange &range) const
        {
            for (typename LeafRange::Iterator it = range.begin(); it; ++it) mLeafOp(*it, it.pos());
        }
        const LeafOp mLeafOp;
    };// LeafTransformer

    /// @brief Private member class that applies a user-defined
    /// functor to perform parallel_reduce on all the leaf nodes.
    template<typename LeafOp>
    struct LeafReducer
    {
        LeafReducer(LeafOp &leafOp) : mLeafOp(&leafOp), mOwnsOp(false)
        {
        }
        LeafReducer(const LeafReducer &other, tbb::split)
            : mLeafOp(new LeafOp(*(other.mLeafOp), tbb::split())), mOwnsOp(true)
        {
        }
        ~LeafReducer() { if (mOwnsOp) delete mLeafOp; }
        void run(const LeafRange& range, bool threaded)
        {
            threaded ? tbb::parallel_reduce(range, *this) : (*this)(range);
        }
        void operator()(const LeafRange& range)
        {
            LeafOp &op = *mLeafOp;//local registry
            for (typename LeafRange::Iterator it = range.begin(); it; ++it) op(*it, it.pos());
        }
        void join(const LeafReducer& other) { mLeafOp->join(*(other.mLeafOp)); }
        LeafOp *mLeafOp;
        const bool mOwnsOp;
    };// LeafReducer

    // Helper class to compute a prefix sum of offsets to active voxels
    struct PrefixSum
    {
        PrefixSum(const LeafRange& r, size_t* offsets, size_t& prefix)
            : mOffsets(offsets)
        {
            tbb::parallel_for( r, *this);
            for (size_t i=0, leafCount = r.size(); i<leafCount; ++i) {
                size_t tmp = offsets[i];
                offsets[i] = prefix;
                prefix += tmp;
            }
        }
        inline void operator()(const LeafRange& r) const {
            for (typename LeafRange::Iterator i = r.begin(); i; ++i) {
                mOffsets[i.pos()] = i->onVoxelCount();
            }
        }
        size_t* mOffsets;
    };// PrefixSum

    using FuncType = typename std::function<void (LeafManager*, const RangeType&)>;

    TreeType*            mTree;
    size_t               mLeafCount, mAuxBufferCount, mAuxBuffersPerLeaf;
    LeafType**           mLeafs;//array of LeafNode pointers
    NonConstBufferType*  mAuxBuffers;//array of auxiliary buffers
    FuncType             mTask;
    const bool           mIsMaster;
};//end of LeafManager class


// Partial specializations of LeafManager methods for const trees
template<typename TreeT>
struct LeafManagerImpl<LeafManager<const TreeT> >
{
    using ManagerT = LeafManager<const TreeT>;
    using RangeT = typename ManagerT::RangeType;
    using LeafT = typename ManagerT::LeafType;
    using BufT = typename ManagerT::BufferType;

    static inline void doSwapLeafBuffer(const RangeT&, size_t /*auxBufferIdx*/,
                                        LeafT**, BufT*, size_t /*bufsPerLeaf*/)
    {
        // Buffers can't be swapped into const trees.
    }
};

} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TREE_LEAFMANAGER_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )