/usr/include/openvdb/tree/LeafNodeMask.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_TREE_LEAF_NODE_MASK_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_LEAF_NODE_MASK_HAS_BEEN_INCLUDED
#include <openvdb/version.h>
#include <openvdb/Types.h>
#include <openvdb/io/Compression.h> // for io::readData(), etc.
#include <openvdb/math/Math.h> // for math::isZero()
#include <openvdb/util/NodeMasks.h>
#include "LeafNode.h"
#include "Iterator.h"
#include <iostream>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {
/// @brief LeafNode specialization for values of type ValueMask that encodes both
/// the active states and the boolean values of (2^Log2Dim)^3 voxels
/// in a single bit mask, i.e. voxel values and states are indistinguishable!
template<Index Log2Dim>
class LeafNode<ValueMask, Log2Dim>
{
public:
using LeafNodeType = LeafNode<ValueMask, Log2Dim>;
using BuildType = ValueMask;// this is a rare case where
using ValueType = bool;// value type != build type
using Buffer = LeafBuffer<ValueType, Log2Dim>;// buffer uses the bool specialization
using NodeMaskType = util::NodeMask<Log2Dim>;
using Ptr = SharedPtr<LeafNodeType>;
// These static declarations must be on separate lines to avoid VC9 compiler errors.
static const Index LOG2DIM = Log2Dim; // needed by parent nodes
static const Index TOTAL = Log2Dim; // needed by parent nodes
static const Index DIM = 1 << TOTAL; // dimension along one coordinate direction
static const Index NUM_VALUES = 1 << 3 * Log2Dim;
static const Index NUM_VOXELS = NUM_VALUES; // total number of voxels represented by this node
static const Index SIZE = NUM_VALUES;
static const Index LEVEL = 0; // level 0 = leaf
/// @brief ValueConverter<T>::Type is the type of a LeafNode having the same
/// dimensions as this node but a different value type, T.
template<typename OtherValueType>
struct ValueConverter { using Type = LeafNode<OtherValueType, Log2Dim>; };
/// @brief SameConfiguration<OtherNodeType>::value is @c true if and only if
/// OtherNodeType is the type of a LeafNode with the same dimensions as this node.
template<typename OtherNodeType>
struct SameConfiguration {
static const bool value = SameLeafConfig<LOG2DIM, OtherNodeType>::value;
};
/// Default constructor
LeafNode();
/// Constructor
/// @param xyz the coordinates of a voxel that lies within the node
/// @param value the initial value = state for all of this node's voxels
/// @param dummy dummy value
explicit LeafNode(const Coord& xyz, bool value = false, bool dummy = false);
#if OPENVDB_ABI_VERSION_NUMBER >= 3
/// "Partial creation" constructor used during file input
LeafNode(PartialCreate, const Coord& xyz, bool value = false, bool dummy = false);
#endif
/// Deep copy constructor
LeafNode(const LeafNode&);
/// Value conversion copy constructor
template<typename OtherValueType>
explicit LeafNode(const LeafNode<OtherValueType, Log2Dim>& other);
/// Topology copy constructor
template<typename ValueType>
LeafNode(const LeafNode<ValueType, Log2Dim>& other, TopologyCopy);
//@{
/// @brief Topology copy constructor
/// @note This variant exists mainly to enable template instantiation.
template<typename ValueType>
LeafNode(const LeafNode<ValueType, Log2Dim>& other, bool offValue, bool onValue, TopologyCopy);
template<typename ValueType>
LeafNode(const LeafNode<ValueType, Log2Dim>& other, bool background, TopologyCopy);
//@}
/// Destructor
~LeafNode();
//
// Statistics
//
/// Return log2 of the size of the buffer storage.
static Index log2dim() { return Log2Dim; }
/// Return the number of voxels in each dimension.
static Index dim() { return DIM; }
/// Return the total number of voxels represented by this LeafNode
static Index size() { return SIZE; }
/// Return the total number of voxels represented by this LeafNode
static Index numValues() { return SIZE; }
/// Return the level of this node, which by definition is zero for LeafNodes
static Index getLevel() { return LEVEL; }
/// Append the Log2Dim of this LeafNode to the specified vector
static void getNodeLog2Dims(std::vector<Index>& dims) { dims.push_back(Log2Dim); }
/// Return the dimension of child nodes of this LeafNode, which is one for voxels.
static Index getChildDim() { return 1; }
/// Return the leaf count for this node, which is one.
static Index32 leafCount() { return 1; }
/// Return the non-leaf count for this node, which is zero.
static Index32 nonLeafCount() { return 0; }
/// Return the number of active voxels.
Index64 onVoxelCount() const { return mBuffer.mData.countOn(); }
/// Return the number of inactive voxels.
Index64 offVoxelCount() const { return mBuffer.mData.countOff(); }
Index64 onLeafVoxelCount() const { return this->onVoxelCount(); }
Index64 offLeafVoxelCount() const { return this->offVoxelCount(); }
static Index64 onTileCount() { return 0; }
static Index64 offTileCount() { return 0; }
/// Return @c true if this node has no active voxels.
bool isEmpty() const { return mBuffer.mData.isOff(); }
/// Return @c true if this node only contains active voxels.
bool isDense() const { return mBuffer.mData.isOn(); }
#if OPENVDB_ABI_VERSION_NUMBER >= 3
/// @brief Return @c true if memory for this node's buffer has been allocated.
/// @details Currently, boolean leaf nodes don't support partial creation,
/// so this always returns @c true.
bool isAllocated() const { return true; }
/// @brief Allocate memory for this node's buffer if it has not already been allocated.
/// @details Currently, boolean leaf nodes don't support partial creation,
/// so this has no effect.
bool allocate() { return true; }
#endif
/// Return the memory in bytes occupied by this node.
Index64 memUsage() const;
/// Expand the given bounding box so that it includes this leaf node's active voxels.
/// If visitVoxels is false this LeafNode will be approximated as dense, i.e. with all
/// voxels active. Else the individual active voxels are visited to produce a tight bbox.
void evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels = true) const;
/// @brief Return the bounding box of this node, i.e., the full index space
/// spanned by this leaf node.
CoordBBox getNodeBoundingBox() const { return CoordBBox::createCube(mOrigin, DIM); }
/// Set the grid index coordinates of this node's local origin.
void setOrigin(const Coord& origin) { mOrigin = origin; }
//@{
/// Return the grid index coordinates of this node's local origin.
const Coord& origin() const { return mOrigin; }
void getOrigin(Coord& origin) const { origin = mOrigin; }
void getOrigin(Int32& x, Int32& y, Int32& z) const { mOrigin.asXYZ(x, y, z); }
//@}
/// Return the linear table offset of the given global or local coordinates.
static Index coordToOffset(const Coord& xyz);
/// @brief Return the local coordinates for a linear table offset,
/// where offset 0 has coordinates (0, 0, 0).
static Coord offsetToLocalCoord(Index n);
/// Return the global coordinates for a linear table offset.
Coord offsetToGlobalCoord(Index n) const;
/// Return a string representation of this node.
std::string str() const;
/// @brief Return @c true if the given node (which may have a different @c ValueType
/// than this node) has the same active value topology as this node.
template<typename OtherType, Index OtherLog2Dim>
bool hasSameTopology(const LeafNode<OtherType, OtherLog2Dim>* other) const;
/// Check for buffer equivalence by value.
bool operator==(const LeafNode&) const;
bool operator!=(const LeafNode&) const;
//
// Buffer management
//
/// @brief Exchange this node's data buffer with the given data buffer
/// without changing the active states of the values.
void swap(Buffer& other) { mBuffer.swap(other); }
const Buffer& buffer() const { return mBuffer; }
Buffer& buffer() { return mBuffer; }
//
// I/O methods
//
/// Read in just the topology.
void readTopology(std::istream&, bool fromHalf = false);
/// Write out just the topology.
void writeTopology(std::ostream&, bool toHalf = false) const;
/// Read in the topology and the origin.
void readBuffers(std::istream&, bool fromHalf = false);
void readBuffers(std::istream& is, const CoordBBox&, bool fromHalf = false);
/// Write out the topology and the origin.
void writeBuffers(std::ostream&, bool toHalf = false) const;
//
// Accessor methods
//
/// Return the value of the voxel at the given coordinates.
const bool& getValue(const Coord& xyz) const;
/// Return the value of the voxel at the given offset.
const bool& getValue(Index offset) const;
/// @brief Return @c true if the voxel at the given coordinates is active.
/// @param xyz the coordinates of the voxel to be probed
/// @param[out] val the value of the voxel at the given coordinates
bool probeValue(const Coord& xyz, bool& val) const;
/// Return the level (0) at which leaf node values reside.
static Index getValueLevel(const Coord&) { return LEVEL; }
/// Set the active state of the voxel at the given coordinates but don't change its value.
void setActiveState(const Coord& xyz, bool on);
/// Set the active state of the voxel at the given offset but don't change its value.
void setActiveState(Index offset, bool on) { assert(offset<SIZE); mBuffer.mData.set(offset, on); }
/// Set the value of the voxel at the given coordinates but don't change its active state.
void setValueOnly(const Coord& xyz, bool val);
/// Set the value of the voxel at the given offset but don't change its active state.
void setValueOnly(Index offset, bool val) { assert(offset<SIZE); mBuffer.setValue(offset,val); }
/// Mark the voxel at the given coordinates as inactive but don't change its value.
void setValueOff(const Coord& xyz) { mBuffer.mData.setOff(this->coordToOffset(xyz)); }
/// Mark the voxel at the given offset as inactive but don't change its value.
void setValueOff(Index offset) { assert(offset < SIZE); mBuffer.mData.setOff(offset); }
/// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
void setValueOff(const Coord& xyz, bool val);
/// Set the value of the voxel at the given offset and mark the voxel as inactive.
void setValueOff(Index offset, bool val);
/// Mark the voxel at the given coordinates as active but don't change its value.
void setValueOn(const Coord& xyz) { mBuffer.mData.setOn(this->coordToOffset(xyz)); }
/// Mark the voxel at the given offset as active but don't change its value.
void setValueOn(Index offset) { assert(offset < SIZE); mBuffer.mData.setOn(offset); }
/// Set the value of the voxel at the given coordinates and mark the voxel as active.
void setValueOn(const Coord& xyz, bool val);
/// Set the value of the voxel at the given coordinates and mark the voxel as active.
void setValue(const Coord& xyz, bool val) { this->setValueOn(xyz, val); }
/// Set the value of the voxel at the given offset and mark the voxel as active.
void setValueOn(Index offset, bool val);
/// @brief Apply a functor to the value of the voxel at the given offset
/// and mark the voxel as active.
template<typename ModifyOp>
void modifyValue(Index offset, const ModifyOp& op);
/// @brief Apply a functor to the value of the voxel at the given coordinates
/// and mark the voxel as active.
template<typename ModifyOp>
void modifyValue(const Coord& xyz, const ModifyOp& op);
/// Apply a functor to the voxel at the given coordinates.
template<typename ModifyOp>
void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op);
/// Mark all voxels as active but don't change their values.
void setValuesOn() { mBuffer.mData.setOn(); }
/// Mark all voxels as inactive but don't change their values.
void setValuesOff() { mBuffer.mData.setOff(); }
/// Return @c true if the voxel at the given coordinates is active.
bool isValueOn(const Coord& xyz) const { return mBuffer.mData.isOn(this->coordToOffset(xyz)); }
/// Return @c true if the voxel at the given offset is active.
bool isValueOn(Index offset) const { assert(offset < SIZE); return mBuffer.mData.isOn(offset); }
/// Return @c false since leaf nodes never contain tiles.
static bool hasActiveTiles() { return false; }
/// Set all voxels that lie outside the given axis-aligned box to the background.
void clip(const CoordBBox&, bool background);
/// Set all voxels within an axis-aligned box to the specified value.
void fill(const CoordBBox& bbox, bool value, bool = false);
/// Set all voxels within an axis-aligned box to the specified value.
void denseFill(const CoordBBox& bbox, bool value, bool = false) { this->fill(bbox, value); }
/// Set the state of all voxels to the specified active state.
void fill(const bool& value, bool dummy = false);
/// @brief Copy into a dense grid the values of the voxels that lie within
/// a given bounding box.
///
/// @param bbox inclusive bounding box of the voxels to be copied into the dense grid
/// @param dense dense grid with a stride in @e z of one (see tools::Dense
/// in tools/Dense.h for the required API)
///
/// @note @a bbox is assumed to be identical to or contained in the coordinate domains
/// of both the dense grid and this node, i.e., no bounds checking is performed.
/// @note Consider using tools::CopyToDense in tools/Dense.h
/// instead of calling this method directly.
template<typename DenseT>
void copyToDense(const CoordBBox& bbox, DenseT& dense) const;
/// @brief Copy from a dense grid into this node the values of the voxels
/// that lie within a given bounding box.
/// @details Only values that are different (by more than the given tolerance)
/// from the background value will be active. Other values are inactive
/// and truncated to the background value.
///
/// @param bbox inclusive bounding box of the voxels to be copied into this node
/// @param dense dense grid with a stride in @e z of one (see tools::Dense
/// in tools/Dense.h for the required API)
/// @param background background value of the tree that this node belongs to
/// @param tolerance tolerance within which a value equals the background value
///
/// @note @a bbox is assumed to be identical to or contained in the coordinate domains
/// of both the dense grid and this node, i.e., no bounds checking is performed.
/// @note Consider using tools::CopyFromDense in tools/Dense.h
/// instead of calling this method directly.
template<typename DenseT>
void copyFromDense(const CoordBBox& bbox, const DenseT& dense, bool background, bool tolerance);
/// @brief Return the value of the voxel at the given coordinates.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
const bool& getValueAndCache(const Coord& xyz, AccessorT&) const {return this->getValue(xyz);}
/// @brief Return @c true if the voxel at the given coordinates is active.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
bool isValueOnAndCache(const Coord& xyz, AccessorT&) const { return this->isValueOn(xyz); }
/// @brief Change the value of the voxel at the given coordinates and mark it as active.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setValueAndCache(const Coord& xyz, bool val, AccessorT&) { this->setValueOn(xyz, val); }
/// @brief Change the value of the voxel at the given coordinates
/// but preserve its state.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setValueOnlyAndCache(const Coord& xyz, bool val, AccessorT&) {this->setValueOnly(xyz,val);}
/// @brief Change the value of the voxel at the given coordinates and mark it as inactive.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setValueOffAndCache(const Coord& xyz, bool value, AccessorT&)
{
this->setValueOff(xyz, value);
}
/// @brief Apply a functor to the value of the voxel at the given coordinates
/// and mark the voxel as active.
/// @note Used internally by ValueAccessor.
template<typename ModifyOp, typename AccessorT>
void modifyValueAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&)
{
this->modifyValue(xyz, op);
}
/// Apply a functor to the voxel at the given coordinates.
/// @note Used internally by ValueAccessor.
template<typename ModifyOp, typename AccessorT>
void modifyValueAndActiveStateAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&)
{
this->modifyValueAndActiveState(xyz, op);
}
/// @brief Set the active state of the voxel at the given coordinates
/// without changing its value.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setActiveStateAndCache(const Coord& xyz, bool on, AccessorT&)
{
this->setActiveState(xyz, on);
}
/// @brief Return @c true if the voxel at the given coordinates is active
/// and return the voxel value in @a val.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
bool probeValueAndCache(const Coord& xyz, bool& val, AccessorT&) const
{
return this->probeValue(xyz, val);
}
/// @brief Return the LEVEL (=0) at which leaf node values reside.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
static Index getValueLevelAndCache(const Coord&, AccessorT&) { return LEVEL; }
/// @brief Return a const reference to the first entry in the buffer.
/// @note Since it's actually a reference to a static data member
/// it should not be converted to a non-const pointer!
const bool& getFirstValue() const { if (mBuffer.mData.isOn(0)) return Buffer::sOn; else return Buffer::sOff; }
/// @brief Return a const reference to the last entry in the buffer.
/// @note Since it's actually a reference to a static data member
/// it should not be converted to a non-const pointer!
const bool& getLastValue() const { if (mBuffer.mData.isOn(SIZE-1)) return Buffer::sOn; else return Buffer::sOff; }
/// Return @c true if all of this node's voxels have the same active state
/// and are equal to within the given tolerance, and return the value in
/// @a constValue and the active state in @a state.
bool isConstant(bool& constValue, bool& state, bool tolerance = 0) const;
/// @brief Computes the median value of all the active and inactive voxels in this node.
/// @return The median value.
///
/// @details The median for boolean values is defined as the mode
/// of the values, i.e. the value that occurs most often.
bool medianAll() const;
/// @brief Computes the median value of all the active voxels in this node.
/// @return The number of active voxels.
///
/// @param value Updated with the median value of all the active voxels.
///
/// @note Since the value and state are shared for this
/// specialization of the LeafNode the @a value will always be true!
Index medianOn(ValueType &value) const;
/// @brief Computes the median value of all the inactive voxels in this node.
/// @return The number of inactive voxels.
///
/// @param value Updated with the median value of all the inactive
/// voxels.
///
/// @note Since the value and state are shared for this
/// specialization of the LeafNode the @a value will always be false!
Index medianOff(ValueType &value) const;
/// Return @c true if all of this node's values are inactive.
bool isInactive() const { return mBuffer.mData.isOff(); }
/// @brief no-op since for this temaplte specialization voxel
/// values and states are indistinguishable.
void resetBackground(bool, bool) {}
/// @brief Invert the bits of the voxels, i.e. states and values
void negate() { mBuffer.mData.toggle(); }
template<MergePolicy Policy>
void merge(const LeafNode& other, bool bg = false, bool otherBG = false);
template<MergePolicy Policy> void merge(bool tileValue, bool tileActive=false);
/// @brief No-op
/// @details This function exists only to enable template instantiation.
void voxelizeActiveTiles(bool = true) {}
/// @brief Union this node's set of active values with the active values
/// of the other node, whose @c ValueType may be different. So a
/// resulting voxel will be active if either of the original voxels
/// were active.
///
/// @note This operation modifies only active states, not values.
template<typename OtherType>
void topologyUnion(const LeafNode<OtherType, Log2Dim>& other);
/// @brief Intersect this node's set of active values with the active values
/// of the other node, whose @c ValueType may be different. So a
/// resulting voxel will be active only if both of the original voxels
/// were active.
///
/// @details The last dummy argument is required to match the signature
/// for InternalNode::topologyIntersection.
///
/// @note This operation modifies only active states, not
/// values. Also note that this operation can result in all voxels
/// being inactive so consider subsequnetly calling prune.
template<typename OtherType>
void topologyIntersection(const LeafNode<OtherType, Log2Dim>& other, const bool&);
/// @brief Difference this node's set of active values with the active values
/// of the other node, whose @c ValueType may be different. So a
/// resulting voxel will be active only if the original voxel is
/// active in this LeafNode and inactive in the other LeafNode.
///
/// @details The last dummy argument is required to match the signature
/// for InternalNode::topologyDifference.
///
/// @note This operation modifies only active states, not values.
/// Also, because it can deactivate all of this node's voxels,
/// consider subsequently calling prune.
template<typename OtherType>
void topologyDifference(const LeafNode<OtherType, Log2Dim>& other, const bool&);
template<typename CombineOp>
void combine(const LeafNode& other, CombineOp& op);
template<typename CombineOp>
void combine(bool, bool valueIsActive, CombineOp& op);
template<typename CombineOp, typename OtherType /*= bool*/>
void combine2(const LeafNode& other, const OtherType&, bool valueIsActive, CombineOp&);
template<typename CombineOp, typename OtherNodeT /*= LeafNode*/>
void combine2(bool, const OtherNodeT& other, bool valueIsActive, CombineOp&);
template<typename CombineOp, typename OtherNodeT /*= LeafNode*/>
void combine2(const LeafNode& b0, const OtherNodeT& b1, CombineOp&);
/// @brief Calls the templated functor BBoxOp with bounding box information.
/// An additional level argument is provided to the callback.
///
/// @note The bounding boxes are guarenteed to be non-overlapping.
template<typename BBoxOp> void visitActiveBBox(BBoxOp&) const;
template<typename VisitorOp> void visit(VisitorOp&);
template<typename VisitorOp> void visit(VisitorOp&) const;
template<typename OtherLeafNodeType, typename VisitorOp>
void visit2Node(OtherLeafNodeType& other, VisitorOp&);
template<typename OtherLeafNodeType, typename VisitorOp>
void visit2Node(OtherLeafNodeType& other, VisitorOp&) const;
template<typename IterT, typename VisitorOp>
void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false);
template<typename IterT, typename VisitorOp>
void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false) const;
//@{
/// This function exists only to enable template instantiation.
void prune(const ValueType& /*tolerance*/ = zeroVal<ValueType>()) {}
void addLeaf(LeafNode*) {}
template<typename AccessorT>
void addLeafAndCache(LeafNode*, AccessorT&) {}
template<typename NodeT>
NodeT* stealNode(const Coord&, const ValueType&, bool) { return nullptr; }
template<typename NodeT>
NodeT* probeNode(const Coord&) { return nullptr; }
template<typename NodeT>
const NodeT* probeConstNode(const Coord&) const { return nullptr; }
template<typename ArrayT> void getNodes(ArrayT&) const {}
template<typename ArrayT> void stealNodes(ArrayT&, const ValueType&, bool) {}
//@}
void addTile(Index level, const Coord&, bool val, bool active);
void addTile(Index offset, bool val, bool active);
template<typename AccessorT>
void addTileAndCache(Index level, const Coord&, bool val, bool active, AccessorT&);
//@{
/// @brief Return a pointer to this node.
LeafNode* touchLeaf(const Coord&) { return this; }
template<typename AccessorT>
LeafNode* touchLeafAndCache(const Coord&, AccessorT&) { return this; }
LeafNode* probeLeaf(const Coord&) { return this; }
template<typename AccessorT>
LeafNode* probeLeafAndCache(const Coord&, AccessorT&) { return this; }
template<typename NodeT, typename AccessorT>
NodeT* probeNodeAndCache(const Coord&, AccessorT&)
{
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (!(std::is_same<NodeT, LeafNode>::value)) return nullptr;
return reinterpret_cast<NodeT*>(this);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
//@}
//@{
/// @brief Return a @const pointer to this node.
const LeafNode* probeLeaf(const Coord&) const { return this; }
template<typename AccessorT>
const LeafNode* probeLeafAndCache(const Coord&, AccessorT&) const { return this; }
const LeafNode* probeConstLeaf(const Coord&) const { return this; }
template<typename AccessorT>
const LeafNode* probeConstLeafAndCache(const Coord&, AccessorT&) const { return this; }
template<typename NodeT, typename AccessorT>
const NodeT* probeConstNodeAndCache(const Coord&, AccessorT&) const
{
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (!(std::is_same<NodeT, LeafNode>::value)) return nullptr;
return reinterpret_cast<const NodeT*>(this);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
//@}
//
// Iterators
//
protected:
using MaskOnIter = typename NodeMaskType::OnIterator;
using MaskOffIter = typename NodeMaskType::OffIterator;
using MaskDenseIter = typename NodeMaskType::DenseIterator;
template<typename MaskIterT, typename NodeT, typename ValueT>
struct ValueIter:
// Derives from SparseIteratorBase, but can also be used as a dense iterator,
// if MaskIterT is a dense mask iterator type.
public SparseIteratorBase<MaskIterT, ValueIter<MaskIterT, NodeT, ValueT>, NodeT, ValueT>
{
using BaseT = SparseIteratorBase<MaskIterT, ValueIter, NodeT, ValueT>;
ValueIter() {}
ValueIter(const MaskIterT& iter, NodeT* parent): BaseT(iter, parent) {}
const bool& getItem(Index pos) const { return this->parent().getValue(pos); }
const bool& getValue() const { return this->getItem(this->pos()); }
// Note: setItem() can't be called on const iterators.
void setItem(Index pos, bool value) const { this->parent().setValueOnly(pos, value); }
// Note: setValue() can't be called on const iterators.
void setValue(bool value) const { this->setItem(this->pos(), value); }
// Note: modifyItem() can't be called on const iterators.
template<typename ModifyOp>
void modifyItem(Index n, const ModifyOp& op) const { this->parent().modifyValue(n, op); }
// Note: modifyValue() can't be called on const iterators.
template<typename ModifyOp>
void modifyValue(const ModifyOp& op) const { this->modifyItem(this->pos(), op); }
};
/// Leaf nodes have no children, so their child iterators have no get/set accessors.
template<typename MaskIterT, typename NodeT>
struct ChildIter:
public SparseIteratorBase<MaskIterT, ChildIter<MaskIterT, NodeT>, NodeT, bool>
{
ChildIter() {}
ChildIter(const MaskIterT& iter, NodeT* parent): SparseIteratorBase<
MaskIterT, ChildIter<MaskIterT, NodeT>, NodeT, bool>(iter, parent) {}
};
template<typename NodeT, typename ValueT>
struct DenseIter: public DenseIteratorBase<
MaskDenseIter, DenseIter<NodeT, ValueT>, NodeT, /*ChildT=*/void, ValueT>
{
using BaseT = DenseIteratorBase<MaskDenseIter, DenseIter, NodeT, void, ValueT>;
using NonConstValueT = typename BaseT::NonConstValueType;
DenseIter() {}
DenseIter(const MaskDenseIter& iter, NodeT* parent): BaseT(iter, parent) {}
bool getItem(Index pos, void*& child, NonConstValueT& value) const
{
value = this->parent().getValue(pos);
child = nullptr;
return false; // no child
}
// Note: setItem() can't be called on const iterators.
//void setItem(Index pos, void* child) const {}
// Note: unsetItem() can't be called on const iterators.
void unsetItem(Index pos, const ValueT& val) const {this->parent().setValueOnly(pos, val);}
};
public:
using ValueOnIter = ValueIter<MaskOnIter, LeafNode, const bool>;
using ValueOnCIter = ValueIter<MaskOnIter, const LeafNode, const bool>;
using ValueOffIter = ValueIter<MaskOffIter, LeafNode, const bool>;
using ValueOffCIter = ValueIter<MaskOffIter, const LeafNode, const bool>;
using ValueAllIter = ValueIter<MaskDenseIter, LeafNode, const bool>;
using ValueAllCIter = ValueIter<MaskDenseIter, const LeafNode, const bool>;
using ChildOnIter = ChildIter<MaskOnIter, LeafNode>;
using ChildOnCIter = ChildIter<MaskOnIter, const LeafNode>;
using ChildOffIter = ChildIter<MaskOffIter, LeafNode>;
using ChildOffCIter = ChildIter<MaskOffIter, const LeafNode>;
using ChildAllIter = DenseIter<LeafNode, bool>;
using ChildAllCIter = DenseIter<const LeafNode, const bool>;
ValueOnCIter cbeginValueOn() const { return ValueOnCIter(mBuffer.mData.beginOn(), this); }
ValueOnCIter beginValueOn() const { return ValueOnCIter(mBuffer.mData.beginOn(), this); }
ValueOnIter beginValueOn() { return ValueOnIter(mBuffer.mData.beginOn(), this); }
ValueOffCIter cbeginValueOff() const { return ValueOffCIter(mBuffer.mData.beginOff(), this); }
ValueOffCIter beginValueOff() const { return ValueOffCIter(mBuffer.mData.beginOff(), this); }
ValueOffIter beginValueOff() { return ValueOffIter(mBuffer.mData.beginOff(), this); }
ValueAllCIter cbeginValueAll() const { return ValueAllCIter(mBuffer.mData.beginDense(), this); }
ValueAllCIter beginValueAll() const { return ValueAllCIter(mBuffer.mData.beginDense(), this); }
ValueAllIter beginValueAll() { return ValueAllIter(mBuffer.mData.beginDense(), this); }
ValueOnCIter cendValueOn() const { return ValueOnCIter(mBuffer.mData.endOn(), this); }
ValueOnCIter endValueOn() const { return ValueOnCIter(mBuffer.mData.endOn(), this); }
ValueOnIter endValueOn() { return ValueOnIter(mBuffer.mData.endOn(), this); }
ValueOffCIter cendValueOff() const { return ValueOffCIter(mBuffer.mData.endOff(), this); }
ValueOffCIter endValueOff() const { return ValueOffCIter(mBuffer.mData.endOff(), this); }
ValueOffIter endValueOff() { return ValueOffIter(mBuffer.mData.endOff(), this); }
ValueAllCIter cendValueAll() const { return ValueAllCIter(mBuffer.mData.endDense(), this); }
ValueAllCIter endValueAll() const { return ValueAllCIter(mBuffer.mData.endDense(), this); }
ValueAllIter endValueAll() { return ValueAllIter(mBuffer.mData.endDense(), this); }
// Note that [c]beginChildOn() and [c]beginChildOff() actually return end iterators,
// because leaf nodes have no children.
ChildOnCIter cbeginChildOn() const { return ChildOnCIter(mBuffer.mData.endOn(), this); }
ChildOnCIter beginChildOn() const { return ChildOnCIter(mBuffer.mData.endOn(), this); }
ChildOnIter beginChildOn() { return ChildOnIter(mBuffer.mData.endOn(), this); }
ChildOffCIter cbeginChildOff() const { return ChildOffCIter(mBuffer.mData.endOff(), this); }
ChildOffCIter beginChildOff() const { return ChildOffCIter(mBuffer.mData.endOff(), this); }
ChildOffIter beginChildOff() { return ChildOffIter(mBuffer.mData.endOff(), this); }
ChildAllCIter cbeginChildAll() const { return ChildAllCIter(mBuffer.mData.beginDense(), this); }
ChildAllCIter beginChildAll() const { return ChildAllCIter(mBuffer.mData.beginDense(), this); }
ChildAllIter beginChildAll() { return ChildAllIter(mBuffer.mData.beginDense(), this); }
ChildOnCIter cendChildOn() const { return ChildOnCIter(mBuffer.mData.endOn(), this); }
ChildOnCIter endChildOn() const { return ChildOnCIter(mBuffer.mData.endOn(), this); }
ChildOnIter endChildOn() { return ChildOnIter(mBuffer.mData.endOn(), this); }
ChildOffCIter cendChildOff() const { return ChildOffCIter(mBuffer.mData.endOff(), this); }
ChildOffCIter endChildOff() const { return ChildOffCIter(mBuffer.mData.endOff(), this); }
ChildOffIter endChildOff() { return ChildOffIter(mBuffer.mData.endOff(), this); }
ChildAllCIter cendChildAll() const { return ChildAllCIter(mBuffer.mData.endDense(), this); }
ChildAllCIter endChildAll() const { return ChildAllCIter(mBuffer.mData.endDense(), this); }
ChildAllIter endChildAll() { return ChildAllIter(mBuffer.mData.endDense(), this); }
//
// Mask accessors
//
bool isValueMaskOn(Index n) const { return mBuffer.mData.isOn(n); }
bool isValueMaskOn() const { return mBuffer.mData.isOn(); }
bool isValueMaskOff(Index n) const { return mBuffer.mData.isOff(n); }
bool isValueMaskOff() const { return mBuffer.mData.isOff(); }
const NodeMaskType& getValueMask() const { return mBuffer.mData; }
const NodeMaskType& valueMask() const { return mBuffer.mData; }
NodeMaskType& getValueMask() { return mBuffer.mData; }
void setValueMask(const NodeMaskType& mask) { mBuffer.mData = mask; }
bool isChildMaskOn(Index) const { return false; } // leaf nodes have no children
bool isChildMaskOff(Index) const { return true; }
bool isChildMaskOff() const { return true; }
protected:
void setValueMask(Index n, bool on) { mBuffer.mData.set(n, on); }
void setValueMaskOn(Index n) { mBuffer.mData.setOn(n); }
void setValueMaskOff(Index n) { mBuffer.mData.setOff(n); }
/// Compute the origin of the leaf node that contains the voxel with the given coordinates.
static void evalNodeOrigin(Coord& xyz) { xyz &= ~(DIM - 1); }
template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
static inline void doVisit(NodeT&, VisitorOp&);
template<typename NodeT, typename OtherNodeT, typename VisitorOp,
typename ChildAllIterT, typename OtherChildAllIterT>
static inline void doVisit2Node(NodeT& self, OtherNodeT& other, VisitorOp&);
template<typename NodeT, typename VisitorOp,
typename ChildAllIterT, typename OtherChildAllIterT>
static inline void doVisit2(NodeT& self, OtherChildAllIterT&, VisitorOp&, bool otherIsLHS);
/// Bitmask representing the values AND state of voxels
Buffer mBuffer;
/// Global grid index coordinates (x,y,z) of the local origin of this node
Coord mOrigin;
private:
/// @brief During topology-only construction, access is needed
/// to protected/private members of other template instances.
template<typename, Index> friend class LeafNode;
friend struct ValueIter<MaskOnIter, LeafNode, bool>;
friend struct ValueIter<MaskOffIter, LeafNode, bool>;
friend struct ValueIter<MaskDenseIter, LeafNode, bool>;
friend struct ValueIter<MaskOnIter, const LeafNode, bool>;
friend struct ValueIter<MaskOffIter, const LeafNode, bool>;
friend struct ValueIter<MaskDenseIter, const LeafNode, bool>;
//@{
/// Allow iterators to call mask accessor methods (see below).
/// @todo Make mask accessors public?
friend class IteratorBase<MaskOnIter, LeafNode>;
friend class IteratorBase<MaskOffIter, LeafNode>;
friend class IteratorBase<MaskDenseIter, LeafNode>;
//@}
template<typename, Index> friend class LeafBuffer;
}; // class LeafNode<ValueMask>
////////////////////////////////////////
template<Index Log2Dim>
inline
LeafNode<ValueMask, Log2Dim>::LeafNode()
: mOrigin(0, 0, 0)
{
}
template<Index Log2Dim>
inline
LeafNode<ValueMask, Log2Dim>::LeafNode(const Coord& xyz, bool value, bool active)
: mBuffer(value || active)
, mOrigin(xyz & (~(DIM - 1)))
{
}
#if OPENVDB_ABI_VERSION_NUMBER >= 3
template<Index Log2Dim>
inline
LeafNode<ValueMask, Log2Dim>::LeafNode(PartialCreate, const Coord& xyz, bool value, bool active)
: mBuffer(value || active)
, mOrigin(xyz & (~(DIM - 1)))
{
}
#endif
template<Index Log2Dim>
inline
LeafNode<ValueMask, Log2Dim>::LeafNode(const LeafNode &other)
: mBuffer(other.mBuffer)
, mOrigin(other.mOrigin)
{
}
// Copy-construct from a leaf node with the same configuration but a different ValueType.
template<Index Log2Dim>
template<typename ValueT>
inline
LeafNode<ValueMask, Log2Dim>::LeafNode(const LeafNode<ValueT, Log2Dim>& other)
: mBuffer(other.valueMask())
, mOrigin(other.origin())
{
}
template<Index Log2Dim>
template<typename ValueT>
inline
LeafNode<ValueMask, Log2Dim>::LeafNode(const LeafNode<ValueT, Log2Dim>& other,
bool, TopologyCopy)
: mBuffer(other.valueMask())// value = active state
, mOrigin(other.origin())
{
}
template<Index Log2Dim>
template<typename ValueT>
inline
LeafNode<ValueMask, Log2Dim>::LeafNode(const LeafNode<ValueT, Log2Dim>& other, TopologyCopy)
: mBuffer(other.valueMask())// value = active state
, mOrigin(other.origin())
{
}
template<Index Log2Dim>
template<typename ValueT>
inline
LeafNode<ValueMask, Log2Dim>::LeafNode(const LeafNode<ValueT, Log2Dim>& other,
bool offValue, bool onValue, TopologyCopy)
: mBuffer(other.valueMask())
, mOrigin(other.origin())
{
if (offValue==true) {
if (onValue==false) {
mBuffer.mData.toggle();
} else {
mBuffer.mData.setOn();
}
}
}
template<Index Log2Dim>
inline
LeafNode<ValueMask, Log2Dim>::~LeafNode()
{
}
////////////////////////////////////////
template<Index Log2Dim>
inline Index64
LeafNode<ValueMask, Log2Dim>::memUsage() const
{
// Use sizeof(*this) to capture alignment-related padding
return sizeof(*this);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels) const
{
CoordBBox this_bbox = this->getNodeBoundingBox();
if (bbox.isInside(this_bbox)) return;//this LeafNode is already enclosed in the bbox
if (ValueOnCIter iter = this->cbeginValueOn()) {//any active values?
if (visitVoxels) {//use voxel granularity?
this_bbox.reset();
for(; iter; ++iter) this_bbox.expand(this->offsetToLocalCoord(iter.pos()));
this_bbox.translate(this->origin());
}
bbox.expand(this_bbox);
}
}
template<Index Log2Dim>
template<typename OtherType, Index OtherLog2Dim>
inline bool
LeafNode<ValueMask, Log2Dim>::hasSameTopology(const LeafNode<OtherType, OtherLog2Dim>* other) const
{
assert(other);
return (Log2Dim == OtherLog2Dim && mBuffer.mData == other->getValueMask());
}
template<Index Log2Dim>
inline std::string
LeafNode<ValueMask, Log2Dim>::str() const
{
std::ostringstream ostr;
ostr << "LeafNode @" << mOrigin << ": ";
for (Index32 n = 0; n < SIZE; ++n) ostr << (mBuffer.mData.isOn(n) ? '#' : '.');
return ostr.str();
}
////////////////////////////////////////
template<Index Log2Dim>
inline Index
LeafNode<ValueMask, Log2Dim>::coordToOffset(const Coord& xyz)
{
assert ((xyz[0] & (DIM-1u)) < DIM && (xyz[1] & (DIM-1u)) < DIM && (xyz[2] & (DIM-1u)) < DIM);
return ((xyz[0] & (DIM-1u)) << 2*Log2Dim)
+ ((xyz[1] & (DIM-1u)) << Log2Dim)
+ (xyz[2] & (DIM-1u));
}
template<Index Log2Dim>
inline Coord
LeafNode<ValueMask, Log2Dim>::offsetToLocalCoord(Index n)
{
assert(n < (1 << 3*Log2Dim));
Coord xyz;
xyz.setX(n >> 2*Log2Dim);
n &= ((1 << 2*Log2Dim) - 1);
xyz.setY(n >> Log2Dim);
xyz.setZ(n & ((1 << Log2Dim) - 1));
return xyz;
}
template<Index Log2Dim>
inline Coord
LeafNode<ValueMask, Log2Dim>::offsetToGlobalCoord(Index n) const
{
return (this->offsetToLocalCoord(n) + this->origin());
}
////////////////////////////////////////
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::readTopology(std::istream& is, bool /*fromHalf*/)
{
mBuffer.mData.load(is);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::writeTopology(std::ostream& os, bool /*toHalf*/) const
{
mBuffer.mData.save(os);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::readBuffers(std::istream& is, const CoordBBox& clipBBox, bool fromHalf)
{
// Boolean LeafNodes don't currently implement lazy loading.
// Instead, load the full buffer, then clip it.
this->readBuffers(is, fromHalf);
// Get this tree's background value.
bool background = false;
if (const void* bgPtr = io::getGridBackgroundValuePtr(is)) {
background = *static_cast<const bool*>(bgPtr);
}
this->clip(clipBBox, background);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::readBuffers(std::istream& is, bool /*fromHalf*/)
{
// Read in the value mask = buffer.
mBuffer.mData.load(is);
// Read in the origin.
is.read(reinterpret_cast<char*>(&mOrigin), sizeof(Coord::ValueType) * 3);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::writeBuffers(std::ostream& os, bool /*toHalf*/) const
{
// Write out the value mask = buffer.
mBuffer.mData.save(os);
// Write out the origin.
os.write(reinterpret_cast<const char*>(&mOrigin), sizeof(Coord::ValueType) * 3);
}
////////////////////////////////////////
template<Index Log2Dim>
inline bool
LeafNode<ValueMask, Log2Dim>::operator==(const LeafNode& other) const
{
return mOrigin == other.mOrigin && mBuffer == other.mBuffer;
}
template<Index Log2Dim>
inline bool
LeafNode<ValueMask, Log2Dim>::operator!=(const LeafNode& other) const
{
return !(this->operator==(other));
}
////////////////////////////////////////
template<Index Log2Dim>
inline bool
LeafNode<ValueMask, Log2Dim>::isConstant(bool& constValue, bool& state, bool) const
{
if (!mBuffer.mData.isConstant(state)) return false;
constValue = state;
return true;
}
////////////////////////////////////////
template<Index Log2Dim>
inline bool
LeafNode<ValueMask, Log2Dim>::medianAll() const
{
const Index countTrue = mBuffer.mData.countOn();
return countTrue > (NUM_VALUES >> 1);
}
template<Index Log2Dim>
inline Index
LeafNode<ValueMask, Log2Dim>::medianOn(bool& state) const
{
const Index countTrueOn = mBuffer.mData.countOn();
state = true;//since value and state are the same for this specialization of the leaf node
return countTrueOn;
}
template<Index Log2Dim>
inline Index
LeafNode<ValueMask, Log2Dim>::medianOff(bool& state) const
{
const Index countFalseOff = mBuffer.mData.countOff();
state = false;//since value and state are the same for this specialization of the leaf node
return countFalseOff;
}
////////////////////////////////////////
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::addTile(Index /*level*/, const Coord& xyz, bool val, bool active)
{
this->addTile(this->coordToOffset(xyz), val, active);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::addTile(Index offset, bool val, bool active)
{
assert(offset < SIZE);
this->setValueOnly(offset, val);
this->setActiveState(offset, active);
}
template<Index Log2Dim>
template<typename AccessorT>
inline void
LeafNode<ValueMask, Log2Dim>::addTileAndCache(Index level, const Coord& xyz,
bool val, bool active, AccessorT&)
{
this->addTile(level, xyz, val, active);
}
////////////////////////////////////////
template<Index Log2Dim>
inline const bool&
LeafNode<ValueMask, Log2Dim>::getValue(const Coord& xyz) const
{
// This *CANNOT* use operator ? because Visual C++
if (mBuffer.mData.isOn(this->coordToOffset(xyz))) return Buffer::sOn; else return Buffer::sOff;
}
template<Index Log2Dim>
inline const bool&
LeafNode<ValueMask, Log2Dim>::getValue(Index offset) const
{
assert(offset < SIZE);
// This *CANNOT* use operator ? for Windows
if (mBuffer.mData.isOn(offset)) return Buffer::sOn; else return Buffer::sOff;
}
template<Index Log2Dim>
inline bool
LeafNode<ValueMask, Log2Dim>::probeValue(const Coord& xyz, bool& val) const
{
const Index offset = this->coordToOffset(xyz);
val = mBuffer.mData.isOn(offset);
return val;
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::setValueOn(const Coord& xyz, bool val)
{
this->setValueOn(this->coordToOffset(xyz), val);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::setValueOn(Index offset, bool val)
{
assert(offset < SIZE);
mBuffer.mData.set(offset, val);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::setValueOnly(const Coord& xyz, bool val)
{
this->setValueOnly(this->coordToOffset(xyz), val);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::setActiveState(const Coord& xyz, bool on)
{
mBuffer.mData.set(this->coordToOffset(xyz), on);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::setValueOff(const Coord& xyz, bool val)
{
this->setValueOff(this->coordToOffset(xyz), val);
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::setValueOff(Index offset, bool val)
{
assert(offset < SIZE);
mBuffer.mData.set(offset, val);
}
template<Index Log2Dim>
template<typename ModifyOp>
inline void
LeafNode<ValueMask, Log2Dim>::modifyValue(Index offset, const ModifyOp& op)
{
bool val = mBuffer.mData.isOn(offset);
op(val);
mBuffer.mData.set(offset, val);
}
template<Index Log2Dim>
template<typename ModifyOp>
inline void
LeafNode<ValueMask, Log2Dim>::modifyValue(const Coord& xyz, const ModifyOp& op)
{
this->modifyValue(this->coordToOffset(xyz), op);
}
template<Index Log2Dim>
template<typename ModifyOp>
inline void
LeafNode<ValueMask, Log2Dim>::modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
{
const Index offset = this->coordToOffset(xyz);
bool val = mBuffer.mData.isOn(offset), state = val;
op(val, state);
mBuffer.mData.set(offset, val);
}
////////////////////////////////////////
template<Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<ValueMask, Log2Dim>::merge(const LeafNode& other, bool /*bg*/, bool /*otherBG*/)
{
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (Policy == MERGE_NODES) return;
mBuffer.mData |= other.mBuffer.mData;
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
template<Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<ValueMask, Log2Dim>::merge(bool tileValue, bool)
{
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (Policy != MERGE_ACTIVE_STATES_AND_NODES) return;
if (tileValue) mBuffer.mData.setOn();
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
////////////////////////////////////////
template<Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<ValueMask, Log2Dim>::topologyUnion(const LeafNode<OtherType, Log2Dim>& other)
{
mBuffer.mData |= other.valueMask();
}
template<Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<ValueMask, Log2Dim>::topologyIntersection(const LeafNode<OtherType, Log2Dim>& other,
const bool&)
{
mBuffer.mData &= other.valueMask();
}
template<Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<ValueMask, Log2Dim>::topologyDifference(const LeafNode<OtherType, Log2Dim>& other,
const bool&)
{
mBuffer.mData &= !other.valueMask();
}
////////////////////////////////////////
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::clip(const CoordBBox& clipBBox, bool background)
{
CoordBBox nodeBBox = this->getNodeBoundingBox();
if (!clipBBox.hasOverlap(nodeBBox)) {
// This node lies completely outside the clipping region. Fill it with background tiles.
this->fill(nodeBBox, background, /*active=*/false);
} else if (clipBBox.isInside(nodeBBox)) {
// This node lies completely inside the clipping region. Leave it intact.
return;
}
// This node isn't completely contained inside the clipping region.
// Set any voxels that lie outside the region to the background value.
// Construct a boolean mask that is on inside the clipping region and off outside it.
NodeMaskType mask;
nodeBBox.intersect(clipBBox);
Coord xyz;
int &x = xyz.x(), &y = xyz.y(), &z = xyz.z();
for (x = nodeBBox.min().x(); x <= nodeBBox.max().x(); ++x) {
for (y = nodeBBox.min().y(); y <= nodeBBox.max().y(); ++y) {
for (z = nodeBBox.min().z(); z <= nodeBBox.max().z(); ++z) {
mask.setOn(static_cast<Index32>(this->coordToOffset(xyz)));
}
}
}
// Set voxels that lie in the inactive region of the mask (i.e., outside
// the clipping region) to the background value.
for (MaskOffIter maskIter = mask.beginOff(); maskIter; ++maskIter) {
this->setValueOff(maskIter.pos(), background);
}
}
////////////////////////////////////////
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::fill(const CoordBBox& bbox, bool value, bool)
{
auto clippedBBox = this->getNodeBoundingBox();
clippedBBox.intersect(bbox);
if (!clippedBBox) return;
for (Int32 x = clippedBBox.min().x(); x <= clippedBBox.max().x(); ++x) {
const Index offsetX = (x & (DIM-1u))<<2*Log2Dim;
for (Int32 y = clippedBBox.min().y(); y <= clippedBBox.max().y(); ++y) {
const Index offsetXY = offsetX + ((y & (DIM-1u))<< Log2Dim);
for (Int32 z = clippedBBox.min().z(); z <= clippedBBox.max().z(); ++z) {
const Index offset = offsetXY + (z & (DIM-1u));
mBuffer.mData.set(offset, value);
}
}
}
}
template<Index Log2Dim>
inline void
LeafNode<ValueMask, Log2Dim>::fill(const bool& value, bool)
{
mBuffer.fill(value);
}
////////////////////////////////////////
template<Index Log2Dim>
template<typename DenseT>
inline void
LeafNode<ValueMask, Log2Dim>::copyToDense(const CoordBBox& bbox, DenseT& dense) const
{
using DenseValueType = typename DenseT::ValueType;
const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
const Coord& min = dense.bbox().min();
DenseValueType* t0 = dense.data() + zStride * (bbox.min()[2] - min[2]); // target array
const Int32 n0 = bbox.min()[2] & (DIM-1u);
for (Int32 x = bbox.min()[0], ex = bbox.max()[0] + 1; x < ex; ++x) {
DenseValueType* t1 = t0 + xStride * (x - min[0]);
const Int32 n1 = n0 + ((x & (DIM-1u)) << 2*LOG2DIM);
for (Int32 y = bbox.min()[1], ey = bbox.max()[1] + 1; y < ey; ++y) {
DenseValueType* t2 = t1 + yStride * (y - min[1]);
Int32 n2 = n1 + ((y & (DIM-1u)) << LOG2DIM);
for (Int32 z = bbox.min()[2], ez = bbox.max()[2] + 1; z < ez; ++z, t2 += zStride) {
*t2 = DenseValueType(mBuffer.mData.isOn(n2++));
}
}
}
}
template<Index Log2Dim>
template<typename DenseT>
inline void
LeafNode<ValueMask, Log2Dim>::copyFromDense(const CoordBBox& bbox, const DenseT& dense,
bool background, bool tolerance)
{
using DenseValueType = typename DenseT::ValueType;
struct Local {
inline static bool toBool(const DenseValueType& v) { return !math::isZero(v); }
};
const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
const Coord& min = dense.bbox().min();
const DenseValueType* s0 = dense.data() + zStride * (bbox.min()[2] - min[2]); // source
const Int32 n0 = bbox.min()[2] & (DIM-1u);
for (Int32 x = bbox.min()[0], ex = bbox.max()[0] + 1; x < ex; ++x) {
const DenseValueType* s1 = s0 + xStride * (x - min[0]);
const Int32 n1 = n0 + ((x & (DIM-1u)) << 2*LOG2DIM);
for (Int32 y = bbox.min()[1], ey = bbox.max()[1] + 1; y < ey; ++y) {
const DenseValueType* s2 = s1 + yStride * (y - min[1]);
Int32 n2 = n1 + ((y & (DIM-1u)) << LOG2DIM);
for (Int32 z = bbox.min()[2], ez = bbox.max()[2]+1; z < ez; ++z, ++n2, s2 += zStride) {
// Note: if tolerance is true (i.e., 1), then all boolean values compare equal.
if (tolerance || (background == Local::toBool(*s2))) {
mBuffer.mData.set(n2, background);
} else {
mBuffer.mData.set(n2, Local::toBool(*s2));
}
}
}
}
}
////////////////////////////////////////
template<Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<ValueMask, Log2Dim>::combine(const LeafNode& other, CombineOp& op)
{
CombineArgs<bool> args;
for (Index i = 0; i < SIZE; ++i) {
bool result = false, aVal = mBuffer.mData.isOn(i), bVal = other.mBuffer.mData.isOn(i);
op(args.setARef(aVal)
.setAIsActive(aVal)
.setBRef(bVal)
.setBIsActive(bVal)
.setResultRef(result));
mBuffer.mData.set(i, result);
}
}
template<Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<ValueMask, Log2Dim>::combine(bool value, bool valueIsActive, CombineOp& op)
{
CombineArgs<bool> args;
args.setBRef(value).setBIsActive(valueIsActive);
for (Index i = 0; i < SIZE; ++i) {
bool result = false, aVal = mBuffer.mData.isOn(i);
op(args.setARef(aVal)
.setAIsActive(aVal)
.setResultRef(result));
mBuffer.mData.set(i, result);
}
}
////////////////////////////////////////
template<Index Log2Dim>
template<typename CombineOp, typename OtherType>
inline void
LeafNode<ValueMask, Log2Dim>::combine2(const LeafNode& other, const OtherType& value,
bool valueIsActive, CombineOp& op)
{
CombineArgs<bool, OtherType> args;
args.setBRef(value).setBIsActive(valueIsActive);
for (Index i = 0; i < SIZE; ++i) {
bool result = false, aVal = other.mBuffer.mData.isOn(i);
op(args.setARef(aVal)
.setAIsActive(aVal)
.setResultRef(result));
mBuffer.mData.set(i, result);
}
}
template<Index Log2Dim>
template<typename CombineOp, typename OtherNodeT>
inline void
LeafNode<ValueMask, Log2Dim>::combine2(bool value, const OtherNodeT& other,
bool valueIsActive, CombineOp& op)
{
CombineArgs<bool, typename OtherNodeT::ValueType> args;
args.setARef(value).setAIsActive(valueIsActive);
for (Index i = 0; i < SIZE; ++i) {
bool result = false, bVal = other.mBuffer.mData.isOn(i);
op(args.setBRef(bVal)
.setBIsActive(bVal)
.setResultRef(result));
mBuffer.mData.set(i, result);
}
}
template<Index Log2Dim>
template<typename CombineOp, typename OtherNodeT>
inline void
LeafNode<ValueMask, Log2Dim>::combine2(const LeafNode& b0, const OtherNodeT& b1, CombineOp& op)
{
CombineArgs<bool, typename OtherNodeT::ValueType> args;
for (Index i = 0; i < SIZE; ++i) {
bool result = false, b0Val = b0.mBuffer.mData.isOn(i), b1Val = b1.mBuffer.mData.isOn(i);
op(args.setARef(b0Val)
.setAIsActive(b0Val)
.setBRef(b1Val)
.setBIsActive(b1Val)
.setResultRef(result));
mBuffer.mData.set(i, result);
}
}
////////////////////////////////////////
template<Index Log2Dim>
template<typename BBoxOp>
inline void
LeafNode<ValueMask, Log2Dim>::visitActiveBBox(BBoxOp& op) const
{
if (op.template descent<LEVEL>()) {
for (ValueOnCIter i=this->cbeginValueOn(); i; ++i) {
#ifdef _MSC_VER
op.operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), 1));
#else
op.template operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), 1));
#endif
}
} else {
#ifdef _MSC_VER
op.operator()<LEVEL>(this->getNodeBoundingBox());
#else
op.template operator()<LEVEL>(this->getNodeBoundingBox());
#endif
}
}
template<Index Log2Dim>
template<typename VisitorOp>
inline void
LeafNode<ValueMask, Log2Dim>::visit(VisitorOp& op)
{
doVisit<LeafNode, VisitorOp, ChildAllIter>(*this, op);
}
template<Index Log2Dim>
template<typename VisitorOp>
inline void
LeafNode<ValueMask, Log2Dim>::visit(VisitorOp& op) const
{
doVisit<const LeafNode, VisitorOp, ChildAllCIter>(*this, op);
}
template<Index Log2Dim>
template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
inline void
LeafNode<ValueMask, Log2Dim>::doVisit(NodeT& self, VisitorOp& op)
{
for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
op(iter);
}
}
////////////////////////////////////////
template<Index Log2Dim>
template<typename OtherLeafNodeType, typename VisitorOp>
inline void
LeafNode<ValueMask, Log2Dim>::visit2Node(OtherLeafNodeType& other, VisitorOp& op)
{
doVisit2Node<LeafNode, OtherLeafNodeType, VisitorOp, ChildAllIter,
typename OtherLeafNodeType::ChildAllIter>(*this, other, op);
}
template<Index Log2Dim>
template<typename OtherLeafNodeType, typename VisitorOp>
inline void
LeafNode<ValueMask, Log2Dim>::visit2Node(OtherLeafNodeType& other, VisitorOp& op) const
{
doVisit2Node<const LeafNode, OtherLeafNodeType, VisitorOp, ChildAllCIter,
typename OtherLeafNodeType::ChildAllCIter>(*this, other, op);
}
template<Index Log2Dim>
template<
typename NodeT,
typename OtherNodeT,
typename VisitorOp,
typename ChildAllIterT,
typename OtherChildAllIterT>
inline void
LeafNode<ValueMask, Log2Dim>::doVisit2Node(NodeT& self, OtherNodeT& other, VisitorOp& op)
{
// Allow the two nodes to have different ValueTypes, but not different dimensions.
static_assert(OtherNodeT::SIZE == NodeT::SIZE,
"can't visit nodes of different sizes simultaneously");
static_assert(OtherNodeT::LEVEL == NodeT::LEVEL,
"can't visit nodes at different tree levels simultaneously");
ChildAllIterT iter = self.beginChildAll();
OtherChildAllIterT otherIter = other.beginChildAll();
for ( ; iter && otherIter; ++iter, ++otherIter) {
op(iter, otherIter);
}
}
////////////////////////////////////////
template<Index Log2Dim>
template<typename IterT, typename VisitorOp>
inline void
LeafNode<ValueMask, Log2Dim>::visit2(IterT& otherIter, VisitorOp& op, bool otherIsLHS)
{
doVisit2<LeafNode, VisitorOp, ChildAllIter, IterT>(*this, otherIter, op, otherIsLHS);
}
template<Index Log2Dim>
template<typename IterT, typename VisitorOp>
inline void
LeafNode<ValueMask, Log2Dim>::visit2(IterT& otherIter, VisitorOp& op, bool otherIsLHS) const
{
doVisit2<const LeafNode, VisitorOp, ChildAllCIter, IterT>(*this, otherIter, op, otherIsLHS);
}
template<Index Log2Dim>
template<
typename NodeT,
typename VisitorOp,
typename ChildAllIterT,
typename OtherChildAllIterT>
inline void
LeafNode<ValueMask, Log2Dim>::doVisit2(NodeT& self, OtherChildAllIterT& otherIter,
VisitorOp& op, bool otherIsLHS)
{
if (!otherIter) return;
if (otherIsLHS) {
for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
op(otherIter, iter);
}
} else {
for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
op(iter, otherIter);
}
}
}
} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TREE_LEAF_NODE_MASK_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|