/usr/include/openvdb/tree/RootNode.h is in libopenvdb-dev 5.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2017 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
///
/// @file RootNode.h
///
/// @brief The root node of an OpenVDB tree
#ifndef OPENVDB_TREE_ROOTNODE_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_ROOTNODE_HAS_BEEN_INCLUDED
#include <openvdb/Exceptions.h>
#include <openvdb/Types.h>
#include <openvdb/io/Compression.h> // for truncateRealToHalf()
#include <openvdb/math/Math.h> // for isZero(), isExactlyEqual(), etc.
#include <openvdb/math/BBox.h>
#include <openvdb/util/NodeMasks.h> // for backward compatibility only (see readTopology())
#include <openvdb/version.h>
#include <boost/mpl/contains.hpp>
#include <boost/mpl/vector.hpp>//for boost::mpl::vector
#include <boost/mpl/at.hpp>
#include <boost/mpl/push_back.hpp>
#include <boost/mpl/size.hpp>
#include <tbb/parallel_for.h>
#include <map>
#include <set>
#include <sstream>
#include <deque>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {
// Forward declarations
template<typename HeadType, int HeadLevel> struct NodeChain;
template<typename, typename> struct SameRootConfig;
template<typename, typename, bool> struct RootNodeCopyHelper;
template<typename, typename, typename, bool> struct RootNodeCombineHelper;
template<typename ChildType>
class RootNode
{
public:
using ChildNodeType = ChildType;
using LeafNodeType = typename ChildType::LeafNodeType;
using ValueType = typename ChildType::ValueType;
using BuildType = typename ChildType::BuildType;
static const Index LEVEL = 1 + ChildType::LEVEL; // level 0 = leaf
/// NodeChainType is a list of this tree's node types, from LeafNodeType to RootNode.
using NodeChainType = typename NodeChain<RootNode, LEVEL>::Type;
static_assert(boost::mpl::size<NodeChainType>::value == LEVEL + 1,
"wrong number of entries in RootNode node chain");
/// @brief ValueConverter<T>::Type is the type of a RootNode having the same
/// child hierarchy as this node but a different value type, T.
template<typename OtherValueType>
struct ValueConverter {
using Type = RootNode<typename ChildType::template ValueConverter<OtherValueType>::Type>;
};
/// @brief SameConfiguration<OtherNodeType>::value is @c true if and only if
/// OtherNodeType is the type of a RootNode whose ChildNodeType has the same
/// configuration as this node's ChildNodeType.
template<typename OtherNodeType>
struct SameConfiguration {
static const bool value = SameRootConfig<ChildNodeType, OtherNodeType>::value;
};
/// Construct a new tree with a background value of 0.
RootNode();
/// Construct a new tree with the given background value.
explicit RootNode(const ValueType& background);
RootNode(const RootNode& other) { *this = other; }
/// @brief Construct a new tree that reproduces the topology and active states
/// of a tree of a different ValueType but the same configuration (levels,
/// node dimensions and branching factors). Cast the other tree's values to
/// this tree's ValueType.
/// @throw TypeError if the other tree's configuration doesn't match this tree's
/// or if this tree's ValueType is not constructible from the other tree's ValueType.
template<typename OtherChildType>
explicit RootNode(const RootNode<OtherChildType>& other) { *this = other; }
/// @brief Construct a new tree that reproduces the topology and active states of
/// another tree (which may have a different ValueType), but not the other tree's values.
/// @details All tiles and voxels that are active in the other tree are set to
/// @a foreground in the new tree, and all inactive tiles and voxels are set to @a background.
/// @param other the root node of a tree having (possibly) a different ValueType
/// @param background the value to which inactive tiles and voxels are initialized
/// @param foreground the value to which active tiles and voxels are initialized
/// @throw TypeError if the other tree's configuration doesn't match this tree's.
template<typename OtherChildType>
RootNode(const RootNode<OtherChildType>& other,
const ValueType& background, const ValueType& foreground, TopologyCopy);
/// @brief Construct a new tree that reproduces the topology and active states of
/// another tree (which may have a different ValueType), but not the other tree's values.
/// All tiles and voxels in the new tree are set to @a background regardless of
/// their active states in the other tree.
/// @param other the root node of a tree having (possibly) a different ValueType
/// @param background the value to which inactive tiles and voxels are initialized
/// @note This copy constructor is generally faster than the one that takes both
/// a foreground and a background value. Its main application is in multithreaded
/// operations where the topology of the output tree exactly matches the input tree.
/// @throw TypeError if the other tree's configuration doesn't match this tree's.
template<typename OtherChildType>
RootNode(const RootNode<OtherChildType>& other, const ValueType& background, TopologyCopy);
/// @brief Copy a root node of the same type as this node.
RootNode& operator=(const RootNode& other);
/// @brief Copy a root node of the same tree configuration as this node
/// but a different ValueType.
/// @throw TypeError if the other tree's configuration doesn't match this tree's.
/// @note This node's ValueType must be constructible from the other node's ValueType.
/// For example, a root node with values of type float can be assigned to a root node
/// with values of type Vec3s, because a Vec3s can be constructed from a float.
/// But a Vec3s root node cannot be assigned to a float root node.
template<typename OtherChildType>
RootNode& operator=(const RootNode<OtherChildType>& other);
~RootNode() { this->clear(); }
private:
struct Tile {
Tile(): value(zeroVal<ValueType>()), active(false) {}
Tile(const ValueType& v, bool b): value(v), active(b) {}
ValueType value;
bool active;
};
// This lightweight struct pairs child pointers and tiles.
struct NodeStruct {
ChildType* child;
Tile tile;
NodeStruct(): child(nullptr) {}
NodeStruct(ChildType& c): child(&c) {}
NodeStruct(const Tile& t): child(nullptr), tile(t) {}
NodeStruct(const NodeStruct&) = default;
NodeStruct& operator=(const NodeStruct&) = default;
~NodeStruct() {} ///< @note doesn't delete child
bool isChild() const { return child != nullptr; }
bool isTile() const { return child == nullptr; }
bool isTileOff() const { return isTile() && !tile.active; }
bool isTileOn() const { return isTile() && tile.active; }
void set(ChildType& c) { delete child; child = &c; }
void set(const Tile& t) { delete child; child = nullptr; tile = t; }
ChildType& steal(const Tile& t) { ChildType* c=child; child=nullptr; tile=t; return *c; }
};
using MapType = std::map<Coord, NodeStruct>;
using MapIter = typename MapType::iterator;
using MapCIter = typename MapType::const_iterator;
using CoordSet = std::set<Coord>;
using CoordSetIter = typename CoordSet::iterator;
using CoordSetCIter = typename CoordSet::const_iterator;
static void setTile(const MapIter& i, const Tile& t) { i->second.set(t); }
static void setChild(const MapIter& i, ChildType& c) { i->second.set(c); }
static Tile& getTile(const MapIter& i) { return i->second.tile; }
static const Tile& getTile(const MapCIter& i) { return i->second.tile; }
static ChildType& getChild(const MapIter& i) { return *(i->second.child); }
static const ChildType& getChild(const MapCIter& i) { return *(i->second.child); }
static ChildType& stealChild(const MapIter& i, const Tile& t) {return i->second.steal(t);}
static const ChildType& stealChild(const MapCIter& i,const Tile& t) {return i->second.steal(t);}
static bool isChild(const MapCIter& i) { return i->second.isChild(); }
static bool isChild(const MapIter& i) { return i->second.isChild(); }
static bool isTile(const MapCIter& i) { return i->second.isTile(); }
static bool isTile(const MapIter& i) { return i->second.isTile(); }
static bool isTileOff(const MapCIter& i) { return i->second.isTileOff(); }
static bool isTileOff(const MapIter& i) { return i->second.isTileOff(); }
static bool isTileOn(const MapCIter& i) { return i->second.isTileOn(); }
static bool isTileOn(const MapIter& i) { return i->second.isTileOn(); }
struct NullPred {
static inline bool test(const MapIter&) { return true; }
static inline bool test(const MapCIter&) { return true; }
};
struct ValueOnPred {
static inline bool test(const MapIter& i) { return isTileOn(i); }
static inline bool test(const MapCIter& i) { return isTileOn(i); }
};
struct ValueOffPred {
static inline bool test(const MapIter& i) { return isTileOff(i); }
static inline bool test(const MapCIter& i) { return isTileOff(i); }
};
struct ValueAllPred {
static inline bool test(const MapIter& i) { return isTile(i); }
static inline bool test(const MapCIter& i) { return isTile(i); }
};
struct ChildOnPred {
static inline bool test(const MapIter& i) { return isChild(i); }
static inline bool test(const MapCIter& i) { return isChild(i); }
};
struct ChildOffPred {
static inline bool test(const MapIter& i) { return isTile(i); }
static inline bool test(const MapCIter& i) { return isTile(i); }
};
template<typename _RootNodeT, typename _MapIterT, typename FilterPredT>
class BaseIter
{
public:
using RootNodeT = _RootNodeT;
using MapIterT = _MapIterT; // either MapIter or MapCIter
bool operator==(const BaseIter& other) const
{
return (mParentNode == other.mParentNode) && (mIter == other.mIter);
}
bool operator!=(const BaseIter& other) const { return !(*this == other); }
RootNodeT* getParentNode() const { return mParentNode; }
/// Return a reference to the node over which this iterator iterates.
RootNodeT& parent() const
{
if (!mParentNode) OPENVDB_THROW(ValueError, "iterator references a null parent node");
return *mParentNode;
}
bool test() const { assert(mParentNode); return mIter != mParentNode->mTable.end(); }
operator bool() const { return this->test(); }
void increment() { ++mIter; this->skip(); }
bool next() { this->increment(); return this->test(); }
void increment(Index n) { for (int i = 0; i < n && this->next(); ++i) {} }
/// @brief Return this iterator's position as an offset from
/// the beginning of the parent node's map.
Index pos() const
{
return !mParentNode ? 0U : Index(std::distance(mParentNode->mTable.begin(), mIter));
}
bool isValueOn() const { return RootNodeT::isTileOn(mIter); }
bool isValueOff() const { return RootNodeT::isTileOff(mIter); }
void setValueOn(bool on = true) const { mIter->second.tile.active = on; }
void setValueOff() const { mIter->second.tile.active = false; }
/// Return the coordinates of the item to which this iterator is pointing.
Coord getCoord() const { return mIter->first; }
/// Return in @a xyz the coordinates of the item to which this iterator is pointing.
void getCoord(Coord& xyz) const { xyz = this->getCoord(); }
protected:
BaseIter(): mParentNode(nullptr) {}
BaseIter(RootNodeT& parent, const MapIterT& iter): mParentNode(&parent), mIter(iter) {}
void skip() { while (this->test() && !FilterPredT::test(mIter)) ++mIter; }
RootNodeT* mParentNode;
MapIterT mIter;
}; // BaseIter
template<typename RootNodeT, typename MapIterT, typename FilterPredT, typename ChildNodeT>
class ChildIter: public BaseIter<RootNodeT, MapIterT, FilterPredT>
{
public:
using BaseT = BaseIter<RootNodeT, MapIterT, FilterPredT>;
using NodeType = RootNodeT;
using ValueType = NodeType;
using ChildNodeType = ChildNodeT;
using NonConstNodeType = typename std::remove_const<NodeType>::type;
using NonConstValueType = typename std::remove_const<ValueType>::type;
using NonConstChildNodeType = typename std::remove_const<ChildNodeType>::type;
using BaseT::mIter;
ChildIter() {}
ChildIter(RootNodeT& parent, const MapIterT& iter): BaseT(parent, iter) { BaseT::skip(); }
ChildIter& operator++() { BaseT::increment(); return *this; }
ChildNodeT& getValue() const { return getChild(mIter); }
ChildNodeT& operator*() const { return this->getValue(); }
ChildNodeT* operator->() const { return &this->getValue(); }
}; // ChildIter
template<typename RootNodeT, typename MapIterT, typename FilterPredT, typename ValueT>
class ValueIter: public BaseIter<RootNodeT, MapIterT, FilterPredT>
{
public:
using BaseT = BaseIter<RootNodeT, MapIterT, FilterPredT>;
using NodeType = RootNodeT;
using ValueType = ValueT;
using NonConstNodeType = typename std::remove_const<NodeType>::type;
using NonConstValueType = typename std::remove_const<ValueT>::type;
using BaseT::mIter;
ValueIter() {}
ValueIter(RootNodeT& parent, const MapIterT& iter): BaseT(parent, iter) { BaseT::skip(); }
ValueIter& operator++() { BaseT::increment(); return *this; }
ValueT& getValue() const { return getTile(mIter).value; }
ValueT& operator*() const { return this->getValue(); }
ValueT* operator->() const { return &(this->getValue()); }
void setValue(const ValueT& v) const { assert(isTile(mIter)); getTile(mIter).value = v; }
template<typename ModifyOp>
void modifyValue(const ModifyOp& op) const
{
assert(isTile(mIter));
op(getTile(mIter).value);
}
}; // ValueIter
template<typename RootNodeT, typename MapIterT, typename ChildNodeT, typename ValueT>
class DenseIter: public BaseIter<RootNodeT, MapIterT, NullPred>
{
public:
using BaseT = BaseIter<RootNodeT, MapIterT, NullPred>;
using NodeType = RootNodeT;
using ValueType = ValueT;
using ChildNodeType = ChildNodeT;
using NonConstNodeType = typename std::remove_const<NodeType>::type;
using NonConstValueType = typename std::remove_const<ValueT>::type;
using NonConstChildNodeType = typename std::remove_const<ChildNodeT>::type;
using BaseT::mIter;
DenseIter() {}
DenseIter(RootNodeT& parent, const MapIterT& iter): BaseT(parent, iter) {}
DenseIter& operator++() { BaseT::increment(); return *this; }
bool isChildNode() const { return isChild(mIter); }
ChildNodeT* probeChild(NonConstValueType& value) const
{
if (isChild(mIter)) return &getChild(mIter);
value = getTile(mIter).value;
return nullptr;
}
bool probeChild(ChildNodeT*& child, NonConstValueType& value) const
{
child = this->probeChild(value);
return child != nullptr;
}
bool probeValue(NonConstValueType& value) const { return !this->probeChild(value); }
void setChild(ChildNodeT& c) const { RootNodeT::setChild(mIter, c); }
void setChild(ChildNodeT* c) const { assert(c != nullptr); RootNodeT::setChild(mIter, *c); }
void setValue(const ValueT& v) const
{
if (isTile(mIter)) getTile(mIter).value = v;
/// @internal For consistency with iterators for other node types
/// (see, e.g., InternalNode::DenseIter::unsetItem()), we don't call
/// setTile() here, because that would also delete the child.
else stealChild(mIter, Tile(v, /*active=*/true));
}
}; // DenseIter
public:
using ChildOnIter = ChildIter<RootNode, MapIter, ChildOnPred, ChildType>;
using ChildOnCIter = ChildIter<const RootNode, MapCIter, ChildOnPred, const ChildType>;
using ChildOffIter = ValueIter<RootNode, MapIter, ChildOffPred, const ValueType>;
using ChildOffCIter = ValueIter<const RootNode, MapCIter, ChildOffPred, ValueType>;
using ChildAllIter = DenseIter<RootNode, MapIter, ChildType, ValueType>;
using ChildAllCIter = DenseIter<const RootNode, MapCIter, const ChildType, const ValueType>;
using ValueOnIter = ValueIter<RootNode, MapIter, ValueOnPred, ValueType>;
using ValueOnCIter = ValueIter<const RootNode, MapCIter, ValueOnPred, const ValueType>;
using ValueOffIter = ValueIter<RootNode, MapIter, ValueOffPred, ValueType>;
using ValueOffCIter = ValueIter<const RootNode, MapCIter, ValueOffPred, const ValueType>;
using ValueAllIter = ValueIter<RootNode, MapIter, ValueAllPred, ValueType>;
using ValueAllCIter = ValueIter<const RootNode, MapCIter, ValueAllPred, const ValueType>;
ChildOnCIter cbeginChildOn() const { return ChildOnCIter(*this, mTable.begin()); }
ChildOffCIter cbeginChildOff() const { return ChildOffCIter(*this, mTable.begin()); }
ChildAllCIter cbeginChildAll() const { return ChildAllCIter(*this, mTable.begin()); }
ChildOnCIter beginChildOn() const { return cbeginChildOn(); }
ChildOffCIter beginChildOff() const { return cbeginChildOff(); }
ChildAllCIter beginChildAll() const { return cbeginChildAll(); }
ChildOnIter beginChildOn() { return ChildOnIter(*this, mTable.begin()); }
ChildOffIter beginChildOff() { return ChildOffIter(*this, mTable.begin()); }
ChildAllIter beginChildAll() { return ChildAllIter(*this, mTable.begin()); }
ValueOnCIter cbeginValueOn() const { return ValueOnCIter(*this, mTable.begin()); }
ValueOffCIter cbeginValueOff() const { return ValueOffCIter(*this, mTable.begin()); }
ValueAllCIter cbeginValueAll() const { return ValueAllCIter(*this, mTable.begin()); }
ValueOnCIter beginValueOn() const { return cbeginValueOn(); }
ValueOffCIter beginValueOff() const { return cbeginValueOff(); }
ValueAllCIter beginValueAll() const { return cbeginValueAll(); }
ValueOnIter beginValueOn() { return ValueOnIter(*this, mTable.begin()); }
ValueOffIter beginValueOff() { return ValueOffIter(*this, mTable.begin()); }
ValueAllIter beginValueAll() { return ValueAllIter(*this, mTable.begin()); }
/// Return the total amount of memory in bytes occupied by this node and its children.
Index64 memUsage() const;
/// @brief Expand the specified bbox so it includes the active tiles of
/// this root node as well as all the active values in its child
/// nodes. If visitVoxels is false LeafNodes will be approximated
/// as dense, i.e. with all voxels active. Else the individual
/// active voxels are visited to produce a tight bbox.
void evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels = true) const;
/// Return the bounding box of this RootNode, i.e., an infinite bounding box.
static CoordBBox getNodeBoundingBox() { return CoordBBox::inf(); }
/// @brief Change inactive tiles or voxels with a value equal to +/- the
/// old background to the specified value (with the same sign). Active values
/// are unchanged.
///
/// @param value The new background value
/// @param updateChildNodes If true the background values of the
/// child nodes is also updated. Else only the background value
/// stored in the RootNode itself is changed.
///
/// @note Instead of setting @a updateChildNodes to true, consider
/// using tools::changeBackground or
/// tools::changeLevelSetBackground which are multi-threaded!
void setBackground(const ValueType& value, bool updateChildNodes);
/// Return this node's background value.
const ValueType& background() const { return mBackground; }
/// Return @c true if the given tile is inactive and has the background value.
bool isBackgroundTile(const Tile&) const;
//@{
/// Return @c true if the given iterator points to an inactive tile with the background value.
bool isBackgroundTile(const MapIter&) const;
bool isBackgroundTile(const MapCIter&) const;
//@}
/// Return the number of background tiles.
size_t numBackgroundTiles() const;
/// @brief Remove all background tiles.
/// @return the number of tiles removed.
size_t eraseBackgroundTiles();
inline void clear();
/// Return @c true if this node's table is either empty or contains only background tiles.
bool empty() const { return mTable.size() == numBackgroundTiles(); }
/// @brief Expand this node's table so that (x, y, z) is included in the index range.
/// @return @c true if an expansion was performed (i.e., if (x, y, z) was not already
/// included in the index range).
bool expand(const Coord& xyz);
static Index getLevel() { return LEVEL; }
static void getNodeLog2Dims(std::vector<Index>& dims);
static Index getChildDim() { return ChildType::DIM; }
/// Return the number of entries in this node's table.
Index getTableSize() const { return static_cast<Index>(mTable.size()); }
Index getWidth() const { return this->getMaxIndex()[0] - this->getMinIndex()[0]; }
Index getHeight() const { return this->getMaxIndex()[1] - this->getMinIndex()[1]; }
Index getDepth() const { return this->getMaxIndex()[2] - this->getMinIndex()[2]; }
/// Return the smallest index of the current tree.
Coord getMinIndex() const;
/// Return the largest index of the current tree.
Coord getMaxIndex() const;
/// Return the current index range. Both min and max are inclusive.
void getIndexRange(CoordBBox& bbox) const;
/// @brief Return @c true if the given tree has the same node and active value
/// topology as this tree (but possibly a different @c ValueType).
template<typename OtherChildType>
bool hasSameTopology(const RootNode<OtherChildType>& other) const;
/// Return @c false if the other node's dimensions don't match this node's.
template<typename OtherChildType>
static bool hasSameConfiguration(const RootNode<OtherChildType>& other);
/// Return @c true if values of the other node's ValueType can be converted
/// to values of this node's ValueType.
template<typename OtherChildType>
static bool hasCompatibleValueType(const RootNode<OtherChildType>& other);
Index32 leafCount() const;
Index32 nonLeafCount() const;
Index64 onVoxelCount() const;
Index64 offVoxelCount() const;
Index64 onLeafVoxelCount() const;
Index64 offLeafVoxelCount() const;
Index64 onTileCount() const;
bool isValueOn(const Coord& xyz) const;
/// Return @c true if this root node, or any of its child nodes, have active tiles.
bool hasActiveTiles() const;
const ValueType& getValue(const Coord& xyz) const;
bool probeValue(const Coord& xyz, ValueType& value) const;
/// @brief Return the tree depth (0 = root) at which the value of voxel (x, y, z) resides.
/// @details If (x, y, z) isn't explicitly represented in the tree (i.e.,
/// it is implicitly a background voxel), return -1.
int getValueDepth(const Coord& xyz) const;
/// Set the active state of the voxel at the given coordinates but don't change its value.
void setActiveState(const Coord& xyz, bool on);
/// Set the value of the voxel at the given coordinates but don't change its active state.
void setValueOnly(const Coord& xyz, const ValueType& value);
/// Set the value of the voxel at the given coordinates and mark the voxel as active.
void setValueOn(const Coord& xyz, const ValueType& value);
/// Mark the voxel at the given coordinates as inactive but don't change its value.
void setValueOff(const Coord& xyz);
/// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
void setValueOff(const Coord& xyz, const ValueType& value);
/// @brief Apply a functor to the value of the voxel at the given coordinates
/// and mark the voxel as active.
template<typename ModifyOp>
void modifyValue(const Coord& xyz, const ModifyOp& op);
/// Apply a functor to the voxel at the given coordinates.
template<typename ModifyOp>
void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op);
//@{
/// @brief Set all voxels within a given axis-aligned box to a constant value.
/// @param bbox inclusive coordinates of opposite corners of an axis-aligned box
/// @param value the value to which to set voxels within the box
/// @param active if true, mark voxels within the box as active,
/// otherwise mark them as inactive
/// @note This operation generates a sparse, but not always optimally sparse,
/// representation of the filled box. Follow fill operations with a prune()
/// operation for optimal sparseness.
void fill(const CoordBBox& bbox, const ValueType& value, bool active = true);
void sparseFill(const CoordBBox& bbox, const ValueType& value, bool active = true)
{
this->fill(bbox, value, active);
}
//@}
/// @brief Set all voxels within a given axis-aligned box to a constant value
/// and ensure that those voxels are all represented at the leaf level.
/// @param bbox inclusive coordinates of opposite corners of an axis-aligned box.
/// @param value the value to which to set voxels within the box.
/// @param active if true, mark voxels within the box as active,
/// otherwise mark them as inactive.
/// @sa voxelizeActiveTiles()
void denseFill(const CoordBBox& bbox, const ValueType& value, bool active = true);
/// @brief Densify active tiles, i.e., replace them with leaf-level active voxels.
///
/// @param threaded if true, this operation is multi-threaded (over the internal nodes).
///
/// @warning This method can explode the tree's memory footprint, especially if it
/// contains active tiles at the upper levels (in particular the root level)!
///
/// @sa denseFill()
void voxelizeActiveTiles(bool threaded = true);
/// @brief Copy into a dense grid the values of all voxels, both active and inactive,
/// that intersect a given bounding box.
/// @param bbox inclusive bounding box of the voxels to be copied into the dense grid
/// @param dense dense grid with a stride in @e z of one (see tools::Dense
/// in tools/Dense.h for the required API)
template<typename DenseT>
void copyToDense(const CoordBBox& bbox, DenseT& dense) const;
//
// I/O
//
bool writeTopology(std::ostream&, bool toHalf = false) const;
bool readTopology(std::istream&, bool fromHalf = false);
void writeBuffers(std::ostream&, bool toHalf = false) const;
void readBuffers(std::istream&, bool fromHalf = false);
void readBuffers(std::istream&, const CoordBBox&, bool fromHalf = false);
//
// Voxel access
//
/// Return the value of the voxel at the given coordinates and, if necessary, update
/// the accessor with pointers to the nodes along the path from the root node to
/// the node containing the voxel.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
const ValueType& getValueAndCache(const Coord& xyz, AccessorT&) const;
/// Return @c true if the voxel at the given coordinates is active and, if necessary,
/// update the accessor with pointers to the nodes along the path from the root node
/// to the node containing the voxel.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
bool isValueOnAndCache(const Coord& xyz, AccessorT&) const;
/// Change the value of the voxel at the given coordinates and mark it as active.
/// If necessary, update the accessor with pointers to the nodes along the path
/// from the root node to the node containing the voxel.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setValueAndCache(const Coord& xyz, const ValueType& value, AccessorT&);
/// Set the value of the voxel at the given coordinates without changing its active state.
/// If necessary, update the accessor with pointers to the nodes along the path
/// from the root node to the node containing the voxel.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setValueOnlyAndCache(const Coord& xyz, const ValueType& value, AccessorT&);
/// Apply a functor to the value of the voxel at the given coordinates
/// and mark the voxel as active.
/// If necessary, update the accessor with pointers to the nodes along the path
/// from the root node to the node containing the voxel.
/// @note Used internally by ValueAccessor.
template<typename ModifyOp, typename AccessorT>
void modifyValueAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&);
/// Apply a functor to the voxel at the given coordinates.
/// If necessary, update the accessor with pointers to the nodes along the path
/// from the root node to the node containing the voxel.
/// @note Used internally by ValueAccessor.
template<typename ModifyOp, typename AccessorT>
void modifyValueAndActiveStateAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&);
/// Change the value of the voxel at the given coordinates and mark it as inactive.
/// If necessary, update the accessor with pointers to the nodes along the path
/// from the root node to the node containing the voxel.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setValueOffAndCache(const Coord& xyz, const ValueType& value, AccessorT&);
/// Set the active state of the voxel at the given coordinates without changing its value.
/// If necessary, update the accessor with pointers to the nodes along the path
/// from the root node to the node containing the voxel.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setActiveStateAndCache(const Coord& xyz, bool on, AccessorT&);
/// Return, in @a value, the value of the voxel at the given coordinates and,
/// if necessary, update the accessor with pointers to the nodes along
/// the path from the root node to the node containing the voxel.
/// @return @c true if the voxel at the given coordinates is active
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
bool probeValueAndCache(const Coord& xyz, ValueType& value, AccessorT&) const;
/// Return the tree depth (0 = root) at which the value of voxel (x, y, z) resides.
/// If (x, y, z) isn't explicitly represented in the tree (i.e., it is implicitly
/// a background voxel), return -1. If necessary, update the accessor with pointers
/// to the nodes along the path from the root node to the node containing the voxel.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
int getValueDepthAndCache(const Coord& xyz, AccessorT&) const;
/// Set all voxels that lie outside the given axis-aligned box to the background.
void clip(const CoordBBox&);
/// @brief Reduce the memory footprint of this tree by replacing with tiles
/// any nodes whose values are all the same (optionally to within a tolerance)
/// and have the same active state.
///
/// @note Consider instead using tools::prune which is multi-threaded!
void prune(const ValueType& tolerance = zeroVal<ValueType>());
/// @brief Add the given leaf node to this tree, creating a new branch if necessary.
/// If a leaf node with the same origin already exists, replace it.
void addLeaf(LeafNodeType* leaf);
/// @brief Same as addLeaf() but, if necessary, update the given accessor with pointers
/// to the nodes along the path from the root node to the node containing the coordinate.
template<typename AccessorT>
void addLeafAndCache(LeafNodeType* leaf, AccessorT&);
/// @brief Return a pointer to the node of type @c NodeT that contains voxel (x, y, z)
/// and replace it with a tile of the specified value and state.
/// If no such node exists, leave the tree unchanged and return @c nullptr.
///
/// @note The caller takes ownership of the node and is responsible for deleting it.
///
/// @warning Since this method potentially removes nodes and branches of the tree,
/// it is important to clear the caches of all ValueAccessors associated with this tree.
template<typename NodeT>
NodeT* stealNode(const Coord& xyz, const ValueType& value, bool state);
/// @brief Add a tile containing voxel (x, y, z) at the root level,
/// deleting the existing branch if necessary.
void addTile(const Coord& xyz, const ValueType& value, bool state);
/// @brief Add a tile containing voxel (x, y, z) at the specified tree level,
/// creating a new branch if necessary. Delete any existing lower-level nodes
/// that contain (x, y, z).
void addTile(Index level, const Coord& xyz, const ValueType& value, bool state);
/// @brief Same as addTile() but, if necessary, update the given accessor with pointers
/// to the nodes along the path from the root node to the node containing the coordinate.
template<typename AccessorT>
void addTileAndCache(Index level, const Coord& xyz, const ValueType&, bool state, AccessorT&);
/// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
/// If no such node exists, create one that preserves the values and
/// active states of all voxels.
/// @details Use this method to preallocate a static tree topology
/// over which to safely perform multithreaded processing.
LeafNodeType* touchLeaf(const Coord& xyz);
/// @brief Same as touchLeaf() but, if necessary, update the given accessor with pointers
/// to the nodes along the path from the root node to the node containing the coordinate.
template<typename AccessorT>
LeafNodeType* touchLeafAndCache(const Coord& xyz, AccessorT& acc);
//@{
/// @brief Return a pointer to the node that contains voxel (x, y, z).
/// If no such node exists, return @c nullptr.
template <typename NodeT>
NodeT* probeNode(const Coord& xyz);
template <typename NodeT>
const NodeT* probeConstNode(const Coord& xyz) const;
//@}
//@{
/// @brief Same as probeNode() but, if necessary, update the given accessor with pointers
/// to the nodes along the path from the root node to the node containing the coordinate.
template<typename NodeT, typename AccessorT>
NodeT* probeNodeAndCache(const Coord& xyz, AccessorT& acc);
template<typename NodeT, typename AccessorT>
const NodeT* probeConstNodeAndCache(const Coord& xyz, AccessorT& acc) const;
//@}
//@{
/// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
/// If no such node exists, return @c nullptr.
LeafNodeType* probeLeaf(const Coord& xyz);
const LeafNodeType* probeConstLeaf(const Coord& xyz) const;
const LeafNodeType* probeLeaf(const Coord& xyz) const;
//@}
//@{
/// @brief Same as probeLeaf() but, if necessary, update the given accessor with pointers
/// to the nodes along the path from the root node to the node containing the coordinate.
template<typename AccessorT>
LeafNodeType* probeLeafAndCache(const Coord& xyz, AccessorT& acc);
template<typename AccessorT>
const LeafNodeType* probeConstLeafAndCache(const Coord& xyz, AccessorT& acc) const;
template<typename AccessorT>
const LeafNodeType* probeLeafAndCache(const Coord& xyz, AccessorT& acc) const;
//@}
//
// Aux methods
//
//@{
/// @brief Adds all nodes of a certain type to a container with the following API:
/// @code
/// struct ArrayT {
/// using value_type = ...;// defines the type of nodes to be added to the array
/// void push_back(value_type nodePtr);// method that add nodes to the array
/// };
/// @endcode
/// @details An example of a wrapper around a c-style array is:
/// @code
/// struct MyArray {
/// using value_type = LeafType*;
/// value_type* ptr;
/// MyArray(value_type* array) : ptr(array) {}
/// void push_back(value_type leaf) { *ptr++ = leaf; }
///};
/// @endcode
/// @details An example that constructs a list of pointer to all leaf nodes is:
/// @code
/// std::vector<const LeafNodeType*> array;//most std contains have the required API
/// array.reserve(tree.leafCount());//this is a fast preallocation.
/// tree.getNodes(array);
/// @endcode
template<typename ArrayT> void getNodes(ArrayT& array);
template<typename ArrayT> void getNodes(ArrayT& array) const;
//@}
//@{
/// @brief Steals all nodes of a certain type from the tree and
/// adds them to a container with the following API:
/// @code
/// struct ArrayT {
/// using value_type = ...;// defines the type of nodes to be added to the array
/// void push_back(value_type nodePtr);// method that add nodes to the array
/// };
/// @endcode
/// @details An example of a wrapper around a c-style array is:
/// @code
/// struct MyArray {
/// using value_type = LeafType*;
/// value_type* ptr;
/// MyArray(value_type* array) : ptr(array) {}
/// void push_back(value_type leaf) { *ptr++ = leaf; }
///};
/// @endcode
/// @details An example that constructs a list of pointer to all leaf nodes is:
/// @code
/// std::vector<const LeafNodeType*> array;//most std contains have the required API
/// array.reserve(tree.leafCount());//this is a fast preallocation.
/// tree.stealNodes(array);
/// @endcode
template<typename ArrayT>
void stealNodes(ArrayT& array, const ValueType& value, bool state);
template<typename ArrayT>
void stealNodes(ArrayT& array) { this->stealNodes(array, mBackground, false); }
//@}
/// @brief Efficiently merge another tree into this tree using one of several schemes.
/// @details This operation is primarily intended to combine trees that are mostly
/// non-overlapping (for example, intermediate trees from computations that are
/// parallelized across disjoint regions of space).
/// @note This operation is not guaranteed to produce an optimally sparse tree.
/// Follow merge() with prune() for optimal sparseness.
/// @warning This operation always empties the other tree.
template<MergePolicy Policy> void merge(RootNode& other);
/// @brief Union this tree's set of active values with the active values
/// of the other tree, whose @c ValueType may be different.
/// @details The resulting state of a value is active if the corresponding value
/// was already active OR if it is active in the other tree. Also, a resulting
/// value maps to a voxel if the corresponding value already mapped to a voxel
/// OR if it is a voxel in the other tree. Thus, a resulting value can only
/// map to a tile if the corresponding value already mapped to a tile
/// AND if it is a tile value in other tree.
///
/// @note This operation modifies only active states, not values.
/// Specifically, active tiles and voxels in this tree are not changed, and
/// tiles or voxels that were inactive in this tree but active in the other tree
/// are marked as active in this tree but left with their original values.
template<typename OtherChildType>
void topologyUnion(const RootNode<OtherChildType>& other);
/// @brief Intersects this tree's set of active values with the active values
/// of the other tree, whose @c ValueType may be different.
/// @details The resulting state of a value is active only if the corresponding
/// value was already active AND if it is active in the other tree. Also, a
/// resulting value maps to a voxel if the corresponding value
/// already mapped to an active voxel in either of the two grids
/// and it maps to an active tile or voxel in the other grid.
///
/// @note This operation can delete branches in this grid if they
/// overlap with inactive tiles in the other grid. Likewise active
/// voxels can be turned into inactive voxels resulting in leaf
/// nodes with no active values. Thus, it is recommended to
/// subsequently call prune.
template<typename OtherChildType>
void topologyIntersection(const RootNode<OtherChildType>& other);
/// @brief Difference this tree's set of active values with the active values
/// of the other tree, whose @c ValueType may be different. So a
/// resulting voxel will be active only if the original voxel is
/// active in this tree and inactive in the other tree.
///
/// @note This operation can delete branches in this grid if they
/// overlap with active tiles in the other grid. Likewise active
/// voxels can be turned into inactive voxels resulting in leaf
/// nodes with no active values. Thus, it is recommended to
/// subsequently call prune.
template<typename OtherChildType>
void topologyDifference(const RootNode<OtherChildType>& other);
template<typename CombineOp>
void combine(RootNode& other, CombineOp&, bool prune = false);
template<typename CombineOp, typename OtherRootNode /*= RootNode*/>
void combine2(const RootNode& other0, const OtherRootNode& other1,
CombineOp& op, bool prune = false);
/// @brief Call the templated functor BBoxOp with bounding box
/// information for all active tiles and leaf nodes in the tree.
/// An additional level argument is provided for each callback.
///
/// @note The bounding boxes are guaranteed to be non-overlapping.
template<typename BBoxOp> void visitActiveBBox(BBoxOp&) const;
template<typename VisitorOp> void visit(VisitorOp&);
template<typename VisitorOp> void visit(VisitorOp&) const;
template<typename OtherRootNodeType, typename VisitorOp>
void visit2(OtherRootNodeType& other, VisitorOp&);
template<typename OtherRootNodeType, typename VisitorOp>
void visit2(OtherRootNodeType& other, VisitorOp&) const;
private:
/// During topology-only construction, access is needed
/// to protected/private members of other template instances.
template<typename> friend class RootNode;
template<typename, typename, bool> friend struct RootNodeCopyHelper;
template<typename, typename, typename, bool> friend struct RootNodeCombineHelper;
/// Currently no-op, but can be used to define empty and delete keys for mTable
void initTable() {}
//@{
/// @internal Used by doVisit2().
void resetTable(MapType& table) { mTable.swap(table); table.clear(); }
void resetTable(const MapType&) const {}
//@}
Index getChildCount() const;
Index getTileCount() const;
Index getActiveTileCount() const;
Index getInactiveTileCount() const;
/// Return a MapType key for the given coordinates.
static Coord coordToKey(const Coord& xyz) { return xyz & ~(ChildType::DIM - 1); }
/// Insert this node's mTable keys into the given set.
void insertKeys(CoordSet&) const;
/// Return @c true if this node's mTable contains the given key.
bool hasKey(const Coord& key) const { return mTable.find(key) != mTable.end(); }
//@{
/// @brief Look up the given key in this node's mTable.
/// @return an iterator pointing to the matching mTable entry or to mTable.end().
MapIter findKey(const Coord& key) { return mTable.find(key); }
MapCIter findKey(const Coord& key) const { return mTable.find(key); }
//@}
//@{
/// @brief Convert the given coordinates to a key and look the key up in this node's mTable.
/// @return an iterator pointing to the matching mTable entry or to mTable.end().
MapIter findCoord(const Coord& xyz) { return mTable.find(coordToKey(xyz)); }
MapCIter findCoord(const Coord& xyz) const { return mTable.find(coordToKey(xyz)); }
//@}
/// @brief Convert the given coordinates to a key and look the key up in this node's mTable.
/// @details If the key is not found, insert a background tile with that key.
/// @return an iterator pointing to the matching mTable entry.
MapIter findOrAddCoord(const Coord& xyz);
/// @brief Verify that the tree rooted at @a other has the same configuration
/// (levels, branching factors and node dimensions) as this tree, but allow
/// their ValueTypes to differ.
/// @throw TypeError if the other tree's configuration doesn't match this tree's.
template<typename OtherChildType>
static void enforceSameConfiguration(const RootNode<OtherChildType>& other);
/// @brief Verify that @a other has values of a type that can be converted
/// to this node's ValueType.
/// @details For example, values of type float are compatible with values of type Vec3s,
/// because a Vec3s can be constructed from a float. But the reverse is not true.
/// @throw TypeError if the other node's ValueType is not convertible into this node's.
template<typename OtherChildType>
static void enforceCompatibleValueTypes(const RootNode<OtherChildType>& other);
template<typename CombineOp, typename OtherRootNode /*= RootNode*/>
void doCombine2(const RootNode&, const OtherRootNode&, CombineOp&, bool prune);
template<typename RootNodeT, typename VisitorOp, typename ChildAllIterT>
static inline void doVisit(RootNodeT&, VisitorOp&);
template<typename RootNodeT, typename OtherRootNodeT, typename VisitorOp,
typename ChildAllIterT, typename OtherChildAllIterT>
static inline void doVisit2(RootNodeT&, OtherRootNodeT&, VisitorOp&);
MapType mTable;
ValueType mBackground;
}; // end of RootNode class
////////////////////////////////////////
/// @brief NodeChain<RootNodeType, RootNodeType::LEVEL>::Type is a boost::mpl::vector
/// that lists the types of the nodes of the tree rooted at RootNodeType in reverse order,
/// from LeafNode to RootNode.
/// @details For example, if RootNodeType is
/// @code
/// RootNode<InternalNode<InternalNode<LeafNode> > >
/// @endcode
/// then NodeChain::Type is
/// @code
/// boost::mpl::vector<
/// LeafNode,
/// InternalNode<LeafNode>,
/// InternalNode<InternalNode<LeafNode> >,
/// RootNode<InternalNode<InternalNode<LeafNode> > > >
/// @endcode
///
/// @note Use the following to get the Nth node type, where N=0 is the LeafNodeType:
/// @code
/// boost::mpl::at<NodeChainType, boost::mpl::int_<N> >::type
/// @endcode
template<typename HeadT, int HeadLevel>
struct NodeChain {
using SubtreeT = typename NodeChain<typename HeadT::ChildNodeType, HeadLevel-1>::Type;
using Type = typename boost::mpl::push_back<SubtreeT, HeadT>::type;
};
/// Specialization to terminate NodeChain
template<typename HeadT>
struct NodeChain<HeadT, /*HeadLevel=*/1> {
using Type = typename boost::mpl::vector<typename HeadT::ChildNodeType, HeadT>::type;
};
////////////////////////////////////////
//@{
/// Helper metafunction used to implement RootNode::SameConfiguration
/// (which, as an inner class, can't be independently specialized)
template<typename ChildT1, typename NodeT2>
struct SameRootConfig {
static const bool value = false;
};
template<typename ChildT1, typename ChildT2>
struct SameRootConfig<ChildT1, RootNode<ChildT2> > {
static const bool value = ChildT1::template SameConfiguration<ChildT2>::value;
};
//@}
////////////////////////////////////////
template<typename ChildT>
inline
RootNode<ChildT>::RootNode(): mBackground(zeroVal<ValueType>())
{
this->initTable();
}
template<typename ChildT>
inline
RootNode<ChildT>::RootNode(const ValueType& background): mBackground(background)
{
this->initTable();
}
template<typename ChildT>
template<typename OtherChildType>
inline
RootNode<ChildT>::RootNode(const RootNode<OtherChildType>& other,
const ValueType& backgd, const ValueType& foregd, TopologyCopy):
mBackground(backgd)
{
using OtherRootT = RootNode<OtherChildType>;
enforceSameConfiguration(other);
const Tile bgTile(backgd, /*active=*/false), fgTile(foregd, true);
this->initTable();
for (typename OtherRootT::MapCIter i=other.mTable.begin(), e=other.mTable.end(); i != e; ++i) {
mTable[i->first] = OtherRootT::isTile(i)
? NodeStruct(OtherRootT::isTileOn(i) ? fgTile : bgTile)
: NodeStruct(*(new ChildT(OtherRootT::getChild(i), backgd, foregd, TopologyCopy())));
}
}
template<typename ChildT>
template<typename OtherChildType>
inline
RootNode<ChildT>::RootNode(const RootNode<OtherChildType>& other,
const ValueType& backgd, TopologyCopy):
mBackground(backgd)
{
using OtherRootT = RootNode<OtherChildType>;
enforceSameConfiguration(other);
const Tile bgTile(backgd, /*active=*/false), fgTile(backgd, true);
this->initTable();
for (typename OtherRootT::MapCIter i=other.mTable.begin(), e=other.mTable.end(); i != e; ++i) {
mTable[i->first] = OtherRootT::isTile(i)
? NodeStruct(OtherRootT::isTileOn(i) ? fgTile : bgTile)
: NodeStruct(*(new ChildT(OtherRootT::getChild(i), backgd, TopologyCopy())));
}
}
////////////////////////////////////////
// This helper class is a friend of RootNode and is needed so that assignment
// with value conversion can be specialized for compatible and incompatible
// pairs of RootNode types.
template<typename RootT, typename OtherRootT, bool Compatible = false>
struct RootNodeCopyHelper
{
static inline void copyWithValueConversion(RootT& self, const OtherRootT& other)
{
// If the two root nodes have different configurations or incompatible ValueTypes,
// throw an exception.
self.enforceSameConfiguration(other);
self.enforceCompatibleValueTypes(other);
// One of the above two tests should throw, so we should never get here:
std::ostringstream ostr;
ostr << "cannot convert a " << typeid(OtherRootT).name()
<< " to a " << typeid(RootT).name();
OPENVDB_THROW(TypeError, ostr.str());
}
};
// Specialization for root nodes of compatible types
template<typename RootT, typename OtherRootT>
struct RootNodeCopyHelper<RootT, OtherRootT, /*Compatible=*/true>
{
static inline void copyWithValueConversion(RootT& self, const OtherRootT& other)
{
using ValueT = typename RootT::ValueType;
using ChildT = typename RootT::ChildNodeType;
using NodeStruct = typename RootT::NodeStruct;
using Tile = typename RootT::Tile;
using OtherValueT = typename OtherRootT::ValueType;
using OtherMapCIter = typename OtherRootT::MapCIter;
using OtherTile = typename OtherRootT::Tile;
struct Local {
/// @todo Consider using a value conversion functor passed as an argument instead.
static inline ValueT convertValue(const OtherValueT& val) { return ValueT(val); }
};
self.mBackground = Local::convertValue(other.mBackground);
self.clear();
self.initTable();
for (OtherMapCIter i = other.mTable.begin(), e = other.mTable.end(); i != e; ++i) {
if (other.isTile(i)) {
// Copy the other node's tile, but convert its value to this node's ValueType.
const OtherTile& otherTile = other.getTile(i);
self.mTable[i->first] = NodeStruct(
Tile(Local::convertValue(otherTile.value), otherTile.active));
} else {
// Copy the other node's child, but convert its values to this node's ValueType.
self.mTable[i->first] = NodeStruct(*(new ChildT(other.getChild(i))));
}
}
}
};
// Overload for root nodes of the same type as this node
template<typename ChildT>
inline RootNode<ChildT>&
RootNode<ChildT>::operator=(const RootNode& other)
{
if (&other != this) {
mBackground = other.mBackground;
this->clear();
this->initTable();
for (MapCIter i = other.mTable.begin(), e = other.mTable.end(); i != e; ++i) {
mTable[i->first] =
isTile(i) ? NodeStruct(getTile(i)) : NodeStruct(*(new ChildT(getChild(i))));
}
}
return *this;
}
// Overload for root nodes of different types
template<typename ChildT>
template<typename OtherChildType>
inline RootNode<ChildT>&
RootNode<ChildT>::operator=(const RootNode<OtherChildType>& other)
{
using OtherRootT = RootNode<OtherChildType>;
using OtherValueT = typename OtherRootT::ValueType;
static const bool compatible = (SameConfiguration<OtherRootT>::value
&& CanConvertType</*from=*/OtherValueT, /*to=*/ValueType>::value);
RootNodeCopyHelper<RootNode, OtherRootT, compatible>::copyWithValueConversion(*this, other);
return *this;
}
////////////////////////////////////////
template<typename ChildT>
inline void
RootNode<ChildT>::setBackground(const ValueType& background, bool updateChildNodes)
{
if (math::isExactlyEqual(background, mBackground)) return;
if (updateChildNodes) {
// Traverse the tree, replacing occurrences of mBackground with background
// and -mBackground with -background.
for (MapIter iter=mTable.begin(); iter!=mTable.end(); ++iter) {
ChildT *child = iter->second.child;
if (child) {
child->resetBackground(/*old=*/mBackground, /*new=*/background);
} else {
Tile& tile = getTile(iter);
if (tile.active) continue;//only change inactive tiles
if (math::isApproxEqual(tile.value, mBackground)) {
tile.value = background;
} else if (math::isApproxEqual(tile.value, math::negative(mBackground))) {
tile.value = math::negative(background);
}
}
}
}
mBackground = background;
}
template<typename ChildT>
inline bool
RootNode<ChildT>::isBackgroundTile(const Tile& tile) const
{
return !tile.active && math::isApproxEqual(tile.value, mBackground);
}
template<typename ChildT>
inline bool
RootNode<ChildT>::isBackgroundTile(const MapIter& iter) const
{
return isTileOff(iter) && math::isApproxEqual(getTile(iter).value, mBackground);
}
template<typename ChildT>
inline bool
RootNode<ChildT>::isBackgroundTile(const MapCIter& iter) const
{
return isTileOff(iter) && math::isApproxEqual(getTile(iter).value, mBackground);
}
template<typename ChildT>
inline size_t
RootNode<ChildT>::numBackgroundTiles() const
{
size_t count = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (this->isBackgroundTile(i)) ++count;
}
return count;
}
template<typename ChildT>
inline size_t
RootNode<ChildT>::eraseBackgroundTiles()
{
std::set<Coord> keysToErase;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (this->isBackgroundTile(i)) keysToErase.insert(i->first);
}
for (std::set<Coord>::iterator i = keysToErase.begin(), e = keysToErase.end(); i != e; ++i) {
mTable.erase(*i);
}
return keysToErase.size();
}
////////////////////////////////////////
template<typename ChildT>
inline void
RootNode<ChildT>::insertKeys(CoordSet& keys) const
{
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
keys.insert(i->first);
}
}
template<typename ChildT>
inline typename RootNode<ChildT>::MapIter
RootNode<ChildT>::findOrAddCoord(const Coord& xyz)
{
const Coord key = coordToKey(xyz);
std::pair<MapIter, bool> result = mTable.insert(
typename MapType::value_type(key, NodeStruct(Tile(mBackground, /*active=*/false))));
return result.first;
}
template<typename ChildT>
inline bool
RootNode<ChildT>::expand(const Coord& xyz)
{
const Coord key = coordToKey(xyz);
std::pair<MapIter, bool> result = mTable.insert(
typename MapType::value_type(key, NodeStruct(Tile(mBackground, /*active=*/false))));
return result.second; // return true if the key did not already exist
}
////////////////////////////////////////
template<typename ChildT>
inline void
RootNode<ChildT>::getNodeLog2Dims(std::vector<Index>& dims)
{
dims.push_back(0); // magic number; RootNode has no Log2Dim
ChildT::getNodeLog2Dims(dims);
}
template<typename ChildT>
inline Coord
RootNode<ChildT>::getMinIndex() const
{
return mTable.empty() ? Coord(0) : mTable.begin()->first;
}
template<typename ChildT>
inline Coord
RootNode<ChildT>::getMaxIndex() const
{
return mTable.empty() ? Coord(0) : mTable.rbegin()->first + Coord(ChildT::DIM - 1);
}
template<typename ChildT>
inline void
RootNode<ChildT>::getIndexRange(CoordBBox& bbox) const
{
bbox.min() = this->getMinIndex();
bbox.max() = this->getMaxIndex();
}
////////////////////////////////////////
template<typename ChildT>
template<typename OtherChildType>
inline bool
RootNode<ChildT>::hasSameTopology(const RootNode<OtherChildType>& other) const
{
using OtherRootT = RootNode<OtherChildType>;
using OtherMapT = typename OtherRootT::MapType;
using OtherIterT = typename OtherRootT::MapIter;
using OtherCIterT = typename OtherRootT::MapCIter;
if (!hasSameConfiguration(other)) return false;
// Create a local copy of the other node's table.
OtherMapT copyOfOtherTable = other.mTable;
// For each entry in this node's table...
for (MapCIter thisIter = mTable.begin(); thisIter != mTable.end(); ++thisIter) {
if (this->isBackgroundTile(thisIter)) continue; // ignore background tiles
// Fail if there is no corresponding entry in the other node's table.
OtherCIterT otherIter = other.findKey(thisIter->first);
if (otherIter == other.mTable.end()) return false;
// Fail if this entry is a tile and the other is a child or vice-versa.
if (isChild(thisIter)) {//thisIter points to a child
if (OtherRootT::isTile(otherIter)) return false;
// Fail if both entries are children, but the children have different topology.
if (!getChild(thisIter).hasSameTopology(&OtherRootT::getChild(otherIter))) return false;
} else {//thisIter points to a tile
if (OtherRootT::isChild(otherIter)) return false;
if (getTile(thisIter).active != OtherRootT::getTile(otherIter).active) return false;
}
// Remove tiles and child nodes with matching topology from
// the copy of the other node's table. This is required since
// the two root tables can include an arbitrary number of
// background tiles and still have the same topology!
copyOfOtherTable.erase(otherIter->first);
}
// Fail if the remaining entries in copyOfOtherTable are not all background tiles.
for (OtherIterT i = copyOfOtherTable.begin(), e = copyOfOtherTable.end(); i != e; ++i) {
if (!other.isBackgroundTile(i)) return false;
}
return true;
}
template<typename ChildT>
template<typename OtherChildType>
inline bool
RootNode<ChildT>::hasSameConfiguration(const RootNode<OtherChildType>&)
{
std::vector<Index> thisDims, otherDims;
RootNode::getNodeLog2Dims(thisDims);
RootNode<OtherChildType>::getNodeLog2Dims(otherDims);
return (thisDims == otherDims);
}
template<typename ChildT>
template<typename OtherChildType>
inline void
RootNode<ChildT>::enforceSameConfiguration(const RootNode<OtherChildType>&)
{
std::vector<Index> thisDims, otherDims;
RootNode::getNodeLog2Dims(thisDims);
RootNode<OtherChildType>::getNodeLog2Dims(otherDims);
if (thisDims != otherDims) {
std::ostringstream ostr;
ostr << "grids have incompatible configurations (" << thisDims[0];
for (size_t i = 1, N = thisDims.size(); i < N; ++i) ostr << " x " << thisDims[i];
ostr << " vs. " << otherDims[0];
for (size_t i = 1, N = otherDims.size(); i < N; ++i) ostr << " x " << otherDims[i];
ostr << ")";
OPENVDB_THROW(TypeError, ostr.str());
}
}
template<typename ChildT>
template<typename OtherChildType>
inline bool
RootNode<ChildT>::hasCompatibleValueType(const RootNode<OtherChildType>&)
{
using OtherValueType = typename OtherChildType::ValueType;
return CanConvertType</*from=*/OtherValueType, /*to=*/ValueType>::value;
}
template<typename ChildT>
template<typename OtherChildType>
inline void
RootNode<ChildT>::enforceCompatibleValueTypes(const RootNode<OtherChildType>&)
{
using OtherValueType = typename OtherChildType::ValueType;
if (!CanConvertType</*from=*/OtherValueType, /*to=*/ValueType>::value) {
std::ostringstream ostr;
ostr << "values of type " << typeNameAsString<OtherValueType>()
<< " cannot be converted to type " << typeNameAsString<ValueType>();
OPENVDB_THROW(TypeError, ostr.str());
}
}
////////////////////////////////////////
template<typename ChildT>
inline Index64
RootNode<ChildT>::memUsage() const
{
Index64 sum = sizeof(*this);
for (MapCIter iter=mTable.begin(); iter!=mTable.end(); ++iter) {
if (const ChildT *child = iter->second.child) {
sum += child->memUsage();
}
}
return sum;
}
template<typename ChildT>
inline void
RootNode<ChildT>::clear()
{
for (MapIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
delete i->second.child;
}
mTable.clear();
}
template<typename ChildT>
inline void
RootNode<ChildT>::evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels) const
{
for (MapCIter iter=mTable.begin(); iter!=mTable.end(); ++iter) {
if (const ChildT *child = iter->second.child) {
child->evalActiveBoundingBox(bbox, visitVoxels);
} else if (isTileOn(iter)) {
bbox.expand(iter->first, ChildT::DIM);
}
}
}
template<typename ChildT>
inline Index
RootNode<ChildT>::getChildCount() const {
Index sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) ++sum;
}
return sum;
}
template<typename ChildT>
inline Index
RootNode<ChildT>::getTileCount() const
{
Index sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isTile(i)) ++sum;
}
return sum;
}
template<typename ChildT>
inline Index
RootNode<ChildT>::getActiveTileCount() const
{
Index sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isTileOn(i)) ++sum;
}
return sum;
}
template<typename ChildT>
inline Index
RootNode<ChildT>::getInactiveTileCount() const
{
Index sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isTileOff(i)) ++sum;
}
return sum;
}
template<typename ChildT>
inline Index32
RootNode<ChildT>::leafCount() const
{
Index32 sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) sum += getChild(i).leafCount();
}
return sum;
}
template<typename ChildT>
inline Index32
RootNode<ChildT>::nonLeafCount() const
{
Index32 sum = 1;
if (ChildT::LEVEL != 0) {
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) sum += getChild(i).nonLeafCount();
}
}
return sum;
}
template<typename ChildT>
inline Index64
RootNode<ChildT>::onVoxelCount() const
{
Index64 sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) {
sum += getChild(i).onVoxelCount();
} else if (isTileOn(i)) {
sum += ChildT::NUM_VOXELS;
}
}
return sum;
}
template<typename ChildT>
inline Index64
RootNode<ChildT>::offVoxelCount() const
{
Index64 sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) {
sum += getChild(i).offVoxelCount();
} else if (isTileOff(i) && !this->isBackgroundTile(i)) {
sum += ChildT::NUM_VOXELS;
}
}
return sum;
}
template<typename ChildT>
inline Index64
RootNode<ChildT>::onLeafVoxelCount() const
{
Index64 sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) sum += getChild(i).onLeafVoxelCount();
}
return sum;
}
template<typename ChildT>
inline Index64
RootNode<ChildT>::offLeafVoxelCount() const
{
Index64 sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) sum += getChild(i).offLeafVoxelCount();
}
return sum;
}
template<typename ChildT>
inline Index64
RootNode<ChildT>::onTileCount() const
{
Index64 sum = 0;
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) {
sum += getChild(i).onTileCount();
} else if (isTileOn(i)) {
sum += 1;
}
}
return sum;
}
////////////////////////////////////////
template<typename ChildT>
inline bool
RootNode<ChildT>::isValueOn(const Coord& xyz) const
{
MapCIter iter = this->findCoord(xyz);
if (iter == mTable.end() || isTileOff(iter)) return false;
return isTileOn(iter) ? true : getChild(iter).isValueOn(xyz);
}
template<typename ChildT>
inline bool
RootNode<ChildT>::hasActiveTiles() const
{
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i) ? getChild(i).hasActiveTiles() : getTile(i).active) return true;
}
return false;
}
template<typename ChildT>
template<typename AccessorT>
inline bool
RootNode<ChildT>::isValueOnAndCache(const Coord& xyz, AccessorT& acc) const
{
MapCIter iter = this->findCoord(xyz);
if (iter == mTable.end() || isTileOff(iter)) return false;
if (isTileOn(iter)) return true;
acc.insert(xyz, &getChild(iter));
return getChild(iter).isValueOnAndCache(xyz, acc);
}
template<typename ChildT>
inline const typename ChildT::ValueType&
RootNode<ChildT>::getValue(const Coord& xyz) const
{
MapCIter iter = this->findCoord(xyz);
return iter == mTable.end() ? mBackground
: (isTile(iter) ? getTile(iter).value : getChild(iter).getValue(xyz));
}
template<typename ChildT>
template<typename AccessorT>
inline const typename ChildT::ValueType&
RootNode<ChildT>::getValueAndCache(const Coord& xyz, AccessorT& acc) const
{
MapCIter iter = this->findCoord(xyz);
if (iter == mTable.end()) return mBackground;
if (isChild(iter)) {
acc.insert(xyz, &getChild(iter));
return getChild(iter).getValueAndCache(xyz, acc);
}
return getTile(iter).value;
}
template<typename ChildT>
inline int
RootNode<ChildT>::getValueDepth(const Coord& xyz) const
{
MapCIter iter = this->findCoord(xyz);
return iter == mTable.end() ? -1
: (isTile(iter) ? 0 : int(LEVEL) - int(getChild(iter).getValueLevel(xyz)));
}
template<typename ChildT>
template<typename AccessorT>
inline int
RootNode<ChildT>::getValueDepthAndCache(const Coord& xyz, AccessorT& acc) const
{
MapCIter iter = this->findCoord(xyz);
if (iter == mTable.end()) return -1;
if (isTile(iter)) return 0;
acc.insert(xyz, &getChild(iter));
return int(LEVEL) - int(getChild(iter).getValueLevelAndCache(xyz, acc));
}
template<typename ChildT>
inline void
RootNode<ChildT>::setValueOff(const Coord& xyz)
{
MapIter iter = this->findCoord(xyz);
if (iter != mTable.end() && !isTileOff(iter)) {
if (isTileOn(iter)) {
setChild(iter, *new ChildT(xyz, getTile(iter).value, /*active=*/true));
}
getChild(iter).setValueOff(xyz);
}
}
template<typename ChildT>
inline void
RootNode<ChildT>::setActiveState(const Coord& xyz, bool on)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
if (on) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else {
// Nothing to do; (x, y, z) is background and therefore already inactive.
}
} else if (isChild(iter)) {
child = &getChild(iter);
} else if (on != getTile(iter).active) {
child = new ChildT(xyz, getTile(iter).value, !on);
setChild(iter, *child);
}
if (child) child->setActiveState(xyz, on);
}
template<typename ChildT>
template<typename AccessorT>
inline void
RootNode<ChildT>::setActiveStateAndCache(const Coord& xyz, bool on, AccessorT& acc)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
if (on) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else {
// Nothing to do; (x, y, z) is background and therefore already inactive.
}
} else if (isChild(iter)) {
child = &getChild(iter);
} else if (on != getTile(iter).active) {
child = new ChildT(xyz, getTile(iter).value, !on);
setChild(iter, *child);
}
if (child) {
acc.insert(xyz, child);
child->setActiveStateAndCache(xyz, on, acc);
}
}
template<typename ChildT>
inline void
RootNode<ChildT>::setValueOff(const Coord& xyz, const ValueType& value)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
if (!math::isExactlyEqual(mBackground, value)) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
}
} else if (isChild(iter)) {
child = &getChild(iter);
} else if (isTileOn(iter) || !math::isExactlyEqual(getTile(iter).value, value)) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
if (child) child->setValueOff(xyz, value);
}
template<typename ChildT>
template<typename AccessorT>
inline void
RootNode<ChildT>::setValueOffAndCache(const Coord& xyz, const ValueType& value, AccessorT& acc)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
if (!math::isExactlyEqual(mBackground, value)) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
}
} else if (isChild(iter)) {
child = &getChild(iter);
} else if (isTileOn(iter) || !math::isExactlyEqual(getTile(iter).value, value)) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
if (child) {
acc.insert(xyz, child);
child->setValueOffAndCache(xyz, value, acc);
}
}
template<typename ChildT>
inline void
RootNode<ChildT>::setValueOn(const Coord& xyz, const ValueType& value)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else if (isTileOff(iter) || !math::isExactlyEqual(getTile(iter).value, value)) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
if (child) child->setValueOn(xyz, value);
}
template<typename ChildT>
template<typename AccessorT>
inline void
RootNode<ChildT>::setValueAndCache(const Coord& xyz, const ValueType& value, AccessorT& acc)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else if (isTileOff(iter) || !math::isExactlyEqual(getTile(iter).value, value)) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
if (child) {
acc.insert(xyz, child);
child->setValueAndCache(xyz, value, acc);
}
}
template<typename ChildT>
inline void
RootNode<ChildT>::setValueOnly(const Coord& xyz, const ValueType& value)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else if (!math::isExactlyEqual(getTile(iter).value, value)) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
if (child) child->setValueOnly(xyz, value);
}
template<typename ChildT>
template<typename AccessorT>
inline void
RootNode<ChildT>::setValueOnlyAndCache(const Coord& xyz, const ValueType& value, AccessorT& acc)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else if (!math::isExactlyEqual(getTile(iter).value, value)) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
if (child) {
acc.insert(xyz, child);
child->setValueOnlyAndCache(xyz, value, acc);
}
}
template<typename ChildT>
template<typename ModifyOp>
inline void
RootNode<ChildT>::modifyValue(const Coord& xyz, const ModifyOp& op)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else {
// Need to create a child if the tile is inactive,
// in order to activate voxel (x, y, z).
bool createChild = isTileOff(iter);
if (!createChild) {
// Need to create a child if applying the functor
// to the tile value produces a different value.
const ValueType& tileVal = getTile(iter).value;
ValueType modifiedVal = tileVal;
op(modifiedVal);
createChild = !math::isExactlyEqual(tileVal, modifiedVal);
}
if (createChild) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
}
if (child) child->modifyValue(xyz, op);
}
template<typename ChildT>
template<typename ModifyOp, typename AccessorT>
inline void
RootNode<ChildT>::modifyValueAndCache(const Coord& xyz, const ModifyOp& op, AccessorT& acc)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else {
// Need to create a child if the tile is inactive,
// in order to activate voxel (x, y, z).
bool createChild = isTileOff(iter);
if (!createChild) {
// Need to create a child if applying the functor
// to the tile value produces a different value.
const ValueType& tileVal = getTile(iter).value;
ValueType modifiedVal = tileVal;
op(modifiedVal);
createChild = !math::isExactlyEqual(tileVal, modifiedVal);
}
if (createChild) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
}
if (child) {
acc.insert(xyz, child);
child->modifyValueAndCache(xyz, op, acc);
}
}
template<typename ChildT>
template<typename ModifyOp>
inline void
RootNode<ChildT>::modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else {
const Tile& tile = getTile(iter);
bool modifiedState = tile.active;
ValueType modifiedVal = tile.value;
op(modifiedVal, modifiedState);
// Need to create a child if applying the functor to the tile
// produces a different value or active state.
if (modifiedState != tile.active || !math::isExactlyEqual(modifiedVal, tile.value)) {
child = new ChildT(xyz, tile.value, tile.active);
setChild(iter, *child);
}
}
if (child) child->modifyValueAndActiveState(xyz, op);
}
template<typename ChildT>
template<typename ModifyOp, typename AccessorT>
inline void
RootNode<ChildT>::modifyValueAndActiveStateAndCache(
const Coord& xyz, const ModifyOp& op, AccessorT& acc)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else {
const Tile& tile = getTile(iter);
bool modifiedState = tile.active;
ValueType modifiedVal = tile.value;
op(modifiedVal, modifiedState);
// Need to create a child if applying the functor to the tile
// produces a different value or active state.
if (modifiedState != tile.active || !math::isExactlyEqual(modifiedVal, tile.value)) {
child = new ChildT(xyz, tile.value, tile.active);
setChild(iter, *child);
}
}
if (child) {
acc.insert(xyz, child);
child->modifyValueAndActiveStateAndCache(xyz, op, acc);
}
}
template<typename ChildT>
inline bool
RootNode<ChildT>::probeValue(const Coord& xyz, ValueType& value) const
{
MapCIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
value = mBackground;
return false;
} else if (isChild(iter)) {
return getChild(iter).probeValue(xyz, value);
}
value = getTile(iter).value;
return isTileOn(iter);
}
template<typename ChildT>
template<typename AccessorT>
inline bool
RootNode<ChildT>::probeValueAndCache(const Coord& xyz, ValueType& value, AccessorT& acc) const
{
MapCIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
value = mBackground;
return false;
} else if (isChild(iter)) {
acc.insert(xyz, &getChild(iter));
return getChild(iter).probeValueAndCache(xyz, value, acc);
}
value = getTile(iter).value;
return isTileOn(iter);
}
////////////////////////////////////////
template<typename ChildT>
inline void
RootNode<ChildT>::fill(const CoordBBox& bbox, const ValueType& value, bool active)
{
if (bbox.empty()) return;
// Iterate over the fill region in axis-aligned, tile-sized chunks.
// (The first and last chunks along each axis might be smaller than a tile.)
Coord xyz, tileMax;
for (int x = bbox.min().x(); x <= bbox.max().x(); x = tileMax.x() + 1) {
xyz.setX(x);
for (int y = bbox.min().y(); y <= bbox.max().y(); y = tileMax.y() + 1) {
xyz.setY(y);
for (int z = bbox.min().z(); z <= bbox.max().z(); z = tileMax.z() + 1) {
xyz.setZ(z);
// Get the bounds of the tile that contains voxel (x, y, z).
Coord tileMin = coordToKey(xyz);
tileMax = tileMin.offsetBy(ChildT::DIM - 1);
if (xyz != tileMin || Coord::lessThan(bbox.max(), tileMax)) {
// If the box defined by (xyz, bbox.max()) doesn't completely enclose
// the tile to which xyz belongs, create a child node (or retrieve
// the existing one).
ChildT* child = nullptr;
MapIter iter = this->findKey(tileMin);
if (iter == mTable.end()) {
// No child or tile exists. Create a child and initialize it
// with the background value.
child = new ChildT(xyz, mBackground);
mTable[tileMin] = NodeStruct(*child);
} else if (isTile(iter)) {
// Replace the tile with a newly-created child that is filled
// with the tile's value and active state.
const Tile& tile = getTile(iter);
child = new ChildT(xyz, tile.value, tile.active);
mTable[tileMin] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
}
// Forward the fill request to the child.
if (child) {
const Coord tmp = Coord::minComponent(bbox.max(), tileMax);
child->fill(CoordBBox(xyz, tmp), value, active);
}
} else {
// If the box given by (xyz, bbox.max()) completely encloses
// the tile to which xyz belongs, create the tile (if it
// doesn't already exist) and give it the fill value.
MapIter iter = this->findOrAddCoord(tileMin);
setTile(iter, Tile(value, active));
}
}
}
}
}
template<typename ChildT>
inline void
RootNode<ChildT>::denseFill(const CoordBBox& bbox, const ValueType& value, bool active)
{
if (bbox.empty()) return;
if (active && mTable.empty()) {
// If this tree is empty, then a sparse fill followed by (threaded)
// densification of active tiles is the more efficient approach.
sparseFill(bbox, value, active);
voxelizeActiveTiles(/*threaded=*/true);
return;
}
// Iterate over the fill region in axis-aligned, tile-sized chunks.
// (The first and last chunks along each axis might be smaller than a tile.)
Coord xyz, tileMin, tileMax;
for (int x = bbox.min().x(); x <= bbox.max().x(); x = tileMax.x() + 1) {
xyz.setX(x);
for (int y = bbox.min().y(); y <= bbox.max().y(); y = tileMax.y() + 1) {
xyz.setY(y);
for (int z = bbox.min().z(); z <= bbox.max().z(); z = tileMax.z() + 1) {
xyz.setZ(z);
// Get the bounds of the tile that contains voxel (x, y, z).
tileMin = coordToKey(xyz);
tileMax = tileMin.offsetBy(ChildT::DIM - 1);
// Retrieve the table entry for the tile that contains xyz,
// or, if there is no table entry, add a background tile.
const auto iter = findOrAddCoord(tileMin);
if (isTile(iter)) {
// If the table entry is a tile, replace it with a child node
// that is filled with the tile's value and active state.
const auto& tile = getTile(iter);
auto* child = new ChildT{tileMin, tile.value, tile.active};
setChild(iter, *child);
}
// Forward the fill request to the child.
getChild(iter).denseFill(bbox, value, active);
}
}
}
}
////////////////////////////////////////
template<typename ChildT>
inline void
RootNode<ChildT>::voxelizeActiveTiles(bool threaded)
{
// There is little point in threading over the root table since each tile
// spans a huge index space (by default 4096^3) and hence we expect few
// active tiles if any at all. In fact, you're very likely to run out of
// memory if this method is called on a tree with root-level active tiles!
for (MapIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (this->isTileOff(i)) continue;
ChildT* child = i->second.child;
if (child == nullptr) {
// If this table entry is an active tile (i.e., not off and not a child node),
// replace it with a child node filled with active tiles of the same value.
child = new ChildT{i->first, this->getTile(i).value, true};
i->second.child = child;
}
child->voxelizeActiveTiles(threaded);
}
}
////////////////////////////////////////
template<typename ChildT>
template<typename DenseT>
inline void
RootNode<ChildT>::copyToDense(const CoordBBox& bbox, DenseT& dense) const
{
using DenseValueType = typename DenseT::ValueType;
const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
const Coord& min = dense.bbox().min();
CoordBBox nodeBBox;
for (Coord xyz = bbox.min(); xyz[0] <= bbox.max()[0]; xyz[0] = nodeBBox.max()[0] + 1) {
for (xyz[1] = bbox.min()[1]; xyz[1] <= bbox.max()[1]; xyz[1] = nodeBBox.max()[1] + 1) {
for (xyz[2] = bbox.min()[2]; xyz[2] <= bbox.max()[2]; xyz[2] = nodeBBox.max()[2] + 1) {
// Get the coordinate bbox of the child node that contains voxel xyz.
nodeBBox = CoordBBox::createCube(coordToKey(xyz), ChildT::DIM);
// Get the coordinate bbox of the interection of inBBox and nodeBBox
CoordBBox sub(xyz, Coord::minComponent(bbox.max(), nodeBBox.max()));
MapCIter iter = this->findKey(nodeBBox.min());
if (iter != mTable.end() && isChild(iter)) {//is a child
getChild(iter).copyToDense(sub, dense);
} else {//is background or a tile value
const ValueType value = iter==mTable.end() ? mBackground : getTile(iter).value;
sub.translate(-min);
DenseValueType* a0 = dense.data() + zStride*sub.min()[2];
for (Int32 x=sub.min()[0], ex=sub.max()[0]+1; x<ex; ++x) {
DenseValueType* a1 = a0 + x*xStride;
for (Int32 y=sub.min()[1], ey=sub.max()[1]+1; y<ey; ++y) {
DenseValueType* a2 = a1 + y*yStride;
for (Int32 z=sub.min()[2], ez=sub.max()[2]+1; z<ez; ++z, a2 += zStride) {
*a2 = DenseValueType(value);
}
}
}
}
}
}
}
}
////////////////////////////////////////
template<typename ChildT>
inline bool
RootNode<ChildT>::writeTopology(std::ostream& os, bool toHalf) const
{
if (!toHalf) {
os.write(reinterpret_cast<const char*>(&mBackground), sizeof(ValueType));
} else {
ValueType truncatedVal = io::truncateRealToHalf(mBackground);
os.write(reinterpret_cast<const char*>(&truncatedVal), sizeof(ValueType));
}
io::setGridBackgroundValuePtr(os, &mBackground);
const Index numTiles = this->getTileCount(), numChildren = this->getChildCount();
os.write(reinterpret_cast<const char*>(&numTiles), sizeof(Index));
os.write(reinterpret_cast<const char*>(&numChildren), sizeof(Index));
if (numTiles == 0 && numChildren == 0) return false;
// Write tiles.
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) continue;
os.write(reinterpret_cast<const char*>(i->first.asPointer()), 3 * sizeof(Int32));
os.write(reinterpret_cast<const char*>(&getTile(i).value), sizeof(ValueType));
os.write(reinterpret_cast<const char*>(&getTile(i).active), sizeof(bool));
}
// Write child nodes.
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isTile(i)) continue;
os.write(reinterpret_cast<const char*>(i->first.asPointer()), 3 * sizeof(Int32));
getChild(i).writeTopology(os, toHalf);
}
return true; // not empty
}
template<typename ChildT>
inline bool
RootNode<ChildT>::readTopology(std::istream& is, bool fromHalf)
{
// Delete the existing tree.
this->clear();
if (io::getFormatVersion(is) < OPENVDB_FILE_VERSION_ROOTNODE_MAP) {
// Read and convert an older-format RootNode.
// For backward compatibility with older file formats, read both
// outside and inside background values.
is.read(reinterpret_cast<char*>(&mBackground), sizeof(ValueType));
ValueType inside;
is.read(reinterpret_cast<char*>(&inside), sizeof(ValueType));
io::setGridBackgroundValuePtr(is, &mBackground);
// Read the index range.
Coord rangeMin, rangeMax;
is.read(reinterpret_cast<char*>(rangeMin.asPointer()), 3 * sizeof(Int32));
is.read(reinterpret_cast<char*>(rangeMax.asPointer()), 3 * sizeof(Int32));
this->initTable();
Index tableSize = 0, log2Dim[4] = { 0, 0, 0, 0 };
Int32 offset[3];
for (int i = 0; i < 3; ++i) {
offset[i] = rangeMin[i] >> ChildT::TOTAL;
rangeMin[i] = offset[i] << ChildT::TOTAL;
log2Dim[i] = 1 + util::FindHighestOn((rangeMax[i] >> ChildT::TOTAL) - offset[i]);
tableSize += log2Dim[i];
rangeMax[i] = (((1 << log2Dim[i]) + offset[i]) << ChildT::TOTAL) - 1;
}
log2Dim[3] = log2Dim[1] + log2Dim[2];
tableSize = 1U << tableSize;
// Read masks.
util::RootNodeMask childMask(tableSize), valueMask(tableSize);
childMask.load(is);
valueMask.load(is);
// Read child nodes/values.
for (Index i = 0; i < tableSize; ++i) {
// Compute origin = offset2coord(i).
Index n = i;
Coord origin;
origin[0] = (n >> log2Dim[3]) + offset[0];
n &= (1U << log2Dim[3]) - 1;
origin[1] = (n >> log2Dim[2]) + offset[1];
origin[2] = (n & ((1U << log2Dim[2]) - 1)) + offset[1];
origin <<= ChildT::TOTAL;
if (childMask.isOn(i)) {
// Read in and insert a child node.
#if OPENVDB_ABI_VERSION_NUMBER <= 2
ChildT* child = new ChildT(origin, mBackground);
#else
ChildT* child = new ChildT(PartialCreate(), origin, mBackground);
#endif
child->readTopology(is);
mTable[origin] = NodeStruct(*child);
} else {
// Read in a tile value and insert a tile, but only if the value
// is either active or non-background.
ValueType value;
is.read(reinterpret_cast<char*>(&value), sizeof(ValueType));
if (valueMask.isOn(i) || (!math::isApproxEqual(value, mBackground))) {
mTable[origin] = NodeStruct(Tile(value, valueMask.isOn(i)));
}
}
}
return true;
}
// Read a RootNode that was stored in the current format.
is.read(reinterpret_cast<char*>(&mBackground), sizeof(ValueType));
io::setGridBackgroundValuePtr(is, &mBackground);
Index numTiles = 0, numChildren = 0;
is.read(reinterpret_cast<char*>(&numTiles), sizeof(Index));
is.read(reinterpret_cast<char*>(&numChildren), sizeof(Index));
if (numTiles == 0 && numChildren == 0) return false;
Int32 vec[3];
ValueType value;
bool active;
// Read tiles.
for (Index n = 0; n < numTiles; ++n) {
is.read(reinterpret_cast<char*>(vec), 3 * sizeof(Int32));
is.read(reinterpret_cast<char*>(&value), sizeof(ValueType));
is.read(reinterpret_cast<char*>(&active), sizeof(bool));
mTable[Coord(vec)] = NodeStruct(Tile(value, active));
}
// Read child nodes.
for (Index n = 0; n < numChildren; ++n) {
is.read(reinterpret_cast<char*>(vec), 3 * sizeof(Int32));
Coord origin(vec);
#if OPENVDB_ABI_VERSION_NUMBER <= 2
ChildT* child = new ChildT(origin, mBackground);
#else
ChildT* child = new ChildT(PartialCreate(), origin, mBackground);
#endif
child->readTopology(is, fromHalf);
mTable[Coord(vec)] = NodeStruct(*child);
}
return true; // not empty
}
template<typename ChildT>
inline void
RootNode<ChildT>::writeBuffers(std::ostream& os, bool toHalf) const
{
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) getChild(i).writeBuffers(os, toHalf);
}
}
template<typename ChildT>
inline void
RootNode<ChildT>::readBuffers(std::istream& is, bool fromHalf)
{
for (MapIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) getChild(i).readBuffers(is, fromHalf);
}
}
template<typename ChildT>
inline void
RootNode<ChildT>::readBuffers(std::istream& is, const CoordBBox& clipBBox, bool fromHalf)
{
const Tile bgTile(mBackground, /*active=*/false);
for (MapIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (isChild(i)) {
// Stream in and clip the branch rooted at this child.
// (We can't skip over children that lie outside the clipping region,
// because buffers are serialized in depth-first order and need to be
// unserialized in the same order.)
ChildT& child = getChild(i);
child.readBuffers(is, clipBBox, fromHalf);
}
}
// Clip root-level tiles and prune children that were clipped.
this->clip(clipBBox);
}
////////////////////////////////////////
template<typename ChildT>
inline void
RootNode<ChildT>::clip(const CoordBBox& clipBBox)
{
const Tile bgTile(mBackground, /*active=*/false);
// Iterate over a copy of this node's table so that we can modify the original.
// (Copying the table copies child node pointers, not the nodes themselves.)
MapType copyOfTable(mTable);
for (MapIter i = copyOfTable.begin(), e = copyOfTable.end(); i != e; ++i) {
const Coord& xyz = i->first; // tile or child origin
CoordBBox tileBBox(xyz, xyz.offsetBy(ChildT::DIM - 1)); // tile or child bounds
if (!clipBBox.hasOverlap(tileBBox)) {
// This table entry lies completely outside the clipping region. Delete it.
setTile(this->findCoord(xyz), bgTile); // delete any existing child node first
mTable.erase(xyz);
} else if (!clipBBox.isInside(tileBBox)) {
// This table entry does not lie completely inside the clipping region
// and must be clipped.
if (isChild(i)) {
getChild(i).clip(clipBBox, mBackground);
} else {
// Replace this tile with a background tile, then fill the clip region
// with the tile's original value. (This might create a child branch.)
tileBBox.intersect(clipBBox);
const Tile& origTile = getTile(i);
setTile(this->findCoord(xyz), bgTile);
this->sparseFill(tileBBox, origTile.value, origTile.active);
}
} else {
// This table entry lies completely inside the clipping region. Leave it intact.
}
}
this->prune(); // also erases root-level background tiles
}
////////////////////////////////////////
template<typename ChildT>
inline void
RootNode<ChildT>::prune(const ValueType& tolerance)
{
bool state = false;
ValueType value = zeroVal<ValueType>();
for (MapIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (this->isTile(i)) continue;
this->getChild(i).prune(tolerance);
if (this->getChild(i).isConstant(value, state, tolerance)) {
this->setTile(i, Tile(value, state));
}
}
this->eraseBackgroundTiles();
}
////////////////////////////////////////
template<typename ChildT>
template<typename NodeT>
inline NodeT*
RootNode<ChildT>::stealNode(const Coord& xyz, const ValueType& value, bool state)
{
if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
NodeT::LEVEL > ChildT::LEVEL) return nullptr;
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end() || isTile(iter)) return nullptr;
return (std::is_same<NodeT, ChildT>::value)
? reinterpret_cast<NodeT*>(&stealChild(iter, Tile(value, state)))
: getChild(iter).template stealNode<NodeT>(xyz, value, state);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
////////////////////////////////////////
template<typename ChildT>
inline void
RootNode<ChildT>::addLeaf(LeafNodeType* leaf)
{
if (leaf == nullptr) return;
ChildT* child = nullptr;
const Coord& xyz = leaf->origin();
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
if (ChildT::LEVEL>0) {
child = new ChildT(xyz, mBackground, false);
} else {
child = reinterpret_cast<ChildT*>(leaf);
}
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
if (ChildT::LEVEL>0) {
child = &getChild(iter);
} else {
child = reinterpret_cast<ChildT*>(leaf);
setChild(iter, *child);//this also deletes the existing child node
}
} else {//tile
if (ChildT::LEVEL>0) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
} else {
child = reinterpret_cast<ChildT*>(leaf);
}
setChild(iter, *child);
}
child->addLeaf(leaf);
}
template<typename ChildT>
template<typename AccessorT>
inline void
RootNode<ChildT>::addLeafAndCache(LeafNodeType* leaf, AccessorT& acc)
{
if (leaf == nullptr) return;
ChildT* child = nullptr;
const Coord& xyz = leaf->origin();
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
if (ChildT::LEVEL>0) {
child = new ChildT(xyz, mBackground, false);
} else {
child = reinterpret_cast<ChildT*>(leaf);
}
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
if (ChildT::LEVEL>0) {
child = &getChild(iter);
} else {
child = reinterpret_cast<ChildT*>(leaf);
setChild(iter, *child);//this also deletes the existing child node
}
} else {//tile
if (ChildT::LEVEL>0) {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
} else {
child = reinterpret_cast<ChildT*>(leaf);
}
setChild(iter, *child);
}
acc.insert(xyz, child);
child->addLeafAndCache(leaf, acc);
}
template<typename ChildT>
inline void
RootNode<ChildT>::addTile(const Coord& xyz, const ValueType& value, bool state)
{
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {//background
mTable[this->coordToKey(xyz)] = NodeStruct(Tile(value, state));
} else {//child or tile
setTile(iter, Tile(value, state));//this also deletes the existing child node
}
}
template<typename ChildT>
inline void
RootNode<ChildT>::addTile(Index level, const Coord& xyz,
const ValueType& value, bool state)
{
if (LEVEL >= level) {
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {//background
if (LEVEL > level) {
ChildT* child = new ChildT(xyz, mBackground, false);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
child->addTile(level, xyz, value, state);
} else {
mTable[this->coordToKey(xyz)] = NodeStruct(Tile(value, state));
}
} else if (isChild(iter)) {//child
if (LEVEL > level) {
getChild(iter).addTile(level, xyz, value, state);
} else {
setTile(iter, Tile(value, state));//this also deletes the existing child node
}
} else {//tile
if (LEVEL > level) {
ChildT* child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
child->addTile(level, xyz, value, state);
} else {
setTile(iter, Tile(value, state));
}
}
}
}
template<typename ChildT>
template<typename AccessorT>
inline void
RootNode<ChildT>::addTileAndCache(Index level, const Coord& xyz, const ValueType& value,
bool state, AccessorT& acc)
{
if (LEVEL >= level) {
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {//background
if (LEVEL > level) {
ChildT* child = new ChildT(xyz, mBackground, false);
acc.insert(xyz, child);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
child->addTileAndCache(level, xyz, value, state, acc);
} else {
mTable[this->coordToKey(xyz)] = NodeStruct(Tile(value, state));
}
} else if (isChild(iter)) {//child
if (LEVEL > level) {
ChildT* child = &getChild(iter);
acc.insert(xyz, child);
child->addTileAndCache(level, xyz, value, state, acc);
} else {
setTile(iter, Tile(value, state));//this also deletes the existing child node
}
} else {//tile
if (LEVEL > level) {
ChildT* child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
acc.insert(xyz, child);
setChild(iter, *child);
child->addTileAndCache(level, xyz, value, state, acc);
} else {
setTile(iter, Tile(value, state));
}
}
}
}
////////////////////////////////////////
template<typename ChildT>
inline typename ChildT::LeafNodeType*
RootNode<ChildT>::touchLeaf(const Coord& xyz)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground, false);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
return child->touchLeaf(xyz);
}
template<typename ChildT>
template<typename AccessorT>
inline typename ChildT::LeafNodeType*
RootNode<ChildT>::touchLeafAndCache(const Coord& xyz, AccessorT& acc)
{
ChildT* child = nullptr;
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end()) {
child = new ChildT(xyz, mBackground, false);
mTable[this->coordToKey(xyz)] = NodeStruct(*child);
} else if (isChild(iter)) {
child = &getChild(iter);
} else {
child = new ChildT(xyz, getTile(iter).value, isTileOn(iter));
setChild(iter, *child);
}
acc.insert(xyz, child);
return child->touchLeafAndCache(xyz, acc);
}
////////////////////////////////////////
template<typename ChildT>
template<typename NodeT>
inline NodeT*
RootNode<ChildT>::probeNode(const Coord& xyz)
{
if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
NodeT::LEVEL > ChildT::LEVEL) return nullptr;
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end() || isTile(iter)) return nullptr;
ChildT* child = &getChild(iter);
return (std::is_same<NodeT, ChildT>::value)
? reinterpret_cast<NodeT*>(child)
: child->template probeNode<NodeT>(xyz);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
template<typename ChildT>
template<typename NodeT>
inline const NodeT*
RootNode<ChildT>::probeConstNode(const Coord& xyz) const
{
if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
NodeT::LEVEL > ChildT::LEVEL) return nullptr;
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
MapCIter iter = this->findCoord(xyz);
if (iter == mTable.end() || isTile(iter)) return nullptr;
const ChildT* child = &getChild(iter);
return (std::is_same<NodeT, ChildT>::value)
? reinterpret_cast<const NodeT*>(child)
: child->template probeConstNode<NodeT>(xyz);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
template<typename ChildT>
inline typename ChildT::LeafNodeType*
RootNode<ChildT>::probeLeaf(const Coord& xyz)
{
return this->template probeNode<LeafNodeType>(xyz);
}
template<typename ChildT>
inline const typename ChildT::LeafNodeType*
RootNode<ChildT>::probeConstLeaf(const Coord& xyz) const
{
return this->template probeConstNode<LeafNodeType>(xyz);
}
template<typename ChildT>
template<typename AccessorT>
inline typename ChildT::LeafNodeType*
RootNode<ChildT>::probeLeafAndCache(const Coord& xyz, AccessorT& acc)
{
return this->template probeNodeAndCache<LeafNodeType>(xyz, acc);
}
template<typename ChildT>
template<typename AccessorT>
inline const typename ChildT::LeafNodeType*
RootNode<ChildT>::probeConstLeafAndCache(const Coord& xyz, AccessorT& acc) const
{
return this->template probeConstNodeAndCache<LeafNodeType>(xyz, acc);
}
template<typename ChildT>
template<typename AccessorT>
inline const typename ChildT::LeafNodeType*
RootNode<ChildT>::probeLeafAndCache(const Coord& xyz, AccessorT& acc) const
{
return this->probeConstLeafAndCache(xyz, acc);
}
template<typename ChildT>
template<typename NodeT, typename AccessorT>
inline NodeT*
RootNode<ChildT>::probeNodeAndCache(const Coord& xyz, AccessorT& acc)
{
if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
NodeT::LEVEL > ChildT::LEVEL) return nullptr;
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
MapIter iter = this->findCoord(xyz);
if (iter == mTable.end() || isTile(iter)) return nullptr;
ChildT* child = &getChild(iter);
acc.insert(xyz, child);
return (std::is_same<NodeT, ChildT>::value)
? reinterpret_cast<NodeT*>(child)
: child->template probeNodeAndCache<NodeT>(xyz, acc);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
template<typename ChildT>
template<typename NodeT,typename AccessorT>
inline const NodeT*
RootNode<ChildT>::probeConstNodeAndCache(const Coord& xyz, AccessorT& acc) const
{
if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
NodeT::LEVEL > ChildT::LEVEL) return nullptr;
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
MapCIter iter = this->findCoord(xyz);
if (iter == mTable.end() || isTile(iter)) return nullptr;
const ChildT* child = &getChild(iter);
acc.insert(xyz, child);
return (std::is_same<NodeT, ChildT>::value)
? reinterpret_cast<const NodeT*>(child)
: child->template probeConstNodeAndCache<NodeT>(xyz, acc);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
////////////////////////////////////////
template<typename ChildT>
template<typename ArrayT>
inline void
RootNode<ChildT>::getNodes(ArrayT& array)
{
using NodePtr = typename ArrayT::value_type;
static_assert(std::is_pointer<NodePtr>::value,
"argument to getNodes() must be a pointer array");
using NodeType = typename std::remove_pointer<NodePtr>::type;
using NonConstNodeType = typename std::remove_const<NodeType>::type;
using result = typename boost::mpl::contains<NodeChainType, NonConstNodeType>::type;
static_assert(result::value, "can't extract non-const nodes from a const tree");
using ArrayChildT = typename std::conditional<
std::is_const<NodeType>::value, const ChildT, ChildT>::type;
for (MapIter iter=mTable.begin(); iter!=mTable.end(); ++iter) {
if (ChildT* child = iter->second.child) {
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (std::is_same<NodePtr, ArrayChildT*>::value) {
array.push_back(reinterpret_cast<NodePtr>(iter->second.child));
} else {
child->getNodes(array);//descent
}
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
}
}
template<typename ChildT>
template<typename ArrayT>
inline void
RootNode<ChildT>::getNodes(ArrayT& array) const
{
using NodePtr = typename ArrayT::value_type;
static_assert(std::is_pointer<NodePtr>::value,
"argument to getNodes() must be a pointer array");
using NodeType = typename std::remove_pointer<NodePtr>::type;
static_assert(std::is_const<NodeType>::value,
"argument to getNodes() must be an array of const node pointers");
using NonConstNodeType = typename std::remove_const<NodeType>::type;
using result = typename boost::mpl::contains<NodeChainType, NonConstNodeType>::type;
static_assert(result::value, "can't extract non-const nodes from a const tree");
for (MapCIter iter=mTable.begin(); iter!=mTable.end(); ++iter) {
if (const ChildNodeType *child = iter->second.child) {
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (std::is_same<NodePtr, const ChildT*>::value) {
array.push_back(reinterpret_cast<NodePtr>(iter->second.child));
} else {
child->getNodes(array);//descent
}
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
}
}
////////////////////////////////////////
template<typename ChildT>
template<typename ArrayT>
inline void
RootNode<ChildT>::stealNodes(ArrayT& array, const ValueType& value, bool state)
{
using NodePtr = typename ArrayT::value_type;
static_assert(std::is_pointer<NodePtr>::value,
"argument to stealNodes() must be a pointer array");
using NodeType = typename std::remove_pointer<NodePtr>::type;
using NonConstNodeType = typename std::remove_const<NodeType>::type;
using result = typename boost::mpl::contains<NodeChainType, NonConstNodeType>::type;
static_assert(result::value, "can't extract non-const nodes from a const tree");
using ArrayChildT = typename std::conditional<
std::is_const<NodeType>::value, const ChildT, ChildT>::type;
for (MapIter iter=mTable.begin(); iter!=mTable.end(); ++iter) {
if (ChildT* child = iter->second.child) {
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (std::is_same<NodePtr, ArrayChildT*>::value) {
array.push_back(reinterpret_cast<NodePtr>(&stealChild(iter, Tile(value, state))));
} else {
child->stealNodes(array, value, state);//descent
}
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
}
}
////////////////////////////////////////
template<typename ChildT>
template<MergePolicy Policy>
inline void
RootNode<ChildT>::merge(RootNode& other)
{
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
switch (Policy) {
default:
case MERGE_ACTIVE_STATES:
for (MapIter i = other.mTable.begin(), e = other.mTable.end(); i != e; ++i) {
MapIter j = mTable.find(i->first);
if (other.isChild(i)) {
if (j == mTable.end()) { // insert other node's child
ChildNodeType& child = stealChild(i, Tile(other.mBackground, /*on=*/false));
child.resetBackground(other.mBackground, mBackground);
mTable[i->first] = NodeStruct(child);
} else if (isTile(j)) {
if (isTileOff(j)) { // replace inactive tile with other node's child
ChildNodeType& child = stealChild(i, Tile(other.mBackground, /*on=*/false));
child.resetBackground(other.mBackground, mBackground);
setChild(j, child);
}
} else { // merge both child nodes
getChild(j).template merge<MERGE_ACTIVE_STATES>(getChild(i),
other.mBackground, mBackground);
}
} else if (other.isTileOn(i)) {
if (j == mTable.end()) { // insert other node's active tile
mTable[i->first] = i->second;
} else if (!isTileOn(j)) {
// Replace anything except an active tile with the other node's active tile.
setTile(j, Tile(other.getTile(i).value, true));
}
}
}
break;
case MERGE_NODES:
for (MapIter i = other.mTable.begin(), e = other.mTable.end(); i != e; ++i) {
MapIter j = mTable.find(i->first);
if (other.isChild(i)) {
if (j == mTable.end()) { // insert other node's child
ChildNodeType& child = stealChild(i, Tile(other.mBackground, /*on=*/false));
child.resetBackground(other.mBackground, mBackground);
mTable[i->first] = NodeStruct(child);
} else if (isTile(j)) { // replace tile with other node's child
ChildNodeType& child = stealChild(i, Tile(other.mBackground, /*on=*/false));
child.resetBackground(other.mBackground, mBackground);
setChild(j, child);
} else { // merge both child nodes
getChild(j).template merge<MERGE_NODES>(
getChild(i), other.mBackground, mBackground);
}
}
}
break;
case MERGE_ACTIVE_STATES_AND_NODES:
for (MapIter i = other.mTable.begin(), e = other.mTable.end(); i != e; ++i) {
MapIter j = mTable.find(i->first);
if (other.isChild(i)) {
if (j == mTable.end()) {
// Steal and insert the other node's child.
ChildNodeType& child = stealChild(i, Tile(other.mBackground, /*on=*/false));
child.resetBackground(other.mBackground, mBackground);
mTable[i->first] = NodeStruct(child);
} else if (isTile(j)) {
// Replace this node's tile with the other node's child.
ChildNodeType& child = stealChild(i, Tile(other.mBackground, /*on=*/false));
child.resetBackground(other.mBackground, mBackground);
const Tile tile = getTile(j);
setChild(j, child);
if (tile.active) {
// Merge the other node's child with this node's active tile.
child.template merge<MERGE_ACTIVE_STATES_AND_NODES>(
tile.value, tile.active);
}
} else /*if (isChild(j))*/ {
// Merge the other node's child into this node's child.
getChild(j).template merge<MERGE_ACTIVE_STATES_AND_NODES>(getChild(i),
other.mBackground, mBackground);
}
} else if (other.isTileOn(i)) {
if (j == mTable.end()) {
// Insert a copy of the other node's active tile.
mTable[i->first] = i->second;
} else if (isTileOff(j)) {
// Replace this node's inactive tile with a copy of the other's active tile.
setTile(j, Tile(other.getTile(i).value, true));
} else if (isChild(j)) {
// Merge the other node's active tile into this node's child.
const Tile& tile = getTile(i);
getChild(j).template merge<MERGE_ACTIVE_STATES_AND_NODES>(
tile.value, tile.active);
}
} // else if (other.isTileOff(i)) {} // ignore the other node's inactive tiles
}
break;
}
// Empty the other tree so as not to leave it in a partially cannibalized state.
other.clear();
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
////////////////////////////////////////
template<typename ChildT>
template<typename OtherChildType>
inline void
RootNode<ChildT>::topologyUnion(const RootNode<OtherChildType>& other)
{
using OtherRootT = RootNode<OtherChildType>;
using OtherCIterT = typename OtherRootT::MapCIter;
enforceSameConfiguration(other);
for (OtherCIterT i = other.mTable.begin(), e = other.mTable.end(); i != e; ++i) {
MapIter j = mTable.find(i->first);
if (other.isChild(i)) {
if (j == mTable.end()) { // create child branch with identical topology
mTable[i->first] = NodeStruct(
*(new ChildT(other.getChild(i), mBackground, TopologyCopy())));
} else if (this->isChild(j)) { // union with child branch
this->getChild(j).topologyUnion(other.getChild(i));
} else {// this is a tile so replace it with a child branch with identical topology
ChildT* child = new ChildT(
other.getChild(i), this->getTile(j).value, TopologyCopy());
if (this->isTileOn(j)) child->setValuesOn();//this is an active tile
this->setChild(j, *child);
}
} else if (other.isTileOn(i)) { // other is an active tile
if (j == mTable.end()) { // insert an active tile
mTable[i->first] = NodeStruct(Tile(mBackground, true));
} else if (this->isChild(j)) {
this->getChild(j).setValuesOn();
} else if (this->isTileOff(j)) {
this->setTile(j, Tile(this->getTile(j).value, true));
}
}
}
}
template<typename ChildT>
template<typename OtherChildType>
inline void
RootNode<ChildT>::topologyIntersection(const RootNode<OtherChildType>& other)
{
using OtherRootT = RootNode<OtherChildType>;
using OtherCIterT = typename OtherRootT::MapCIter;
enforceSameConfiguration(other);
std::set<Coord> tmp;//keys to erase
for (MapIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
OtherCIterT j = other.mTable.find(i->first);
if (this->isChild(i)) {
if (j == other.mTable.end() || other.isTileOff(j)) {
tmp.insert(i->first);//delete child branch
} else if (other.isChild(j)) { // intersect with child branch
this->getChild(i).topologyIntersection(other.getChild(j), mBackground);
}
} else if (this->isTileOn(i)) {
if (j == other.mTable.end() || other.isTileOff(j)) {
this->setTile(i, Tile(this->getTile(i).value, false));//turn inactive
} else if (other.isChild(j)) { //replace with a child branch with identical topology
ChildT* child =
new ChildT(other.getChild(j), this->getTile(i).value, TopologyCopy());
this->setChild(i, *child);
}
}
}
for (std::set<Coord>::iterator i = tmp.begin(), e = tmp.end(); i != e; ++i) {
MapIter it = this->findCoord(*i);
setTile(it, Tile()); // delete any existing child node first
mTable.erase(it);
}
}
template<typename ChildT>
template<typename OtherChildType>
inline void
RootNode<ChildT>::topologyDifference(const RootNode<OtherChildType>& other)
{
using OtherRootT = RootNode<OtherChildType>;
using OtherCIterT = typename OtherRootT::MapCIter;
enforceSameConfiguration(other);
for (OtherCIterT i = other.mTable.begin(), e = other.mTable.end(); i != e; ++i) {
MapIter j = mTable.find(i->first);
if (other.isChild(i)) {
if (j == mTable.end() || this->isTileOff(j)) {
//do nothing
} else if (this->isChild(j)) { // difference with child branch
this->getChild(j).topologyDifference(other.getChild(i), mBackground);
} else if (this->isTileOn(j)) {
// this is an active tile so create a child node and descent
ChildT* child = new ChildT(j->first, this->getTile(j).value, true);
child->topologyDifference(other.getChild(i), mBackground);
this->setChild(j, *child);
}
} else if (other.isTileOn(i)) { // other is an active tile
if (j == mTable.end() || this->isTileOff(j)) {
// do nothing
} else if (this->isChild(j)) {
setTile(j, Tile()); // delete any existing child node first
mTable.erase(j);
} else if (this->isTileOn(j)) {
this->setTile(j, Tile(this->getTile(j).value, false));
}
}
}
}
////////////////////////////////////////
template<typename ChildT>
template<typename CombineOp>
inline void
RootNode<ChildT>::combine(RootNode& other, CombineOp& op, bool prune)
{
CombineArgs<ValueType> args;
CoordSet keys;
this->insertKeys(keys);
other.insertKeys(keys);
for (CoordSetCIter i = keys.begin(), e = keys.end(); i != e; ++i) {
MapIter iter = findOrAddCoord(*i), otherIter = other.findOrAddCoord(*i);
if (isTile(iter) && isTile(otherIter)) {
// Both this node and the other node have constant values (tiles).
// Combine the two values and store the result as this node's new tile value.
op(args.setARef(getTile(iter).value)
.setAIsActive(isTileOn(iter))
.setBRef(getTile(otherIter).value)
.setBIsActive(isTileOn(otherIter)));
setTile(iter, Tile(args.result(), args.resultIsActive()));
} else if (isChild(iter) && isTile(otherIter)) {
// Combine this node's child with the other node's constant value.
ChildT& child = getChild(iter);
child.combine(getTile(otherIter).value, isTileOn(otherIter), op);
} else if (isTile(iter) && isChild(otherIter)) {
// Combine this node's constant value with the other node's child,
// but use a new functor in which the A and B values are swapped,
// since the constant value is the A value, not the B value.
SwappedCombineOp<ValueType, CombineOp> swappedOp(op);
ChildT& child = getChild(otherIter);
child.combine(getTile(iter).value, isTileOn(iter), swappedOp);
// Steal the other node's child.
setChild(iter, stealChild(otherIter, Tile()));
} else /*if (isChild(iter) && isChild(otherIter))*/ {
// Combine this node's child with the other node's child.
ChildT &child = getChild(iter), &otherChild = getChild(otherIter);
child.combine(otherChild, op);
}
if (prune && isChild(iter)) getChild(iter).prune();
}
// Combine background values.
op(args.setARef(mBackground).setBRef(other.mBackground));
mBackground = args.result();
// Empty the other tree so as not to leave it in a partially cannibalized state.
other.clear();
}
////////////////////////////////////////
// This helper class is a friend of RootNode and is needed so that combine2
// can be specialized for compatible and incompatible pairs of RootNode types.
template<typename CombineOp, typename RootT, typename OtherRootT, bool Compatible = false>
struct RootNodeCombineHelper
{
static inline void combine2(RootT& self, const RootT&, const OtherRootT& other1,
CombineOp&, bool)
{
// If the two root nodes have different configurations or incompatible ValueTypes,
// throw an exception.
self.enforceSameConfiguration(other1);
self.enforceCompatibleValueTypes(other1);
// One of the above two tests should throw, so we should never get here:
std::ostringstream ostr;
ostr << "cannot combine a " << typeid(OtherRootT).name()
<< " into a " << typeid(RootT).name();
OPENVDB_THROW(TypeError, ostr.str());
}
};
// Specialization for root nodes of compatible types
template<typename CombineOp, typename RootT, typename OtherRootT>
struct RootNodeCombineHelper<CombineOp, RootT, OtherRootT, /*Compatible=*/true>
{
static inline void combine2(RootT& self, const RootT& other0, const OtherRootT& other1,
CombineOp& op, bool prune)
{
self.doCombine2(other0, other1, op, prune);
}
};
template<typename ChildT>
template<typename CombineOp, typename OtherRootNode>
inline void
RootNode<ChildT>::combine2(const RootNode& other0, const OtherRootNode& other1,
CombineOp& op, bool prune)
{
using OtherValueType = typename OtherRootNode::ValueType;
static const bool compatible = (SameConfiguration<OtherRootNode>::value
&& CanConvertType</*from=*/OtherValueType, /*to=*/ValueType>::value);
RootNodeCombineHelper<CombineOp, RootNode, OtherRootNode, compatible>::combine2(
*this, other0, other1, op, prune);
}
template<typename ChildT>
template<typename CombineOp, typename OtherRootNode>
inline void
RootNode<ChildT>::doCombine2(const RootNode& other0, const OtherRootNode& other1,
CombineOp& op, bool prune)
{
enforceSameConfiguration(other1);
using OtherValueT = typename OtherRootNode::ValueType;
using OtherTileT = typename OtherRootNode::Tile;
using OtherNodeStructT = typename OtherRootNode::NodeStruct;
using OtherMapCIterT = typename OtherRootNode::MapCIter;
CombineArgs<ValueType, OtherValueT> args;
CoordSet keys;
other0.insertKeys(keys);
other1.insertKeys(keys);
const NodeStruct bg0(Tile(other0.mBackground, /*active=*/false));
const OtherNodeStructT bg1(OtherTileT(other1.mBackground, /*active=*/false));
for (CoordSetCIter i = keys.begin(), e = keys.end(); i != e; ++i) {
MapIter thisIter = this->findOrAddCoord(*i);
MapCIter iter0 = other0.findKey(*i);
OtherMapCIterT iter1 = other1.findKey(*i);
const NodeStruct& ns0 = (iter0 != other0.mTable.end()) ? iter0->second : bg0;
const OtherNodeStructT& ns1 = (iter1 != other1.mTable.end()) ? iter1->second : bg1;
if (ns0.isTile() && ns1.isTile()) {
// Both input nodes have constant values (tiles).
// Combine the two values and add a new tile to this node with the result.
op(args.setARef(ns0.tile.value)
.setAIsActive(ns0.isTileOn())
.setBRef(ns1.tile.value)
.setBIsActive(ns1.isTileOn()));
setTile(thisIter, Tile(args.result(), args.resultIsActive()));
} else {
if (!isChild(thisIter)) {
// Add a new child with the same coordinates, etc. as the other node's child.
const Coord& childOrigin =
ns0.isChild() ? ns0.child->origin() : ns1.child->origin();
setChild(thisIter, *(new ChildT(childOrigin, getTile(thisIter).value)));
}
ChildT& child = getChild(thisIter);
if (ns0.isTile()) {
// Combine node1's child with node0's constant value
// and write the result into this node's child.
child.combine2(ns0.tile.value, *ns1.child, ns0.isTileOn(), op);
} else if (ns1.isTile()) {
// Combine node0's child with node1's constant value
// and write the result into this node's child.
child.combine2(*ns0.child, ns1.tile.value, ns1.isTileOn(), op);
} else {
// Combine node0's child with node1's child
// and write the result into this node's child.
child.combine2(*ns0.child, *ns1.child, op);
}
}
if (prune && isChild(thisIter)) getChild(thisIter).prune();
}
// Combine background values.
op(args.setARef(other0.mBackground).setBRef(other1.mBackground));
mBackground = args.result();
}
////////////////////////////////////////
template<typename ChildT>
template<typename BBoxOp>
inline void
RootNode<ChildT>::visitActiveBBox(BBoxOp& op) const
{
const bool descent = op.template descent<LEVEL>();
for (MapCIter i = mTable.begin(), e = mTable.end(); i != e; ++i) {
if (this->isTileOff(i)) continue;
if (this->isChild(i) && descent) {
this->getChild(i).visitActiveBBox(op);
} else {
#ifdef _MSC_VER
op.operator()<LEVEL>(CoordBBox::createCube(i->first, ChildT::DIM));
#else
op.template operator()<LEVEL>(CoordBBox::createCube(i->first, ChildT::DIM));
#endif
}
}
}
template<typename ChildT>
template<typename VisitorOp>
inline void
RootNode<ChildT>::visit(VisitorOp& op)
{
doVisit<RootNode, VisitorOp, ChildAllIter>(*this, op);
}
template<typename ChildT>
template<typename VisitorOp>
inline void
RootNode<ChildT>::visit(VisitorOp& op) const
{
doVisit<const RootNode, VisitorOp, ChildAllCIter>(*this, op);
}
template<typename ChildT>
template<typename RootNodeT, typename VisitorOp, typename ChildAllIterT>
inline void
RootNode<ChildT>::doVisit(RootNodeT& self, VisitorOp& op)
{
typename RootNodeT::ValueType val;
for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
if (op(iter)) continue;
if (typename ChildAllIterT::ChildNodeType* child = iter.probeChild(val)) {
child->visit(op);
}
}
}
////////////////////////////////////////
template<typename ChildT>
template<typename OtherRootNodeType, typename VisitorOp>
inline void
RootNode<ChildT>::visit2(OtherRootNodeType& other, VisitorOp& op)
{
doVisit2<RootNode, OtherRootNodeType, VisitorOp, ChildAllIter,
typename OtherRootNodeType::ChildAllIter>(*this, other, op);
}
template<typename ChildT>
template<typename OtherRootNodeType, typename VisitorOp>
inline void
RootNode<ChildT>::visit2(OtherRootNodeType& other, VisitorOp& op) const
{
doVisit2<const RootNode, OtherRootNodeType, VisitorOp, ChildAllCIter,
typename OtherRootNodeType::ChildAllCIter>(*this, other, op);
}
template<typename ChildT>
template<
typename RootNodeT,
typename OtherRootNodeT,
typename VisitorOp,
typename ChildAllIterT,
typename OtherChildAllIterT>
inline void
RootNode<ChildT>::doVisit2(RootNodeT& self, OtherRootNodeT& other, VisitorOp& op)
{
enforceSameConfiguration(other);
typename RootNodeT::ValueType val;
typename OtherRootNodeT::ValueType otherVal;
// The two nodes are required to have corresponding table entries,
// but since that might require background tiles to be added to one or both,
// and the nodes might be const, we operate on shallow copies of the nodes instead.
RootNodeT copyOfSelf(self.mBackground);
copyOfSelf.mTable = self.mTable;
OtherRootNodeT copyOfOther(other.mBackground);
copyOfOther.mTable = other.mTable;
// Add background tiles to both nodes as needed.
CoordSet keys;
self.insertKeys(keys);
other.insertKeys(keys);
for (CoordSetCIter i = keys.begin(), e = keys.end(); i != e; ++i) {
copyOfSelf.findOrAddCoord(*i);
copyOfOther.findOrAddCoord(*i);
}
ChildAllIterT iter = copyOfSelf.beginChildAll();
OtherChildAllIterT otherIter = copyOfOther.beginChildAll();
for ( ; iter && otherIter; ++iter, ++otherIter)
{
const size_t skipBranch = static_cast<size_t>(op(iter, otherIter));
typename ChildAllIterT::ChildNodeType* child =
(skipBranch & 1U) ? nullptr : iter.probeChild(val);
typename OtherChildAllIterT::ChildNodeType* otherChild =
(skipBranch & 2U) ? nullptr : otherIter.probeChild(otherVal);
if (child != nullptr && otherChild != nullptr) {
child->visit2Node(*otherChild, op);
} else if (child != nullptr) {
child->visit2(otherIter, op);
} else if (otherChild != nullptr) {
otherChild->visit2(iter, op, /*otherIsLHS=*/true);
}
}
// Remove any background tiles that were added above,
// as well as any that were created by the visitors.
copyOfSelf.eraseBackgroundTiles();
copyOfOther.eraseBackgroundTiles();
// If either input node is non-const, replace its table with
// the (possibly modified) copy.
self.resetTable(copyOfSelf.mTable);
other.resetTable(copyOfOther.mTable);
}
} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TREE_ROOTNODE_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2017 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|