/usr/include/oxli/storage.hh is in liboxli-dev 2.1.2+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 | /*
This file is part of khmer, https://github.com/dib-lab/khmer/, and is
Copyright (C) 2016, The Regents of the University of California.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of the University of California nor the names
of its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
LICENSE (END)
Contact: khmer-project@idyll.org
*/
#ifndef STORAGE_HH
#define STORAGE_HH
#include <cassert>
#include <array>
#include <mutex>
using MuxGuard = std::lock_guard<std::mutex>;
namespace oxli {
typedef std::map<HashIntoType, BoundedCounterType> KmerCountMap;
//
// base Storage class for hashtable-related storage of information in memory.
//
class Storage
{
protected:
bool _supports_bigcount;
bool _use_bigcount;
public:
Storage() : _supports_bigcount(false), _use_bigcount(false) { } ;
virtual ~Storage() { }
virtual std::vector<uint64_t> get_tablesizes() const = 0;
virtual const size_t n_tables() const = 0;
virtual void save(std::string, WordLength) = 0;
virtual void load(std::string, WordLength&) = 0;
virtual const uint64_t n_occupied() const = 0;
virtual const uint64_t n_unique_kmers() const = 0;
virtual BoundedCounterType test_and_set_bits( HashIntoType khash ) = 0;
virtual bool add(HashIntoType khash) = 0;
virtual const BoundedCounterType get_count(HashIntoType khash) const = 0;
virtual Byte ** get_raw_tables() = 0;
void set_use_bigcount(bool b);
bool get_use_bigcount();
};
/*
* \class BitStorage
*
* \brief A Bloom filter implementation.
*
* BitStorage is used to track presence/absence of k-mers by Hashtable
* and derived classes. It contains 'n_tables' different tables of
* bitsizes specified in 'tablesizes' (so 1/8 for bytesizes).
*
* Like other Storage classes, BitStorage manages setting the bits and
* tracking statistics, as well as save/load, and not much else.
*
*/
class BitStorage : public Storage
{
protected:
std::vector<uint64_t> _tablesizes;
size_t _n_tables;
uint64_t _occupied_bins;
uint64_t _n_unique_kmers;
Byte ** _counts;
public:
BitStorage(std::vector<uint64_t>& tablesizes) :
_tablesizes(tablesizes)
{
_occupied_bins = 0;
_n_unique_kmers = 0;
_allocate_counters();
}
~BitStorage()
{
if (_counts) {
for (size_t i = 0; i < _n_tables; i++) {
delete[] _counts[i];
_counts[i] = NULL;
}
delete[] _counts;
_counts = NULL;
_n_tables = 0;
}
}
void _allocate_counters()
{
_n_tables = _tablesizes.size();
_counts = new Byte*[_n_tables];
for (size_t i = 0; i < _n_tables; i++) {
uint64_t tablesize = _tablesizes[i];
uint64_t tablebytes = tablesize / 8 + 1;
_counts[i] = new Byte[tablebytes];
memset(_counts[i], 0, tablebytes);
}
}
// Accessors for protected/private table info members
std::vector<uint64_t> get_tablesizes() const
{
return _tablesizes;
}
const size_t n_tables() const
{
return _n_tables;
}
void save(std::string, WordLength ksize);
void load(std::string, WordLength& ksize);
// count number of occupied bins
const uint64_t n_occupied() const
{
return _occupied_bins;
}
const uint64_t n_unique_kmers() const
{
return _n_unique_kmers;
}
// Get and set the hashbits for the given kmer hash.
// Generally, it is better to keep tests and mutations separate,
// but, in the interests of efficiency and thread safety,
// tests and mutations are being blended here against conventional
// software engineering wisdom.
inline
BoundedCounterType
test_and_set_bits( HashIntoType khash )
{
bool is_new_kmer = false;
for (size_t i = 0; i < _n_tables; i++) {
uint64_t bin = khash % _tablesizes[i];
uint64_t byte = bin / 8;
unsigned char bit = (unsigned char)(1 << (bin % 8));
unsigned char bits_orig = __sync_fetch_and_or( *(_counts + i) +
byte, bit );
if (!(bits_orig & bit)) {
if (i == 0) {
__sync_add_and_fetch( &_occupied_bins, 1 );
}
is_new_kmer = true;
}
} // iteration over hashtables
if (is_new_kmer) {
__sync_add_and_fetch( &_n_unique_kmers, 1 );
return 1; // kmer not seen before
}
return 0; // kmer already seen
} // test_and_set_bits
inline bool add(HashIntoType khash)
{
return test_and_set_bits(khash);
}
// get the count for the given k-mer hash.
inline const BoundedCounterType get_count(HashIntoType khash) const
{
for (size_t i = 0; i < _n_tables; i++) {
uint64_t bin = khash % _tablesizes[i];
uint64_t byte = bin / 8;
unsigned char bit = bin % 8;
if (!(_counts[i][byte] & (1 << bit))) {
return 0;
}
}
return 1;
}
// Writing to the tables outside of defined methods has undefined behavior!
// As such, this should only be used to return read-only interfaces
Byte ** get_raw_tables()
{
return _counts;
}
void update_from(const BitStorage&);
};
/*
* \class NibbleStorage
*
* \brief A A CountMin sketch implementation using 4bit counters.
*
* NibbleStorage is used to track counts of k-mers by Hashtable
* and derived classes. It contains 'n_tables' different tables of
* 'tablesizes' entries. It allocates half a byte per table entry.
*
* Like other Storage classes, NibbleStorage manages setting the bits and
* tracking statistics, as well as save/load, and not much else.
*
*/
class NibbleStorage : public Storage
{
protected:
// table size is measured in number of entries in the table, not in bytes
std::vector<uint64_t> _tablesizes;
size_t _n_tables;
uint64_t _occupied_bins;
uint64_t _n_unique_kmers;
std::array<std::mutex, 32> mutexes;
static constexpr uint8_t _max_count{15};
Byte ** _counts;
// Compute index into the table, this retrieves the correct byte
// which you then need to select the correct nibble from
uint64_t _table_index(const HashIntoType k, const uint64_t tablesize) const
{
return (k % tablesize) / 2;
}
// Compute which half of the byte to use for this hash value
uint8_t _mask(const HashIntoType k, const uint64_t tablesize) const
{
return (k%tablesize)%2 ? 15 : 240;
}
// Compute which half of the byte to use for this hash value
uint8_t _shift(const HashIntoType k, const uint64_t tablesize) const
{
return (k%tablesize)%2 ? 0 : 4;
}
public:
NibbleStorage(std::vector<uint64_t>& tablesizes) :
_tablesizes{tablesizes},
_occupied_bins{0}, _n_unique_kmers{0}
{
// to allow more than 32 tables increase the size of mutex pool
assert(_n_tables <= 32);
_allocate_counters();
}
~NibbleStorage()
{
if (_counts) {
for (size_t i = 0; i < _n_tables; i++) {
delete[] _counts[i];
_counts[i] = NULL;
}
delete[] _counts;
_counts = NULL;
_n_tables = 0;
}
}
void _allocate_counters()
{
_n_tables = _tablesizes.size();
_counts = new Byte*[_n_tables];
for (size_t i = 0; i < _n_tables; i++) {
const uint64_t tablesize = _tablesizes[i];
const uint64_t tablebytes = tablesize / 2 + 1;
_counts[i] = new Byte[tablebytes];
memset(_counts[i], 0, tablebytes);
}
}
BoundedCounterType test_and_set_bits(HashIntoType khash)
{
BoundedCounterType x = get_count(khash);
add(khash);
return !x;
}
bool add(HashIntoType khash)
{
bool is_new_kmer = false;
for (unsigned int i = 0; i < _n_tables; i++) {
MuxGuard g(mutexes[i]);
Byte* const table(_counts[i]);
const uint64_t idx = _table_index(khash, _tablesizes[i]);
const uint8_t mask = _mask(khash, _tablesizes[i]);
const uint8_t shift = _shift(khash, _tablesizes[i]);
const uint8_t current_count = (table[idx] & mask) >> shift;
if (!is_new_kmer) {
if (current_count == 0) {
is_new_kmer = true;
// track occupied bins in the first table only, as proxy
// for all.
if (i == 0) {
__sync_add_and_fetch(&_occupied_bins, 1);
}
}
}
// if we have reached the maximum count stop incrementing the
// counter. This avoids overflowing it.
if (current_count == _max_count) {
continue;
}
// increase count, no checking for overflow
const uint8_t new_count = (current_count + 1) << shift;
table[idx] = (table[idx] & ~mask) | (new_count & mask);
}
if (is_new_kmer) {
__sync_add_and_fetch(&_n_unique_kmers, 1);
}
return is_new_kmer;
}
// get the count for the given k-mer hash.
const BoundedCounterType get_count(HashIntoType khash) const
{
uint8_t min_count = _max_count; // bound count by maximum
// get the minimum count across all tables
for (unsigned int i = 0; i < _n_tables; i++) {
const Byte* table(_counts[i]);
const uint64_t idx = _table_index(khash, _tablesizes[i]);
const uint8_t mask = _mask(khash, _tablesizes[i]);
const uint8_t shift = _shift(khash, _tablesizes[i]);
const uint8_t the_count = (table[idx] & mask) >> shift;
if (the_count < min_count) {
min_count = the_count;
}
}
return min_count;
}
// Accessors for protected/private table info members
std::vector<uint64_t> get_tablesizes() const
{
return _tablesizes;
}
const size_t n_tables() const
{
return _n_tables;
}
const uint64_t n_unique_kmers() const
{
return _n_unique_kmers;
}
const uint64_t n_occupied() const
{
return _occupied_bins;
}
void save(std::string outfilename, WordLength ksize);
void load(std::string infilename, WordLength& ksize);
Byte ** get_raw_tables()
{
return _counts;
}
};
/*
* \class ByteStorage
*
* \brief A CountMin sketch implementation.
*
* ByteStorage is used to track counts of k-mers by Hashtable
* and derived classes. It contains 'n_tables' different tables of
* bytesizes specified in 'tablesizes'.
*
* Like other Storage classes, ByteStorage manages setting the bits and
* tracking statistics, as well as save/load, and not much else.
*
*/
class ByteStorageFile;
class ByteStorageFileReader;
class ByteStorageFileWriter;
class ByteStorageGzFileReader;
class ByteStorageGzFileWriter;
class ByteStorage : public Storage
{
friend class ByteStorageFile;
friend class ByteStorageFileReader;
friend class ByteStorageFileWriter;
friend class ByteStorageGzFileReader;
friend class ByteStorageGzFileWriter;
friend class CountGraph;
protected:
unsigned int _max_count;
unsigned int _max_bigcount;
uint32_t _bigcount_spin_lock;
std::vector<uint64_t> _tablesizes;
size_t _n_tables;
uint64_t _n_unique_kmers;
uint64_t _occupied_bins;
Byte ** _counts;
// initialize counts with empty hashtables.
void _allocate_counters()
{
_n_tables = _tablesizes.size();
_counts = new Byte*[_n_tables];
for (size_t i = 0; i < _n_tables; i++) {
_counts[i] = new Byte[_tablesizes[i]];
memset(_counts[i], 0, _tablesizes[i]);
}
}
public:
KmerCountMap _bigcounts;
// constructor: create an empty CountMin sketch.
ByteStorage(std::vector<uint64_t>& tablesizes ) :
_max_count(MAX_KCOUNT), _max_bigcount(MAX_BIGCOUNT),
_bigcount_spin_lock(false), _tablesizes(tablesizes),
_n_unique_kmers(0), _occupied_bins(0)
{
_supports_bigcount = true;
_allocate_counters();
}
// destructor: clear out the memory.
~ByteStorage()
{
if (_counts) {
for (size_t i = 0; i < _n_tables; i++) {
if (_counts[i]) {
delete[] _counts[i];
_counts[i] = NULL;
}
}
delete[] _counts;
_counts = NULL;
_n_tables = 0;
}
}
std::vector<uint64_t> get_tablesizes() const
{
return _tablesizes;
}
const uint64_t n_unique_kmers() const
{
return _n_unique_kmers;
}
const size_t n_tables() const
{
return _n_tables;
}
const uint64_t n_occupied() const
{
return _occupied_bins;
}
void save(std::string, WordLength);
void load(std::string, WordLength&);
inline BoundedCounterType test_and_set_bits(HashIntoType khash)
{
BoundedCounterType x = get_count(khash);
add(khash);
return !x;
}
inline bool add(HashIntoType khash)
{
bool is_new_kmer = false;
unsigned int n_full = 0;
// add one to each entry in each table.
for (unsigned int i = 0; i < _n_tables; i++) {
const uint64_t bin = khash % _tablesizes[i];
Byte current_count = _counts[ i ][ bin ];
if (!is_new_kmer) {
if (current_count == 0) {
is_new_kmer = true;
// track occupied bins in the first table only, as proxy
// for all.
if (i == 0) {
__sync_add_and_fetch(&_occupied_bins, 1);
}
}
}
// NOTE: Technically, multiple threads can cause the bin to spill
// over max_count a little, if they all read it as less than
// max_count before any of them increment it.
// However, do we actually care if there is a little
// bit of slop here? It can always be trimmed off later, if
// that would help with stats.
if ( _max_count > current_count ) {
__sync_add_and_fetch( *(_counts + i) + bin, 1 );
} else {
n_full++;
}
} // for each table
// if all tables are full for this position, then add in bigcounts.
if (n_full == _n_tables && _use_bigcount) {
while (!__sync_bool_compare_and_swap(&_bigcount_spin_lock, 0, 1));
if (_bigcounts[khash] == 0) {
_bigcounts[khash] = _max_count + 1;
} else {
if (_bigcounts[khash] < _max_bigcount) {
_bigcounts[khash] += 1;
}
}
__sync_bool_compare_and_swap( &_bigcount_spin_lock, 1, 0 );
}
if (is_new_kmer) {
__sync_add_and_fetch(&_n_unique_kmers, 1);
}
return is_new_kmer;
}
// get the count for the given k-mer hash.
inline const BoundedCounterType get_count(HashIntoType khash) const
{
unsigned int max_count = _max_count;
BoundedCounterType min_count = max_count; // bound count by max.
// first, get the min count across all tables (standard CMS).
for (unsigned int i = 0; i < _n_tables; i++) {
BoundedCounterType the_count = _counts[i][khash % _tablesizes[i]];
if (the_count < min_count) {
min_count = the_count;
}
}
// if the count is saturated, check in the bigcount structure to
// see if we've accumulated more counts.
if (min_count == max_count && _use_bigcount) {
KmerCountMap::const_iterator it = _bigcounts.find(khash);
if (it != _bigcounts.end()) {
min_count = it->second;
}
}
return min_count;
}
// Get direct access to the counts.
//
// Note:
// Writing to the tables outside of defined methods has undefined behavior!
// As such, this should only be used to return read-only interfaces
Byte ** get_raw_tables()
{
return _counts;
}
};
// Helper classes for saving ByteStorage objs to disk & loading them.
class ByteStorageFile
{
public:
static void load(const std::string &infilename,
WordLength &ksize,
ByteStorage &store);
static void save(const std::string &outfilename,
const WordLength ksize,
const ByteStorage &store);
};
class ByteStorageFileReader : public ByteStorageFile
{
public:
ByteStorageFileReader(const std::string &infilename,
WordLength &ksize,
ByteStorage &store);
};
class ByteStorageGzFileReader : public ByteStorageFile
{
public:
ByteStorageGzFileReader(const std::string &infilename,
WordLength &ksize,
ByteStorage &store);
};
class ByteStorageFileWriter : public ByteStorageFile
{
public:
ByteStorageFileWriter(const std::string &outfilename,
const WordLength ksize,
const ByteStorage &store);
};
class ByteStorageGzFileWriter : public ByteStorageFile
{
public:
ByteStorageGzFileWriter(const std::string &outfilename,
const WordLength ksize,
const ByteStorage &store);
};
}
#endif // STORAGE_HH
|