/usr/include/x86_64-linux-gnu/pari/mpinl.h is in libpari-dev 2.9.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 | #ifndef ASMINLINE
#line 2 "../src/kernel/none/addll.h"
/* Copyright (C) 2003 The PARI group.
This file is part of the PARI/GP package.
PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.
Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
/* This file originally adapted from gmp-3.1.1 (from T. Granlund), files
* longlong.h and gmp-impl.h
Copyright (C) 2000 Free Software Foundation, Inc. */
#undef LOCAL_OVERFLOW
#define LOCAL_OVERFLOW
extern ulong overflow;
#if !defined(INLINE)
extern long addll(ulong x, ulong y);
extern long addllx(ulong x, ulong y);
extern long subll(ulong x, ulong y);
extern long subllx(ulong x, ulong y);
#else
#if defined(__GNUC__) && !defined(DISABLE_INLINE)
#undef LOCAL_OVERFLOW
#define LOCAL_OVERFLOW register ulong overflow
#define addll(a, b) \
__extension__ ({ \
ulong __arg1 = (a), __arg2 = (b), __value = __arg1 + __arg2; \
overflow = (__value < __arg1); \
__value; \
})
#define addllx(a, b) \
__extension__ ({ \
ulong __arg1 = (a), __arg2 = (b), __value, __tmp = __arg1 + overflow;\
overflow = (__tmp < __arg1); \
__value = __tmp + __arg2; \
overflow |= (__value < __tmp); \
__value; \
})
#define subll(a, b) \
__extension__ ({ \
ulong __arg1 = (a), __arg2 = (b); \
overflow = (__arg2 > __arg1); \
__arg1 - __arg2; \
})
#define subllx(a, b) \
__extension__ ({ \
ulong __arg1 = (a), __arg2 = (b), __value, __tmp = __arg1 - overflow;\
overflow = (__arg1 < overflow); \
__value = __tmp - __arg2; \
overflow |= (__arg2 > __tmp); \
__value; \
})
#else /* __GNUC__ */
INLINE long
addll(ulong x, ulong y)
{
const ulong z = x+y;
overflow=(z<x);
return (long) z;
}
INLINE long
addllx(ulong x, ulong y)
{
const ulong z = x+y+overflow;
overflow = (z<x || (z==x && overflow));
return (long) z;
}
INLINE long
subll(ulong x, ulong y)
{
const ulong z = x-y;
overflow = (z>x);
return (long) z;
}
INLINE long
subllx(ulong x, ulong y)
{
const ulong z = x-y-overflow;
overflow = (z>x || (z==x && overflow));
return (long) z;
}
#endif /* __GNUC__ */
#endif
#line 2 "../src/kernel/none/mulll.h"
/* Copyright (C) 2000 The PARI group.
This file is part of the PARI/GP package.
PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.
Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
#undef LOCAL_HIREMAINDER
#define LOCAL_HIREMAINDER
extern ulong hiremainder;
/* Version Peter Montgomery */
/*
* Assume (for presentation) that BITS_IN_LONG = 32.
* Then 0 <= xhi, xlo, yhi, ylo <= 2^16 - 1. Hence
*
* -2^31 + 2^16 <= (xhi-2^15)*(ylo-2^15) + (xlo-2^15)*(yhi-2^15) <= 2^31.
*
* If xhi*ylo + xlo*yhi = 2^32*overflow + xymid, then
*
* -2^32 + 2^16 <= 2^32*overflow + xymid - 2^15*(xhi + ylo + xlo + yhi) <= 0.
*
* 2^16*overflow <= (xhi+xlo+yhi+ylo)/2 - xymid/2^16 <= 2^16*overflow + 2^16-1
*
* This inequality was derived using exact (rational) arithmetic;
* it remains valid when we truncate the two middle terms.
*/
#if !defined(INLINE)
extern long mulll(ulong x, ulong y);
extern long addmul(ulong x, ulong y);
#else
#if defined(__GNUC__) && !defined(DISABLE_INLINE)
#undef LOCAL_HIREMAINDER
#define LOCAL_HIREMAINDER register ulong hiremainder
#define mulll(x, y) \
__extension__ ({ \
const ulong __x = (x), __y = (y);\
const ulong __xlo = LOWWORD(__x), __xhi = HIGHWORD(__x); \
const ulong __ylo = LOWWORD(__y), __yhi = HIGHWORD(__y); \
ulong __xylo,__xymid,__xyhi,__xymidhi,__xymidlo; \
ulong __xhl,__yhl; \
\
__xylo = __xlo*__ylo; __xyhi = __xhi*__yhi; \
__xhl = __xhi+__xlo; __yhl = __yhi+__ylo; \
__xymid = __xhl*__yhl - (__xyhi+__xylo); \
\
__xymidhi = HIGHWORD(__xymid); \
__xymidlo = __xymid << BITS_IN_HALFULONG; \
\
__xylo += __xymidlo; \
hiremainder = __xyhi + __xymidhi + (__xylo < __xymidlo) \
+ ((((__xhl + __yhl) >> 1) - __xymidhi) & HIGHMASK); \
\
__xylo; \
})
#define addmul(x, y) \
__extension__ ({ \
const ulong __x = (x), __y = (y);\
const ulong __xlo = LOWWORD(__x), __xhi = HIGHWORD(__x); \
const ulong __ylo = LOWWORD(__y), __yhi = HIGHWORD(__y); \
ulong __xylo,__xymid,__xyhi,__xymidhi,__xymidlo; \
ulong __xhl,__yhl; \
\
__xylo = __xlo*__ylo; __xyhi = __xhi*__yhi; \
__xhl = __xhi+__xlo; __yhl = __yhi+__ylo; \
__xymid = __xhl*__yhl - (__xyhi+__xylo); \
\
__xylo += hiremainder; __xyhi += (__xylo < hiremainder); \
\
__xymidhi = HIGHWORD(__xymid); \
__xymidlo = __xymid << BITS_IN_HALFULONG; \
\
__xylo += __xymidlo; \
hiremainder = __xyhi + __xymidhi + (__xylo < __xymidlo) \
+ ((((__xhl + __yhl) >> 1) - __xymidhi) & HIGHMASK); \
\
__xylo; \
})
#else
INLINE long
mulll(ulong x, ulong y)
{
const ulong xlo = LOWWORD(x), xhi = HIGHWORD(x);
const ulong ylo = LOWWORD(y), yhi = HIGHWORD(y);
ulong xylo,xymid,xyhi,xymidhi,xymidlo;
ulong xhl,yhl;
xylo = xlo*ylo; xyhi = xhi*yhi;
xhl = xhi+xlo; yhl = yhi+ylo;
xymid = xhl*yhl - (xyhi+xylo);
xymidhi = HIGHWORD(xymid);
xymidlo = xymid << BITS_IN_HALFULONG;
xylo += xymidlo;
hiremainder = xyhi + xymidhi + (xylo < xymidlo)
+ ((((xhl + yhl) >> 1) - xymidhi) & HIGHMASK);
return xylo;
}
INLINE long
addmul(ulong x, ulong y)
{
const ulong xlo = LOWWORD(x), xhi = HIGHWORD(x);
const ulong ylo = LOWWORD(y), yhi = HIGHWORD(y);
ulong xylo,xymid,xyhi,xymidhi,xymidlo;
ulong xhl,yhl;
xylo = xlo*ylo; xyhi = xhi*yhi;
xhl = xhi+xlo; yhl = yhi+ylo;
xymid = xhl*yhl - (xyhi+xylo);
xylo += hiremainder; xyhi += (xylo < hiremainder);
xymidhi = HIGHWORD(xymid);
xymidlo = xymid << BITS_IN_HALFULONG;
xylo += xymidlo;
hiremainder = xyhi + xymidhi + (xylo < xymidlo)
+ ((((xhl + yhl) >> 1) - xymidhi) & HIGHMASK);
return xylo;
}
#endif
#endif
#line 2 "../src/kernel/none/bfffo.h"
/* Copyright (C) 2000 The PARI group.
This file is part of the PARI/GP package.
PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.
Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
#if !defined(INLINE)
extern int bfffo(ulong x);
#else
#if defined(__GNUC__) && !defined(DISABLE_INLINE)
#ifdef LONG_IS_64BIT
# define bfffo(x) \
__extension__ ({ \
static int __bfffo_tabshi[16]={4,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};\
int __value = BITS_IN_LONG - 4; \
ulong __arg1=(x); \
if (__arg1 & ~0xffffffffUL) {__value -= 32; __arg1 >>= 32;}\
if (__arg1 & ~0xffffUL) {__value -= 16; __arg1 >>= 16;} \
if (__arg1 & ~0x00ffUL) {__value -= 8; __arg1 >>= 8;} \
if (__arg1 & ~0x000fUL) {__value -= 4; __arg1 >>= 4;} \
__value + __bfffo_tabshi[__arg1]; \
})
#else
# define bfffo(x) \
__extension__ ({ \
static int __bfffo_tabshi[16]={4,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};\
int __value = BITS_IN_LONG - 4; \
ulong __arg1=(x); \
if (__arg1 & ~0xffffUL) {__value -= 16; __arg1 >>= 16;} \
if (__arg1 & ~0x00ffUL) {__value -= 8; __arg1 >>= 8;} \
if (__arg1 & ~0x000fUL) {__value -= 4; __arg1 >>= 4;} \
__value + __bfffo_tabshi[__arg1]; \
})
#endif
#else
INLINE int
bfffo(ulong x)
{
static int tabshi[16]={4,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
int value = BITS_IN_LONG - 4;
ulong arg1=x;
#ifdef LONG_IS_64BIT
if (arg1 & ~0xffffffffUL) {value -= 32; arg1 >>= 32;}
#endif
if (arg1 & ~0xffffUL) {value -= 16; arg1 >>= 16;}
if (arg1 & ~0x00ffUL) {value -= 8; arg1 >>= 8;}
if (arg1 & ~0x000fUL) {value -= 4; arg1 >>= 4;}
return value + tabshi[arg1];
}
#endif
#endif
#line 2 "../src/kernel/none/divll.h"
/* Copyright (C) 2003 The PARI group.
This file is part of the PARI/GP package.
PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.
Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
/* This file originally adapted from gmp-3.1.1 (from T. Granlund), files
* longlong.h and gmp-impl.h
Copyright (C) 2000 Free Software Foundation, Inc. */
#undef LOCAL_HIREMAINDER
#define LOCAL_HIREMAINDER
extern ulong hiremainder;
#if !defined(INLINE)
extern long divll(ulong x, ulong y);
#else
#define __GLUE(hi, lo) (((hi) << BITS_IN_HALFULONG) | (lo))
#define __SPLIT(a, b, c) b = HIGHWORD(a); c = LOWWORD(a)
#define __LDIV(a, b, q, r) q = a / b; r = a - q*b
extern ulong hiremainder;
/* divide (hiremainder * 2^BITS_IN_LONG + n0) by d; assume hiremainder < d.
* Return quotient, set hiremainder to remainder */
#if defined(__GNUC__) && !defined(DISABLE_INLINE)
#undef LOCAL_HIREMAINDER
#define LOCAL_HIREMAINDER register ulong hiremainder
#define divll(n0, d) \
__extension__ ({ \
ulong __d1, __d0, __q1, __q0, __r1, __r0, __m, __n1, __n0; \
ulong __k, __d; \
\
__n1 = hiremainder; __n0 = n0; __d = d; \
if (__n1 == 0) \
{ /* Only one division needed */ \
__LDIV(__n0, __d, __q1, hiremainder); \
} \
else if (__d < LOWMASK) \
{ /* Two half-word divisions */ \
__n1 = __GLUE(__n1, HIGHWORD(__n0)); \
__LDIV(__n1, __d, __q1, __r1); \
__n1 = __GLUE(__r1, LOWWORD(__n0)); \
__LDIV(__n1, __d, __q0, hiremainder); \
__q1 = __GLUE(__q1, __q0); \
} \
else \
{ /* General case */ \
if (__d & HIGHBIT) \
{ \
__k = 0; __SPLIT(__d, __d1, __d0); \
} \
else \
{ \
__k = bfffo(__d); \
__n1 = (__n1 << __k) | (__n0 >> (BITS_IN_LONG - __k)); \
__n0 <<= __k; \
__d = __d << __k; __SPLIT(__d, __d1, __d0); \
} \
__LDIV(__n1, __d1, __q1, __r1); \
__m = __q1 * __d0; \
__r1 = __GLUE(__r1, HIGHWORD(__n0)); \
if (__r1 < __m) \
{ \
__q1--, __r1 += __d; \
if (__r1 >= __d) /* we didn't get carry when adding to __r1 */ \
if (__r1 < __m) __q1--, __r1 += __d; \
} \
__r1 -= __m; \
__LDIV(__r1, __d1, __q0, __r0); \
__m = __q0 * __d0; \
__r0 = __GLUE(__r0, LOWWORD(__n0)); \
if (__r0 < __m) \
{ \
__q0--, __r0 += __d; \
if (__r0 >= __d) \
if (__r0 < __m) __q0--, __r0 += __d; \
} \
hiremainder = (__r0 - __m) >> __k; \
__q1 = __GLUE(__q1, __q0); \
} \
__q1; \
})
#else /* __GNUC__ */
INLINE long
divll(ulong n0, ulong d)
{
ulong __d1, __d0, __q1, __q0, __r1, __r0, __m, __n1, __n0;
ulong __k, __d;
__n1 = hiremainder; __n0 = n0; __d = d;
if (__n1 == 0)
{ /* Only one division needed */
__LDIV(__n0, __d, __q1, hiremainder);
}
else if (__d < LOWMASK)
{ /* Two half-word divisions */
__n1 = __GLUE(__n1, HIGHWORD(__n0));
__LDIV(__n1, __d, __q1, __r1);
__n1 = __GLUE(__r1, LOWWORD(__n0));
__LDIV(__n1, __d, __q0, hiremainder);
__q1 = __GLUE(__q1, __q0);
}
else
{ /* General case */
if (__d & HIGHBIT)
{
__k = 0; __SPLIT(__d, __d1, __d0);
}
else
{
__k = bfffo(__d);
__n1 = (__n1 << __k) | (__n0 >> (BITS_IN_LONG - __k));
__n0 = __n0 << __k;
__d = __d << __k; __SPLIT(__d, __d1, __d0);
}
__LDIV(__n1, __d1, __q1, __r1);
__m = __q1 * __d0;
__r1 = __GLUE(__r1, HIGHWORD(__n0));
if (__r1 < __m)
{
__q1--, __r1 += __d;
if (__r1 >= __d) /* we didn't get carry when adding to __r1 */
if (__r1 < __m) __q1--, __r1 += __d;
}
__r1 -= __m;
__LDIV(__r1, __d1, __q0, __r0);
__m = __q0 * __d0;
__r0 = __GLUE(__r0, LOWWORD(__n0));
if (__r0 < __m)
{
__q0--, __r0 += __d;
if (__r0 >= __d)
if (__r0 < __m) __q0--, __r0 += __d;
}
hiremainder = (__r0 - __m) >> __k;
__q1 = __GLUE(__q1, __q0);
}
return __q1;
}
#endif /* __GNUC__ */
#endif
#endif
#line 2 "../src/kernel/x86-64/asm0.h"
/* Copyright (C) 2004 The PARI group.
This file is part of the PARI/GP package.
PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.
Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
/*
ASM addll mulll bfffo divll
*/
/* Written by Bill Allombert from the ix86 version by Bruno Haible. Basically
* change insl to insq*/
#ifdef ASMINLINE
#define LOCAL_HIREMAINDER register ulong hiremainder
#define LOCAL_OVERFLOW register ulong overflow
#define addll(a,b) \
__extension__ ({ ulong __value, __arg1 = (a), __arg2 = (b); \
__asm__ ("addq %3,%0 ; adcq %1,%1" \
: "=r" (__value), "=r" (overflow) \
: "0" (__arg1), "g" (__arg2), "1" ((ulong)0) \
: "cc"); \
__value; \
})
#define addllx(a,b) \
__extension__ ({ ulong __value, __arg1 = (a), __arg2 = (b), __temp; \
__asm__ ("subq %5,%2 ; adcq %4,%0 ; adcq %1,%1" \
: "=r" (__value), "=&r" (overflow), "=&r" (__temp) \
: "0" (__arg1), "g" (__arg2), "g" (overflow), "1" ((ulong)0), "2" ((ulong)0) \
: "cc"); \
__value; \
})
#define addllx8(a,b,c,overflow) \
do { long *__arg1 = a, *__arg2 = b, *__out = c; \
ulong __temp; \
__asm__ ("subq %5, %0 \n\t" \
"movq (%2), %0 ; adcq (%3),%0; movq %0, (%4) \n\t" \
"movq -8(%2), %0 ; adcq -8(%3),%0; movq %0, -8(%4) \n\t" \
"movq -16(%2), %0 ; adcq -16(%3),%0; movq %0, -16(%4) \n\t" \
"movq -24(%2), %0 ; adcq -24(%3),%0; movq %0, -24(%4) \n\t" \
"movq -32(%2), %0 ; adcq -32(%3),%0; movq %0, -32(%4) \n\t" \
"movq -40(%2), %0 ; adcq -40(%3),%0; movq %0, -40(%4) \n\t" \
"movq -48(%2), %0 ; adcq -48(%3),%0; movq %0, -48(%4) \n\t" \
"movq -56(%2), %0 ; adcq -56(%3),%0; movq %0, -56(%4) \n\t" \
"adcq %1, %1" \
: "=&r" (__temp), "=&r" (overflow) \
: "r" (__arg1), "r" (__arg2), "r" (__out), "g" (overflow), "0" ((ulong)0), "1" ((ulong)0) \
: "cc"); \
} while(0)
#define subll(a,b) \
__extension__ ({ ulong __value, __arg1 = (a), __arg2 = (b); \
__asm__ ("subq %3,%0 ; adcq %1,%1" \
: "=r" (__value), "=r" (overflow) \
: "0" (__arg1), "g" (__arg2), "1" ((ulong)0) \
: "cc"); \
__value; \
})
#define subllx(a,b) \
__extension__ ({ ulong __value, __arg1 = (a), __arg2 = (b), __temp; \
__asm__ ("subq %5,%2 ; sbbq %4,%0 ; adcq %1,%1" \
: "=r" (__value), "=&r" (overflow), "=&r" (__temp) \
: "0" (__arg1), "g" (__arg2), "g" (overflow), "1" ((ulong)0), "2" ((ulong)0) \
: "cc"); \
__value; \
})
#define subllx8(a,b,c,overflow) \
do { long *__arg1 = a, *__arg2 = b, *__out = c; \
ulong __temp; \
__asm__ ("subq %5, %0 \n\t" \
"movq (%2), %0 ; sbbq (%3),%0; movq %0, (%4) \n\t" \
"movq -8(%2), %0 ; sbbq -8(%3),%0; movq %0, -8(%4) \n\t" \
"movq -16(%2), %0 ; sbbq -16(%3),%0; movq %0, -16(%4) \n\t" \
"movq -24(%2), %0 ; sbbq -24(%3),%0; movq %0, -24(%4) \n\t" \
"movq -32(%2), %0 ; sbbq -32(%3),%0; movq %0, -32(%4) \n\t" \
"movq -40(%2), %0 ; sbbq -40(%3),%0; movq %0, -40(%4) \n\t" \
"movq -48(%2), %0 ; sbbq -48(%3),%0; movq %0, -48(%4) \n\t" \
"movq -56(%2), %0 ; sbbq -56(%3),%0; movq %0, -56(%4) \n\t" \
"adcq %1, %1" \
: "=&r" (__temp), "=&r" (overflow) \
: "r" (__arg1), "r" (__arg2), "r" (__out), "g" (overflow), "0" ((ulong)0), "1" ((ulong)0) \
: "cc"); \
} while(0)
#define mulll(a,b) \
__extension__ ({ ulong __valuelo, __arg1 = (a), __arg2 = (b); \
__asm__ ("mulq %3" \
: "=a" /* %eax */ (__valuelo), "=d" /* %edx */ (hiremainder) \
: "0" (__arg1), "rm" (__arg2)); \
__valuelo; \
})
#define addmul(a,b) \
__extension__ ({ ulong __valuelo, __arg1 = (a), __arg2 = (b), __temp; \
__asm__ ("mulq %4 ; addq %5,%0 ; adcq %6,%1" \
: "=a" /* %eax */ (__valuelo), "=&d" /* %edx */ (hiremainder), "=r" (__temp) \
: "0" (__arg1), "rm" (__arg2), "g" (hiremainder), "2" ((ulong)0)); \
__valuelo; \
})
#define divll(a,b) \
__extension__ ({ ulong __value, __arg1 = (a), __arg2 = (b); \
__asm__ ("divq %4" \
: "=a" /* %eax */ (__value), "=d" /* %edx */ (hiremainder) \
: "0" /* %eax */ (__arg1), "1" /* %edx */ (hiremainder), "mr" (__arg2)); \
__value; \
})
#define bfffo(x) \
__extension__ ({ ulong __arg = (x); \
long leading_one_position; \
__asm__ ("bsrq %1,%0" : "=r" (leading_one_position) : "rm" (__arg)); \
63 - leading_one_position; \
})
#endif
#line 2 "../src/kernel/none/divll_pre.h"
/* Copyright (C) 2014 The PARI group.
This file is part of the PARI/GP package.
PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.
Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
#undef LOCAL_HIREMAINDER
extern ulong hiremainder;
#if defined(INLINE) && defined(__GNUC__) && !defined(DISABLE_INLINE)
#define LOCAL_HIREMAINDER register ulong hiremainder
#else
#define LOCAL_HIREMAINDER
#endif
#if defined(INLINE) && defined(__GNUC__) && !defined(DISABLE_INLINE)
INLINE ulong /* precompute inverse of n */
get_Fl_red(ulong n)
{
LOCAL_HIREMAINDER;
n <<= bfffo(n);
hiremainder = ~n;
return divll(~0UL, n);
}
#else
INLINE ulong /* precompute inverse of n */
get_Fl_red(ulong n)
{
ulong q, oldhi = hiremainder;
n <<= bfffo(n);
hiremainder = ~n;
q = divll(~0UL, n);
hiremainder = oldhi;
return q;
}
#endif
INLINE ulong /* requires u1 <= n, n normalised */
divll_pre_normalized(ulong u1, ulong u0, ulong n, ulong ninv, ulong *pt_r)
{
ulong q0, q1, r;
LOCAL_HIREMAINDER;
LOCAL_OVERFLOW;
q0 = mulll(ninv, u1); q1 = hiremainder;
q0 = addll(q0, u0);
q1 = addllx(q1+1, u1);
r = u0 - q1 * n;
if (r > q0)
{
r += n; q1--;
}
if (r >= n)
{
r -= n; q1++;
}
*pt_r = r; return q1;
}
INLINE ulong /* requires u1 <= n, n normalised */
remll_pre_normalized(ulong u1, ulong u0, ulong n, ulong ninv)
{
ulong q0, q1, r;
LOCAL_HIREMAINDER;
LOCAL_OVERFLOW;
q0 = mulll(ninv, u1); q1 = hiremainder;
q0 = addll(q0, u0);
q1 = addllx(q1, u1);
r = u0 - (q1 + 1) * n;
if (r >= q0)
r += n;
return r < n ? r : r - n;
}
INLINE ulong /* reduce <a_hi, a_lo> mod n */
remll_pre(ulong a_hi, ulong a_lo, ulong n, ulong ninv)
{
int norm = bfffo(n);
int bits = BITS_IN_LONG - norm;
ulong sn = n << norm;
if (a_hi >= n) /* reduce a_hi first */
{
const ulong u1 = norm ? a_hi >> bits : 0;
const ulong u0 = a_hi << norm;
a_hi = remll_pre_normalized(u1, u0, sn, ninv) >> norm;
}
/* now reduce <a_hi, a_lo> */
{
const ulong u1 = ((a_hi << norm) | (norm ? a_lo >> bits: 0));
const ulong u0 = a_lo << norm;
return remll_pre_normalized(u1, u0, sn, ninv) >> norm;
}
}
#if !defined(INLINE)
extern ulong divll_pre(ulong a_lo, ulong n, ulong ninv);
#else
#if defined(__GNUC__) && !defined(DISABLE_INLINE)
#define divll_pre(a, n, ninv) \
__extension__ ({ \
ulong __a = (a); \
ulong __n = (n); \
int norm = bfffo(__n); \
int bits = BITS_IN_LONG - norm; \
ulong r, sn = __n << norm; \
const ulong u1 = ((hiremainder << norm) | (norm ? __a >> bits: 0)); \
const ulong u0 = __a << norm; \
const ulong q = divll_pre_normalized(u1, u0, sn, ninv, &r); \
hiremainder = r>>norm; q; \
})
#else /* __GNUC__ */
INLINE ulong
divll_pre(ulong a_lo, ulong n, ulong ninv)
{
int norm = bfffo(n);
int bits = BITS_IN_LONG - norm;
ulong r, sn = n << norm;
const ulong u1 = ((hiremainder << norm) | (norm ? a_lo >> bits: 0));
const ulong u0 = a_lo << norm;
const ulong q = divll_pre_normalized(u1, u0, sn, ninv, &r);
hiremainder = r>>norm; return q;
}
#endif /* __GNUC__ */
#endif
#ifdef LONG_IS_64BIT
#define __AGM_ATAN_LIMIT 60
#define __DIVRR_GMP_LIMIT 4
#define __EXPNEWTON_LIMIT 66
#define __F2x_MUL_KARATSUBA_LIMIT 15
#define __Flx_BARRETT_HALFMULII_LIMIT 21
#define __Flx_BARRETT_KARATSUBA_LIMIT 1172
#define __Flx_BARRETT_MULII2_LIMIT 16
#define __Flx_BARRETT_MULII_LIMIT 448
#define __Flx_BARRETT_QUARTMULII_LIMIT 23
#define __Flx_DIVREM_BARRETT_LIMIT 768
#define __Flx_EXTGCD_LIMIT 241
#define __Flx_GCD_LIMIT 1017
#define __Flx_HALFGCD_HALFMULII_LIMIT 48
#define __Flx_HALFGCD_KARATSUBA_LIMIT 77
#define __Flx_HALFGCD_MULII2_LIMIT 25
#define __Flx_HALFGCD_MULII_LIMIT 71
#define __Flx_HALFGCD_QUARTMULII_LIMIT 52
#define __Flx_INVBARRETT_HALFMULII_LIMIT 231
#define __Flx_INVBARRETT_KARATSUBA_LIMIT 5067
#define __Flx_INVBARRETT_MULII2_LIMIT 26
#define __Flx_INVBARRETT_MULII_LIMIT 1154
#define __Flx_INVBARRETT_QUARTMULII_LIMIT 139
#define __Flx_MUL_HALFMULII_LIMIT 5
#define __Flx_MUL_KARATSUBA_LIMIT 142
#define __Flx_MUL_MULII2_LIMIT 5
#define __Flx_MUL_MULII_LIMIT 7
#define __Flx_MUL_QUARTMULII_LIMIT 5
#define __Flx_REM_BARRETT_LIMIT 1266
#define __Flx_SQR_HALFSQRI_LIMIT 3
#define __Flx_SQR_KARATSUBA_LIMIT 316
#define __Flx_SQR_QUARTSQRI_LIMIT 3
#define __Flx_SQR_SQRI2_LIMIT 7
#define __Flx_SQR_SQRI_LIMIT 5
#define __FlxqX_BARRETT_LIMIT 17
#define __FlxqX_DIVREM_BARRETT_LIMIT 46
#define __FlxqX_EXTGCD_LIMIT 44
#define __FlxqX_GCD_LIMIT 470
#define __FlxqX_HALFGCD_LIMIT 60
#define __FlxqX_INVBARRETT_LIMIT 22
#define __FlxqX_REM_BARRETT_LIMIT 48
#define __FpXQX_BARRETT_LIMIT 12
#define __FpXQX_DIVREM_BARRETT_LIMIT 30
#define __FpXQX_EXTGCD_LIMIT 28
#define __FpXQX_GCD_LIMIT 191
#define __FpXQX_HALFGCD_LIMIT 35
#define __FpXQX_INVBARRETT_LIMIT 40
#define __FpXQX_REM_BARRETT_LIMIT 30
#define __FpX_BARRETT_LIMIT 38
#define __FpX_DIVREM_BARRETT_LIMIT 113
#define __FpX_EXTGCD_LIMIT 87
#define __FpX_GCD_LIMIT 406
#define __FpX_HALFGCD_LIMIT 58
#define __FpX_INVBARRETT_LIMIT 111
#define __FpX_REM_BARRETT_LIMIT 111
#define __Fp_POW_BARRETT_LIMIT 127
#define __Fp_POW_REDC_LIMIT 17
#define __INVMOD_GMP_LIMIT 3
#define __INVNEWTON_LIMIT 75
#define __LOGAGMCX_LIMIT 22
#define __LOGAGM_LIMIT 6
#define __MULII_FFT_LIMIT -1
#define __MULII_KARATSUBA_LIMIT -1
#define __MULRR_MULII_LIMIT 74
#define __RgX_MUL_LIMIT 9
#define __RgX_SQR_LIMIT 38
#define __SQRI_FFT_LIMIT -1
#define __SQRI_KARATSUBA_LIMIT -1
#else
#define __AGM_ATAN_LIMIT 89
#define __DIVRR_GMP_LIMIT 4
#define __EXPNEWTON_LIMIT 197
#define __F2x_MUL_KARATSUBA_LIMIT 23
#define __Flx_BARRETT_HALFMULII_LIMIT 23
#define __Flx_BARRETT_KARATSUBA_LIMIT 905
#define __Flx_BARRETT_MULII2_LIMIT 647
#define __Flx_BARRETT_MULII_LIMIT 433
#define __Flx_BARRETT_QUARTMULII_LIMIT 20
#define __Flx_DIVREM_BARRETT_LIMIT 1289
#define __Flx_EXTGCD_LIMIT 632
#define __Flx_GCD_LIMIT 2514
#define __Flx_HALFGCD_HALFMULII_LIMIT 78
#define __Flx_HALFGCD_KARATSUBA_LIMIT 139
#define __Flx_HALFGCD_MULII2_LIMIT 537
#define __Flx_HALFGCD_MULII_LIMIT 91
#define __Flx_HALFGCD_QUARTMULII_LIMIT 37
#define __Flx_INVBARRETT_HALFMULII_LIMIT 240
#define __Flx_INVBARRETT_KARATSUBA_LIMIT 3600
#define __Flx_INVBARRETT_MULII2_LIMIT 1815
#define __Flx_INVBARRETT_MULII_LIMIT 1293
#define __Flx_INVBARRETT_QUARTMULII_LIMIT 73
#define __Flx_MUL_HALFMULII_LIMIT 7
#define __Flx_MUL_KARATSUBA_LIMIT 90
#define __Flx_MUL_MULII2_LIMIT 152
#define __Flx_MUL_MULII_LIMIT 8
#define __Flx_MUL_QUARTMULII_LIMIT 7
#define __Flx_REM_BARRETT_LIMIT 689
#define __Flx_SQR_HALFSQRI_LIMIT 4
#define __Flx_SQR_KARATSUBA_LIMIT 159
#define __Flx_SQR_QUARTSQRI_LIMIT 4
#define __Flx_SQR_SQRI2_LIMIT 470
#define __Flx_SQR_SQRI_LIMIT 5
#define __FlxqX_BARRETT_LIMIT 17
#define __FlxqX_DIVREM_BARRETT_LIMIT 46
#define __FlxqX_EXTGCD_LIMIT 44
#define __FlxqX_GCD_LIMIT 1289
#define __FlxqX_HALFGCD_LIMIT 89
#define __FlxqX_INVBARRETT_LIMIT 22
#define __FlxqX_REM_BARRETT_LIMIT 48
#define __FpXQX_BARRETT_LIMIT 12
#define __FpXQX_DIVREM_BARRETT_LIMIT 30
#define __FpXQX_EXTGCD_LIMIT 28
#define __FpXQX_GCD_LIMIT 182
#define __FpXQX_HALFGCD_LIMIT 35
#define __FpXQX_INVBARRETT_LIMIT 40
#define __FpXQX_REM_BARRETT_LIMIT 30
#define __FpX_BARRETT_LIMIT 44
#define __FpX_DIVREM_BARRETT_LIMIT 116
#define __FpX_EXTGCD_LIMIT 81
#define __FpX_GCD_LIMIT 414
#define __FpX_HALFGCD_LIMIT 55
#define __FpX_INVBARRETT_LIMIT 121
#define __FpX_REM_BARRETT_LIMIT 127
#define __Fp_POW_BARRETT_LIMIT 11
#define __Fp_POW_REDC_LIMIT 3
#define __INVMOD_GMP_LIMIT 3
#define __INVNEWTON_LIMIT 93
#define __LOGAGMCX_LIMIT 32
#define __LOGAGM_LIMIT 45
#define __MULII_FFT_LIMIT -1
#define __MULII_KARATSUBA_LIMIT -1
#define __MULRR_MULII_LIMIT 8
#define __RgX_MUL_LIMIT 7
#define __RgX_SQR_LIMIT 34
#define __SQRI_FFT_LIMIT -1
#define __SQRI_KARATSUBA_LIMIT -1
#endif
#line 2 "../src/kernel/gmp/int.h"
/* Copyright (C) 2000 The PARI group.
This file is part of the PARI/GP package.
PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.
Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
#define int_MSW(x) ((x)+lgefint((x))-1)
/*x being a t_INT, return a pointer to the most significant word of x.*/
#define int_LSW(x) ((x)+2)
/*x being a t_INT, return a pointer to the least significant word of x.*/
#define int_precW(x) ((x)-1)
/*x pointing to a mantissa word, return the previous (less significant)
* mantissa word.*/
#define int_nextW(x) ((x)+1)
/*x pointing to a mantissa word, return the next (more significant) mantissa
* word.*/
#define int_W(x,l) ((x)+2+(l))
/*x being a t_INT, return a pointer to the l-th least significant word of x.*/
#define int_W_lg(x,l,lx) ((x)+2+(l))
/*x being a t_INT, return a pointer to the l-th least significant word of x,
* assuming lgefint(x) = lx.*/
#define PARI_KERNEL_GMP
/*This macro should not be used in libpari itself.*/
#line 2 "../src/kernel/none/level1.h"
/* Copyright (C) 2000 The PARI group.
This file is part of the PARI/GP package.
PARI/GP is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY WHATSOEVER.
Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
/* This file defines "level 1" kernel functions.
* These functions can be inline; they are also defined externally in
* mpinl.c, which includes this file and never needs to be changed */
INLINE long
evallg(long x)
{
if (x & ~LGBITS) pari_err_OVERFLOW("lg()");
return _evallg(x);
}
INLINE long
evalvalp(long x)
{
long v = _evalvalp(x);
if (v & ~VALPBITS) pari_err_OVERFLOW("valp()");
return v;
}
INLINE long
evalexpo(long x)
{
long v = _evalexpo(x);
if (v & ~EXPOBITS) pari_err_OVERFLOW("expo()");
return v;
}
INLINE long
evalprecp(long x)
{
long v = _evalprecp(x);
if (x & ~((1UL<<(BITS_IN_LONG-VALPnumBITS))-1)) pari_err_OVERFLOW("precp()");
return v;
}
INLINE int
varncmp(long x, long y)
{
if (varpriority[x] < varpriority[y]) return 1;
if (varpriority[x] > varpriority[y]) return -1;
return 0;
}
INLINE long
varnmin(long x, long y)
{ return (varpriority[x] <= varpriority[y])? x: y; }
INLINE long
varnmax(long x, long y)
{ return (varpriority[x] >= varpriority[y])? x: y; }
/* Inhibit some area gerepile-wise: declare it to be a non recursive
* type, of length l. Thus gerepile won't inspect the zone, just copy it.
* For the following situation:
* z = cgetg(t,a); av = avma; garbage(); ltop = avma;
* for (i=1; i<HUGE; i++) gel(z,i) = blah();
* stackdummy(av,ltop);
* loses (av-ltop) words but save a costly gerepile. */
INLINE void
stackdummy(pari_sp av, pari_sp ltop) {
long l = ((GEN)av) - ((GEN)ltop);
if (l > 0) {
GEN z = (GEN)ltop;
z[0] = evaltyp(t_VECSMALL) | evallg(l);
#ifdef DEBUG
{ long i; for (i = 1; i < l; i++) z[i] = 0; }
#endif
}
}
INLINE void
fixlg(GEN x, long ly) {
long lx = lg(x), l = lx - ly;
if (l > 0)
{ /* stackdummy(x+lx, x+ly) */
GEN z = x + ly;
z[0] = evaltyp(t_VECSMALL) | evallg(l);
setlg(x, ly);
#ifdef DEBUG
{ long i; for (i = 1; i < l; i++) z[i] = 0; }
#endif
}
}
/* update lg(z) before affrr(y, z) [ to cater for precision loss ]*/
INLINE void
affrr_fixlg(GEN y, GEN z) { fixlg(z, lg(y)); affrr(y, z); }
/*******************************************************************/
/* */
/* ALLOCATE ON STACK */
/* */
/*******************************************************************/
INLINE GEN
new_chunk(size_t x) /* x is a number of longs */
{
GEN z = ((GEN) avma) - x;
CHECK_CTRLC
if (x > (avma-pari_mainstack->bot) / sizeof(long))
new_chunk_resize(x);
avma = (pari_sp)z;
#ifdef MEMSTEP
if (DEBUGMEM && pari_mainstack->memused != DISABLE_MEMUSED) {
long d = (long)pari_mainstack->memused - (long)z;
if (labs(d) > 4*MEMSTEP)
{
pari_mainstack->memused = (pari_sp)z;
err_printf("...%4.0lf Mbytes used\n",
(pari_mainstack->top-pari_mainstack->memused)/1048576.);
}
}
#endif
return z;
}
INLINE char *
stack_malloc(size_t N)
{
long n = nchar2nlong(N);
return (char*)new_chunk(n);
}
INLINE char *
stack_calloc(size_t N)
{
char *p = stack_malloc(N);
memset(p, 0, N); return p;
}
/* cgetg(lg(x), typ(x)), set *lx. Implicit unsetisclone() */
INLINE GEN
cgetg_copy(GEN x, long *plx) {
GEN y;
*plx = lg(x); y = new_chunk((size_t)*plx);
y[0] = x[0] & (TYPBITS|LGBITS); return y;
}
INLINE GEN
cgetg_block(long x, long y)
{
GEN z = newblock((size_t)x);
z[0] = CLONEBIT | evaltyp(y) | evallg(x);
return z;
}
INLINE GEN
cgetg(long x, long y)
{
GEN z = new_chunk((size_t)x);
z[0] = evaltyp(y) | evallg(x);
return z;
}
INLINE GEN
cgeti(long x)
{
GEN z = new_chunk((size_t)x);
z[0] = evaltyp(t_INT) | evallg(x);
return z;
}
INLINE GEN
cgetipos(long x)
{
GEN z = cgeti(x);
z[1] = evalsigne(1) | evallgefint(x);
return z;
}
INLINE GEN
cgetineg(long x)
{
GEN z = cgeti(x);
z[1] = evalsigne(-1) | evallgefint(x);
return z;
}
INLINE GEN
cgetr_block(long x)
{
GEN z = newblock((size_t)x);
z[0] = CLONEBIT | evaltyp(t_REAL) | evallg(x);
return z;
}
INLINE GEN
cgetr(long x)
{
GEN z = new_chunk((size_t)x);
z[0] = evaltyp(t_REAL) | evallg(x);
return z;
}
/*******************************************************************/
/* */
/* COPY, NEGATION, ABSOLUTE VALUE */
/* */
/*******************************************************************/
/* cannot do memcpy because sometimes x and y overlap */
INLINE GEN
leafcopy(GEN x)
{
register long lx = lg(x);
GEN y = new_chunk(lx); /* can't use cgetg_copy, in case x,y overlap */
while (--lx > 0) y[lx] = x[lx];
y[0] = x[0] & (TYPBITS|LGBITS); return y;
}
INLINE GEN
icopy(GEN x)
{
long i = lgefint(x), lx = i;
GEN y = new_chunk(lx); /* can't use cgeti, in case x,y overlap */
while (--i > 0) y[i] = x[i];
y[0] = evaltyp(t_INT) | evallg(lx);
return y;
}
INLINE GEN
icopyspec(GEN x, long nx)
{
long i = nx+2, lx = i;
GEN y = new_chunk(lx); /* can't use cgeti, in case x,y overlap */
x -= 2; while (--i >= 2) y[i] = x[i];
y[1] = evalsigne(1) | evallgefint(lx);
y[0] = evaltyp(t_INT) | evallg(lx);
return y;
}
INLINE GEN rcopy(GEN x) { return leafcopy(x); }
INLINE GEN mpcopy(GEN x) { return leafcopy(x); }
INLINE GEN
mpabs(GEN x) { GEN y = leafcopy(x); setabssign(y); return y; }
INLINE GEN
mpabs_shallow(GEN x) { return signe(x) < 0? mpabs(x): x; }
INLINE GEN absi(GEN x) { return mpabs(x); }
INLINE GEN absi_shallow(GEN x) { return signe(x) < 0? negi(x): x; }
INLINE GEN absr(GEN x) { return mpabs(x); }
INLINE GEN
mpneg(GEN x) { GEN y = leafcopy(x); togglesign(y); return y; }
INLINE GEN negi(GEN x) { return mpneg(x); }
INLINE GEN negr(GEN x) { return mpneg(x); }
/* negate in place */
INLINE void
togglesign(GEN x) { if (x[1] & SIGNBITS) { x[1] ^= HIGHBIT; } }
INLINE void
setabssign(GEN x) { x[1] &= ~HIGHBIT; }
/* negate in place, except universal constants */
INLINE void
togglesign_safe(GEN *px)
{
switch(*px - gen_1) /* gen_1, gen_2, gen_m1, gen_m2 */
{
case 0: *px = gen_m1; break;
case 3: *px = gen_m2; break;
case 6: *px = gen_1; break;
case 9: *px = gen_2; break;
default: togglesign(*px);
}
}
/* setsigne(y, signe(x)) */
INLINE void
affectsign(GEN x, GEN y)
{
y[1] = (x[1] & SIGNBITS) | (y[1] & ~SIGNBITS);
}
/* copies sign in place, except for universal constants */
INLINE void
affectsign_safe(GEN x, GEN *py)
{
if (((*py)[1] ^ x[1]) & HIGHBIT) togglesign_safe(py);
}
/*******************************************************************/
/* */
/* GEN -> LONG, LONG -> GEN */
/* */
/*******************************************************************/
/* assume x != 0, return -x as a t_INT */
INLINE GEN
utoineg(ulong x) { GEN y = cgetineg(3); y[2] = x; return y; }
/* assume x != 0, return utoi(x) */
INLINE GEN
utoipos(ulong x) { GEN y = cgetipos(3); y[2] = x; return y; }
INLINE GEN
utoi(ulong x) { return x? utoipos(x): gen_0; }
INLINE GEN
stoi(long x)
{
if (!x) return gen_0;
return x > 0? utoipos((ulong)x): utoineg((ulong)-x);
}
/* x 2^BIL + y */
INLINE GEN
uutoi(ulong x, ulong y)
{
GEN z;
if (!x) return utoi(y);
z = cgetipos(4);
*int_W_lg(z, 1, 4) = x;
*int_W_lg(z, 0, 4) = y; return z;
}
/* - (x 2^BIL + y) */
INLINE GEN
uutoineg(ulong x, ulong y)
{
GEN z;
if (!x) return y? utoineg(y): gen_0;
z = cgetineg(4);
*int_W_lg(z, 1, 4) = x;
*int_W_lg(z, 0, 4) = y; return z;
}
INLINE long
itos(GEN x)
{
long s = signe(x);
long u;
if (!s) return 0;
u = x[2];
if (lgefint(x) > 3 || u < 0)
pari_err_OVERFLOW("t_INT-->long assignment");
return (s>0) ? u : -u;
}
/* as itos, but return 0 if too large. Cf is_bigint */
INLINE long
itos_or_0(GEN x) {
long n;
if (lgefint(x) != 3 || (n = x[2]) & HIGHBIT) return 0;
return signe(x) > 0? n: -n;
}
INLINE ulong
itou(GEN x)
{
switch(lgefint(x)) {
case 2: return 0;
case 3: return x[2];
default:
pari_err_OVERFLOW("t_INT-->ulong assignment");
return 0; /* not reached */
}
}
/* as itou, but return 0 if too large. Cf is_bigint */
INLINE ulong
itou_or_0(GEN x) {
if (lgefint(x) != 3) return 0;
return (ulong)x[2];
}
INLINE GEN
real_0_bit(long bitprec) { GEN x=cgetr(2); x[1]=evalexpo(bitprec); return x; }
INLINE GEN
real_0(long prec) { return real_0_bit(-prec2nbits(prec)); }
INLINE GEN
real_1_bit(long bit) { return real_1(nbits2prec(bit)); }
INLINE GEN
real_1(long prec) {
GEN x = cgetr(prec);
long i;
x[1] = evalsigne(1) | _evalexpo(0);
x[2] = (long)HIGHBIT; for (i=3; i<prec; i++) x[i] = 0;
return x;
}
INLINE GEN
real_m1(long prec) {
GEN x = cgetr(prec);
long i;
x[1] = evalsigne(-1) | _evalexpo(0);
x[2] = (long)HIGHBIT; for (i=3; i<prec; i++) x[i] = 0;
return x;
}
/* 2.^n */
INLINE GEN
real2n(long n, long prec) { GEN z = real_1(prec); setexpo(z, n); return z; }
INLINE GEN
real_m2n(long n, long prec) { GEN z = real_m1(prec); setexpo(z, n); return z; }
INLINE GEN
stor(long s, long prec) { GEN z = cgetr(prec); affsr(s,z); return z; }
INLINE GEN
utor(ulong s, long prec){ GEN z = cgetr(prec); affur(s,z); return z; }
INLINE GEN
itor(GEN x, long prec) { GEN z = cgetr(prec); affir(x,z); return z; }
INLINE GEN
rtor(GEN x, long prec) { GEN z = cgetr(prec); affrr(x,z); return z; }
INLINE ulong int_bit(GEN x, long n)
{
long r, q = dvmdsBIL(n, &r);
return q < lgefint(x)-2?((ulong)*int_W(x,q) >> r) & 1UL:0;
}
/*******************************************************************/
/* */
/* COMPARISON */
/* */
/*******************************************************************/
INLINE int
cmpir(GEN x, GEN y)
{
pari_sp av;
GEN z;
if (!signe(x)) return -signe(y);
if (!signe(y))
{
if (expo(y) >= expi(x)) return 0;
return signe(x);
}
av=avma; z = itor(x, realprec(y)); avma=av;
return cmprr(z,y); /* cmprr does no memory adjustment */
}
INLINE int
cmpri(GEN x, GEN y) { return -cmpir(y,x); }
INLINE int
cmpsr(long x, GEN y)
{
pari_sp av;
GEN z;
if (!x) return -signe(y);
av=avma; z = stor(x, LOWDEFAULTPREC); avma=av;
return cmprr(z,y);
}
INLINE int
cmprs(GEN x, long y) { return -cmpsr(y,x); }
/* compare x and |y| */
INLINE int
abscmpui(ulong x, GEN y)
{
long l = lgefint(y);
ulong p;
if (!x) return (l > 2)? -1: 0;
if (l == 2) return 1;
if (l > 3) return -1;
p = y[2]; if (p == x) return 0;
return p < x ? 1 : -1;
}
INLINE int
abscmpiu(GEN x, ulong y) { return -abscmpui(y,x); }
INLINE int
cmpsi(long x, GEN y)
{
ulong p;
if (!x) return -signe(y);
if (x > 0)
{
if (signe(y)<=0) return 1;
if (lgefint(y)>3) return -1;
p = y[2]; if (p == (ulong)x) return 0;
return p < (ulong)x ? 1 : -1;
}
if (signe(y)>=0) return -1;
if (lgefint(y)>3) return 1;
p = y[2]; if (p == (ulong)-x) return 0;
return p < (ulong)(-x) ? -1 : 1;
}
INLINE int
cmpis(GEN x, long y) { return -cmpsi(y,x); }
INLINE int
mpcmp(GEN x, GEN y)
{
if (typ(x)==t_INT)
return (typ(y)==t_INT) ? cmpii(x,y) : cmpir(x,y);
return (typ(y)==t_INT) ? -cmpir(y,x) : cmprr(x,y);
}
/* x == y ? */
INLINE int
equalsi(long x, GEN y)
{
if (!x) return !signe(y);
if (x > 0)
{
if (signe(y) <= 0 || lgefint(y) != 3) return 0;
return ((ulong)y[2] == (ulong)x);
}
if (signe(y) >= 0 || lgefint(y) != 3) return 0;
return ((ulong)y[2] == (ulong)-x);
}
/* x == |y| ? */
INLINE int
absequalui(ulong x, GEN y)
{
if (!x) return !signe(y);
return (lgefint(y) == 3 && (ulong)y[2] == x);
}
INLINE int
absequaliu(GEN x, ulong y) { return absequalui(y,x); }
INLINE int
equalis(GEN x, long y) { return equalsi(y,x); }
/* assume x != 0, is |x| == 2^n ? */
INLINE int
absrnz_equal2n(GEN x) {
if ((ulong)x[2]==HIGHBIT)
{
long i, lx = lg(x);
for (i = 3; i < lx; i++)
if (x[i]) return 0;
return 1;
}
return 0;
}
/* assume x != 0, is |x| == 1 ? */
INLINE int
absrnz_equal1(GEN x) { return !expo(x) && absrnz_equal2n(x); }
INLINE long
maxss(long x, long y) { return x>y?x:y; }
INLINE long
minss(long x, long y) { return x<y?x:y; }
INLINE long
minuu(ulong x, ulong y) { return x<y?x:y; }
INLINE long
maxuu(ulong x, ulong y) { return x>y?x:y; }
INLINE double
maxdd(double x, double y) { return x>y?x:y; }
INLINE double
mindd(double x, double y) { return x<y?x:y; }
/*******************************************************************/
/* */
/* ADD / SUB */
/* */
/*******************************************************************/
INLINE GEN
subuu(ulong x, ulong y)
{
ulong z;
LOCAL_OVERFLOW;
z = subll(x, y);
return overflow? utoineg(-z): utoi(z);
}
INLINE GEN
adduu(ulong x, ulong y) { ulong t = x+y; return uutoi((t < x), t); }
INLINE GEN
addss(long x, long y)
{
if (!x) return stoi(y);
if (!y) return stoi(x);
if (x > 0) return y > 0? adduu(x,y): subuu(x, -y);
if (y > 0) return subuu(y, -x);
else { /* - adduu(-x, -y) */
ulong t = (-x)+(-y); return uutoineg((t < (ulong)(-x)), t);
}
}
INLINE GEN subss(long x, long y) { return addss(-y,x); }
INLINE GEN
subii(GEN x, GEN y)
{
if (x==y) return gen_0; /* frequent with x = y = gen_0 */
return addii_sign(x, signe(x), y, -signe(y));
}
INLINE GEN
addii(GEN x, GEN y) { return addii_sign(x, signe(x), y, signe(y)); }
INLINE GEN
addrr(GEN x, GEN y) { return addrr_sign(x, signe(x), y, signe(y)); }
INLINE GEN
subrr(GEN x, GEN y) { return addrr_sign(x, signe(x), y, -signe(y)); }
INLINE GEN
addir(GEN x, GEN y) { return addir_sign(x, signe(x), y, signe(y)); }
INLINE GEN
subir(GEN x, GEN y) { return addir_sign(x, signe(x), y, -signe(y)); }
INLINE GEN
subri(GEN x, GEN y) { return addir_sign(y, -signe(y), x, signe(x)); }
INLINE GEN
addsi(long x, GEN y) { return addsi_sign(x, y, signe(y)); }
INLINE GEN
addui(ulong x, GEN y) { return addui_sign(x, y, signe(y)); }
INLINE GEN
subsi(long x, GEN y) { return addsi_sign(x, y, -signe(y)); }
INLINE GEN
subui(ulong x, GEN y) { return addui_sign(x, y, -signe(y)); }
/*******************************************************************/
/* */
/* MOD, REM, DIV */
/* */
/*******************************************************************/
INLINE ulong mod2BIL(GEN x) { return *int_LSW(x); }
INLINE long mod64(GEN x) { return mod2BIL(x) & 63; }
INLINE long mod32(GEN x) { return mod2BIL(x) & 31; }
INLINE long mod16(GEN x) { return mod2BIL(x) & 15; }
INLINE long mod8(GEN x) { return mod2BIL(x) & 7; }
INLINE long mod4(GEN x) { return mod2BIL(x) & 3; }
INLINE long mod2(GEN x) { return mod2BIL(x) & 1; }
INLINE int
mpodd(GEN x) { return signe(x) && mod2(x); }
/* x mod 2^n, n < BITS_IN_LONG */
INLINE ulong
umodi2n(GEN x, long n)
{
long s = signe(x);
const ulong _2n = 1UL << n;
ulong m;
if (!s) return 0;
m = *int_LSW(x) & (_2n - 1);
if (s < 0 && m) m = _2n - m;
return m;
}
INLINE ulong Mod64(GEN x){ return umodi2n(x,6); }
INLINE ulong Mod32(GEN x){ return umodi2n(x,5); }
INLINE ulong Mod16(GEN x){ return umodi2n(x,4); }
INLINE ulong Mod8(GEN x) { return umodi2n(x,3); }
INLINE ulong Mod4(GEN x) { return umodi2n(x,2); }
INLINE ulong Mod2(GEN x) { return umodi2n(x,1); }
INLINE GEN
truedivii(GEN a,GEN b) { return truedvmdii(a,b,NULL); }
INLINE GEN
truedivis(GEN a, long b) { return truedvmdis(a,b,NULL); }
INLINE GEN
truedivsi(long a, GEN b) { return truedvmdsi(a,b,NULL); }
INLINE GEN
divii(GEN a, GEN b) { return dvmdii(a,b,NULL); }
INLINE GEN
remii(GEN a, GEN b) { return dvmdii(a,b,ONLY_REM); }
INLINE GEN
divss(long x, long y) { return stoi(x / y); }
INLINE GEN
modss(long x, long y) { return stoi(smodss(x, y)); }
INLINE GEN
remss(long x, long y) { return stoi(x % y); }
INLINE long
smodss(long x, long y)
{
long r = x%y;
return (r >= 0)? r: labs(y) + r;
}
INLINE ulong
umodsu(long x, ulong y)
{
return x>=0 ? x%y: Fl_neg((-x)%y, y);
}
INLINE long
sdivss_rem(long x, long y, long *r)
{
long q;
LOCAL_HIREMAINDER;
if (!y) pari_err_INV("sdivss_rem",gen_0);
hiremainder = 0; q = divll((ulong)labs(x),(ulong)labs(y));
if (x < 0) { hiremainder = -((long)hiremainder); q = -q; }
if (y < 0) q = -q;
*r = hiremainder; return q;
}
INLINE GEN
divss_rem(long x, long y, long *r) { return stoi(sdivss_rem(x,y,r)); }
INLINE ulong
udivuu_rem(ulong x, ulong y, ulong *r)
{
if (!y) pari_err_INV("udivuu_rem",gen_0);
*r = x % y; return x / y;
}
INLINE ulong
ceildivuu(ulong a, ulong b)
{
ulong c = a/b;
return (a%b)? c+1: c;
}
INLINE ulong
udivui_rem(ulong x, GEN y, ulong *r)
{
long q, s = signe(y);
LOCAL_HIREMAINDER;
if (!s) pari_err_INV("udivui_rem",gen_0);
if (!x || lgefint(y)>3) { *r = x; return 0; }
hiremainder=0; q = (long)divll(x, (ulong)y[2]);
if (s < 0) q = -q;
*r = hiremainder; return q;
}
/* assume d != 0 and |n| / d can be represented as an ulong.
* Return |n|/d, set *r = |n| % d */
INLINE ulong
udiviu_rem(GEN n, ulong d, ulong *r)
{
switch(lgefint(n))
{
case 2: *r = 0; return 0;
case 3:
{
ulong nn = n[2];
*r = nn % d; return nn / d;
}
default: /* 4 */
{
ulong n1, n0, q;
LOCAL_HIREMAINDER;
n0 = *int_W(n,0);
n1 = *int_W(n,1);
hiremainder = n1;
q = divll(n0, d);
*r = hiremainder; return q;
}
}
}
INLINE long
sdivsi_rem(long x, GEN y, long *r)
{
long q, s = signe(y);
LOCAL_HIREMAINDER;
if (!s) pari_err_INV("sdivsi_rem",gen_0);
if (!x || lgefint(y)>3 || ((long)y[2]) < 0) { *r = x; return 0; }
hiremainder=0; q = (long)divll(labs(x), (ulong)y[2]);
if (x < 0) { hiremainder = -((long)hiremainder); q = -q; }
if (s < 0) q = -q;
*r = hiremainder; return q;
}
INLINE GEN
divsi_rem(long s, GEN y, long *r) { return stoi(sdivsi_rem(s,y,r)); }
INLINE long
sdivsi(long x, GEN y)
{
long q, s = signe(y);
if (!s) pari_err_INV("sdivsi",gen_0);
if (!x || lgefint(y)>3 || ((long)y[2]) < 0) return 0;
q = labs(x) / y[2];
if (x < 0) q = -q;
if (s < 0) q = -q;
return q;
}
INLINE GEN
dvmdss(long x, long y, GEN *z)
{
long r;
GEN q = divss_rem(x,y, &r);
*z = stoi(r); return q;
}
INLINE long
dvmdsBIL(long n, long *r) { *r = remsBIL(n); return divsBIL(n); }
INLINE ulong
dvmduBIL(ulong n, ulong *r) { *r = remsBIL(n); return divsBIL(n); }
INLINE GEN
dvmdsi(long x, GEN y, GEN *z)
{
long r;
GEN q = divsi_rem(x,y, &r);
*z = stoi(r); return q;
}
INLINE GEN
dvmdis(GEN x, long y, GEN *z)
{
long r;
GEN q = divis_rem(x,y, &r);
*z = stoi(r); return q;
}
INLINE long
smodis(GEN x, long y)
{
pari_sp av = avma;
long r;
(void)divis_rem(x,y, &r); avma = av; return (r >= 0) ? r: labs(y) + r;
}
INLINE GEN
modis(GEN x, long y) { return stoi(smodis(x,y)); }
INLINE GEN
modsi(long x, GEN y) {
long r;
(void)sdivsi_rem(x, y, &r);
return (r >= 0)? stoi(r): addsi_sign(r, y, 1);
}
INLINE ulong
umodui(ulong x, GEN y)
{
if (!signe(y)) pari_err_INV("umodui",gen_0);
if (!x || lgefint(y) > 3) return x;
return x % (ulong)y[2];
}
INLINE GEN
remsi(long x, GEN y)
{ long r; (void)sdivsi_rem(x,y, &r); return stoi(r); }
INLINE GEN
remis(GEN x, long y)
{
pari_sp av = avma;
long r;
(void)divis_rem(x,y, &r); avma = av; return stoi(r);
}
INLINE GEN
rdivis(GEN x, long y, long prec)
{
GEN z = cgetr(prec);
pari_sp av = avma;
affrr(divrs(itor(x,prec), y),z);
avma = av; return z;
}
INLINE GEN
rdivsi(long x, GEN y, long prec)
{
GEN z = cgetr(prec);
pari_sp av = avma;
affrr(divsr(x, itor(y,prec)), z);
avma = av; return z;
}
INLINE GEN
rdivss(long x, long y, long prec)
{
GEN z = cgetr(prec);
pari_sp av = avma;
affrr(divrs(stor(x, prec), y), z);
avma = av; return z;
}
INLINE void
rdiviiz(GEN x, GEN y, GEN z)
{
pari_sp av = avma;
long prec = realprec(z);
affir(x, z);
if (!is_bigint(y)) {
affrr(divrs(z, y[2]), z);
if (signe(y) < 0) togglesign(z);
}
else
affrr(divrr(z, itor(y,prec)), z);
avma = av;
}
INLINE GEN
rdivii(GEN x, GEN y, long prec)
{
GEN z = cgetr(prec);
pari_sp av = avma;
affir(x, z);
if (lg(y) == 3) {
affrr(divru(z, y[2]), z);
if (signe(y) < 0) togglesign(z);
}
else
affrr(divrr(z, itor(y,prec)), z);
avma = av; return z;
}
INLINE GEN
fractor(GEN x, long prec) { return rdivii(gel(x,1), gel(x,2), prec); }
INLINE int
dvdii(GEN x, GEN y)
{
pari_sp av=avma;
GEN r = remii(x,y);
avma = av; return r == gen_0;
}
INLINE int
dvdsi(long x, GEN y)
{
if (!signe(y)) return x == 0;
if (lgefint(y) != 3) return 0;
return x % y[2] == 0;
}
INLINE int
dvdui(ulong x, GEN y)
{
if (!signe(y)) return x == 0;
if (lgefint(y) != 3) return 0;
return x % y[2] == 0;
}
INLINE int
dvdis(GEN x, long y)
{ return y? smodis(x, y) == 0: signe(x) == 0; }
INLINE int
dvdiu(GEN x, ulong y)
{ return y? umodiu(x, y) == 0: signe(x) == 0; }
INLINE int
dvdisz(GEN x, long y, GEN z)
{
const pari_sp av = avma;
long r;
GEN p1 = divis_rem(x,y, &r);
avma = av; if (r) return 0;
affii(p1,z); return 1;
}
INLINE int
dvdiuz(GEN x, ulong y, GEN z)
{
const pari_sp av = avma;
ulong r;
GEN p1 = diviu_rem(x,y, &r);
avma = av; if (r) return 0;
affii(p1,z); return 1;
}
INLINE int
dvdiiz(GEN x, GEN y, GEN z)
{
const pari_sp av=avma;
GEN p2;
const GEN p1=dvmdii(x,y,&p2);
if (signe(p2)) { avma=av; return 0; }
affii(p1,z); avma=av; return 1;
}
INLINE ulong
remlll_pre(ulong u2, ulong u1, ulong u0, ulong n, ulong ninv)
{
u1 = remll_pre(u2, u1, n, ninv);
return remll_pre(u1, u0, n, ninv);
}
INLINE ulong
Fl_sqr_pre(ulong a, ulong p, ulong pi)
{
register ulong x;
LOCAL_HIREMAINDER;
x = mulll(a,a);
return remll_pre(hiremainder, x, p, pi);
}
INLINE ulong
Fl_mul_pre(ulong a, ulong b, ulong p, ulong pi)
{
register ulong x;
LOCAL_HIREMAINDER;
x = mulll(a,b);
return remll_pre(hiremainder, x, p, pi);
}
INLINE ulong
Fl_addmul_pre(ulong x0, ulong x1, ulong y0, ulong p, ulong pi)
{
ulong l0, h0;
LOCAL_HIREMAINDER;
hiremainder = y0;
l0 = addmul(x0, x1); h0 = hiremainder;
return remll_pre(h0, l0, p, pi);
}
INLINE ulong
Fl_addmulmul_pre(ulong x0, ulong y0, ulong x1, ulong y1, ulong p, ulong pi)
{
ulong l0, l1, h0, h1;
LOCAL_OVERFLOW;
LOCAL_HIREMAINDER;
l0 = mulll(x0, y0); h0 = hiremainder;
l1 = mulll(x1, y1); h1 = hiremainder;
l0 = addll(l0, l1); h0 = addllx(h0, h1);
return overflow ? remlll_pre(1, h0, l0, p, pi): remll_pre(h0, l0, p, pi);
}
INLINE ulong
Fl_ellj_pre(ulong a4, ulong a6, ulong p, ulong pi)
{
/* a43 = 4 a4^3 */
ulong a43 = Fl_double(Fl_double(
Fl_mul_pre(a4, Fl_sqr_pre(a4, p, pi), p, pi), p), p);
/* a62 = 27 a6^2 */
ulong a62 = Fl_mul_pre(Fl_sqr_pre(a6, p, pi), 27 % p, p, pi);
ulong z1 = Fl_mul_pre(a43, 1728 % p, p, pi);
ulong z2 = Fl_add(a43, a62, p);
return Fl_div(z1, z2, p);
}
/*******************************************************************/
/* */
/* MP (INT OR REAL) */
/* */
/*******************************************************************/
INLINE GEN
mptrunc(GEN x) { return typ(x)==t_INT? icopy(x): truncr(x); }
INLINE GEN
mpfloor(GEN x) { return typ(x)==t_INT? icopy(x): floorr(x); }
INLINE GEN
mpceil(GEN x) { return typ(x)==t_INT? icopy(x): ceilr(x); }
INLINE GEN
mpround(GEN x) { return typ(x) == t_INT? icopy(x): roundr(x); }
INLINE long
mpexpo(GEN x) { return typ(x) == t_INT? expi(x): expo(x); }
INLINE GEN
mpadd(GEN x, GEN y)
{
if (typ(x)==t_INT)
return (typ(y)==t_INT) ? addii(x,y) : addir(x,y);
return (typ(y)==t_INT) ? addir(y,x) : addrr(x,y);
}
INLINE GEN
mpsub(GEN x, GEN y)
{
if (typ(x)==t_INT)
return (typ(y)==t_INT) ? subii(x,y) : subir(x,y);
return (typ(y)==t_INT) ? subri(x,y) : subrr(x,y);
}
INLINE GEN
mpmul(GEN x, GEN y)
{
if (typ(x)==t_INT)
return (typ(y)==t_INT) ? mulii(x,y) : mulir(x,y);
return (typ(y)==t_INT) ? mulir(y,x) : mulrr(x,y);
}
INLINE GEN
mpsqr(GEN x) { return (typ(x)==t_INT) ? sqri(x) : sqrr(x); }
INLINE GEN
mpdiv(GEN x, GEN y)
{
if (typ(x)==t_INT)
return (typ(y)==t_INT) ? divii(x,y) : divir(x,y);
return (typ(y)==t_INT) ? divri(x,y) : divrr(x,y);
}
/*******************************************************************/
/* */
/* Z/nZ, n ULONG */
/* */
/*******************************************************************/
INLINE ulong
Fl_double(ulong a, ulong p)
{
ulong res = a << 1;
return (res >= p || res < a) ? res - p : res;
}
INLINE ulong
Fl_triple(ulong a, ulong p)
{
ulong res = a << 1;
if (res >= p || res < a) res -= p;
res += a;
return (res >= p || res < a)? res - p: res;
}
INLINE ulong
Fl_halve(ulong a, ulong p)
{
ulong ap, ap2;
if ((a&1UL)==0) return a>>1;
ap = a + p; ap2 = ap>>1;
return ap>=a ? ap2: (ap2|HIGHBIT);
}
INLINE ulong
Fl_add(ulong a, ulong b, ulong p)
{
ulong res = a + b;
return (res >= p || res < a) ? res - p : res;
}
INLINE ulong
Fl_neg(ulong x, ulong p) { return x ? p - x: 0; }
INLINE ulong
Fl_sub(ulong a, ulong b, ulong p)
{
ulong res = a - b;
return (res > a) ? res + p: res;
}
/* centerlift(u mod p) */
INLINE long
Fl_center(ulong u, ulong p, ulong ps2) { return (long) (u > ps2)? u - p: u; }
INLINE ulong
Fl_mul(ulong a, ulong b, ulong p)
{
register ulong x;
LOCAL_HIREMAINDER;
x = mulll(a,b);
if (!hiremainder) return x % p;
(void)divll(x,p); return hiremainder;
}
INLINE ulong
Fl_sqr(ulong a, ulong p)
{
register ulong x;
LOCAL_HIREMAINDER;
x = mulll(a,a);
if (!hiremainder) return x % p;
(void)divll(x,p); return hiremainder;
}
INLINE ulong
Fl_div(ulong a, ulong b, ulong p) { return Fl_mul(a, Fl_inv(b, p), p); }
/*******************************************************************/
/* */
/* DEFINED FROM EXISTING ONE EXPLOITING COMMUTATIVITY */
/* */
/*******************************************************************/
INLINE GEN
addri(GEN x, GEN y) { return addir(y,x); }
INLINE GEN
addis(GEN x, long s) { return addsi(s,x); }
INLINE GEN
addiu(GEN x, ulong s) { return addui(s,x); }
INLINE GEN
addrs(GEN x, long s) { return addsr(s,x); }
INLINE GEN
subiu(GEN x, long y) { GEN z = subui(y, x); togglesign(z); return z; }
INLINE GEN
subis(GEN x, long y) { return addsi(-y,x); }
INLINE GEN
subrs(GEN x, long y) { return addsr(-y,x); }
INLINE GEN
mulis(GEN x, long s) { return mulsi(s,x); }
INLINE GEN
muliu(GEN x, ulong s) { return mului(s,x); }
INLINE GEN
mulru(GEN x, ulong s) { return mulur(s,x); }
INLINE GEN
mulri(GEN x, GEN s) { return mulir(s,x); }
INLINE GEN
mulrs(GEN x, long s) { return mulsr(s,x); }
/*******************************************************************/
/* */
/* VALUATION, EXPONENT, SHIFTS */
/* */
/*******************************************************************/
INLINE long
vali(GEN x)
{
long i;
GEN xp;
if (!signe(x)) return -1;
xp=int_LSW(x);
for (i=0; !*xp; i++) xp=int_nextW(xp);
return vals(*xp) + i * BITS_IN_LONG;
}
/* assume x > 0 */
INLINE long
expu(ulong x) { return (BITS_IN_LONG-1) - (long)bfffo(x); }
INLINE long
expi(GEN x)
{
const long lx=lgefint(x);
return lx==2? -(long)HIGHEXPOBIT: bit_accuracy(lx)-(long)bfffo(*int_MSW(x))-1;
}
INLINE GEN
shiftr(GEN x, long n)
{
const long e = evalexpo(expo(x)+n);
const GEN y = rcopy(x);
if (e & ~EXPOBITS) pari_err_OVERFLOW("expo()");
y[1] = (y[1]&~EXPOBITS) | e; return y;
}
INLINE GEN
mpshift(GEN x,long s) { return (typ(x)==t_INT)?shifti(x,s):shiftr(x,s); }
/* FIXME: adapt/use mpn_[lr]shift instead */
/* z2[imin..imax] := z1[imin..imax].f shifted left sh bits
* (feeding f from the right). Assume sh > 0 */
INLINE void
shift_left(GEN z2, GEN z1, long imin, long imax, ulong f, ulong sh)
{
GEN sb = z1 + imin, se = z1 + imax, te = z2 + imax;
ulong l, m = BITS_IN_LONG - sh, k = f >> m;
while (se > sb) {
l = *se--;
*te-- = (l << sh) | k;
k = l >> m;
}
*te = (((ulong)*se) << sh) | k;
}
/* z2[imin..imax] := f.z1[imin..imax-1] shifted right sh bits
* (feeding f from the left). Assume sh > 0 */
INLINE void
shift_right(GEN z2, GEN z1, long imin, long imax, ulong f, ulong sh)
{
GEN sb = z1 + imin, se = z1 + imax, tb = z2 + imin;
ulong k, l = *sb++, m = BITS_IN_LONG - sh;
*tb++ = (l >> sh) | (f << m);
while (sb < se) {
k = l << m;
l = *sb++;
*tb++ = (l >> sh) | k;
}
}
/* Backward compatibility. Inefficient && unused */
extern ulong hiremainder;
INLINE ulong
shiftl(ulong x, ulong y)
{ hiremainder = x>>(BITS_IN_LONG-y); return (x<<y); }
INLINE ulong
shiftlr(ulong x, ulong y)
{ hiremainder = x<<(BITS_IN_LONG-y); return (x>>y); }
INLINE void
shiftr_inplace(GEN z, long d)
{
setexpo(z, expo(z)+d);
}
/*******************************************************************/
/* */
/* ASSIGNMENT */
/* */
/*******************************************************************/
INLINE void
affii(GEN x, GEN y)
{
long lx = lgefint(x);
if (lg(y)<lx) pari_err_OVERFLOW("t_INT-->t_INT assignment");
while (--lx) y[lx] = x[lx];
}
INLINE void
affsi(long s, GEN x)
{
if (!s) x[1] = evalsigne(0) | evallgefint(2);
else
{
if (s > 0) { x[1] = evalsigne( 1) | evallgefint(3); x[2] = s; }
else { x[1] = evalsigne(-1) | evallgefint(3); x[2] = -s; }
}
}
INLINE void
affui(ulong u, GEN x)
{
if (!u) x[1] = evalsigne(0) | evallgefint(2);
else { x[1] = evalsigne(1) | evallgefint(3); x[2] = u; }
}
INLINE void
affsr(long x, GEN y)
{
long sh, i, ly = lg(y);
if (!x)
{
y[1] = evalexpo(-prec2nbits(ly));
return;
}
if (x < 0) {
x = -x; sh = bfffo(x);
y[1] = evalsigne(-1) | _evalexpo((BITS_IN_LONG-1)-sh);
}
else
{
sh = bfffo(x);
y[1] = evalsigne(1) | _evalexpo((BITS_IN_LONG-1)-sh);
}
y[2] = ((ulong)x)<<sh; for (i=3; i<ly; i++) y[i]=0;
}
INLINE void
affur(ulong x, GEN y)
{
long sh, i, ly = lg(y);
if (!x)
{
y[1] = evalexpo(-prec2nbits(ly));
return;
}
sh = bfffo(x);
y[1] = evalsigne(1) | _evalexpo((BITS_IN_LONG-1)-sh);
y[2] = x<<sh; for (i=3; i<ly; i++) y[i] = 0;
}
INLINE void
affiz(GEN x, GEN y) { if (typ(y)==t_INT) affii(x,y); else affir(x,y); }
INLINE void
affsz(long x, GEN y) { if (typ(y)==t_INT) affsi(x,y); else affsr(x,y); }
INLINE void
mpaff(GEN x, GEN y) { if (typ(x)==t_INT) affiz(x, y); else affrr(x,y); }
/*******************************************************************/
/* */
/* OPERATION + ASSIGNMENT */
/* */
/*******************************************************************/
INLINE void addiiz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affii(addii(x,y),z); avma = av; }
INLINE void addirz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affrr(addir(x,y),z); avma = av; }
INLINE void addriz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affrr(addri(x,y),z); avma = av; }
INLINE void addrrz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affrr(addrr(x,y),z); avma = av; }
INLINE void addsiz(long s, GEN y, GEN z)
{ pari_sp av = avma; affii(addsi(s,y),z); avma = av; }
INLINE void addsrz(long s, GEN y, GEN z)
{ pari_sp av = avma; affrr(addsr(s,y),z); avma = av; }
INLINE void addssz(long s, long y, GEN z)
{ pari_sp av = avma; affii(addss(s,y),z); avma = av; }
INLINE void diviiz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affii(divii(x,y),z); avma = av; }
INLINE void divirz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; mpaff(divir(x,y),z); avma = av; }
INLINE void divisz(GEN x, long y, GEN z)
{ pari_sp av = avma; affii(divis(x,y),z); avma = av; }
INLINE void divriz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affrr(divri(x,y),z); avma = av; }
INLINE void divrrz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affrr(divrr(x,y),z); avma = av; }
INLINE void divrsz(GEN y, long s, GEN z)
{ pari_sp av = avma; affrr(divrs(y,s),z); avma = av; }
INLINE void divsiz(long x, GEN y, GEN z)
{ long junk; affsi(sdivsi_rem(x,y,&junk), z); }
INLINE void divsrz(long s, GEN y, GEN z)
{ pari_sp av = avma; mpaff(divsr(s,y),z); avma = av; }
INLINE void divssz(long x, long y, GEN z)
{ affsi(x/y, z); }
INLINE void modisz(GEN y, long s, GEN z)
{ pari_sp av = avma; affii(modis(y,s),z); avma = av; }
INLINE void modsiz(long s, GEN y, GEN z)
{ pari_sp av = avma; affii(modsi(s,y),z); avma = av; }
INLINE void modssz(long s, long y, GEN z)
{ pari_sp av = avma; affii(modss(s,y),z); avma = av; }
INLINE void mpaddz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; mpaff(mpadd(x,y),z); avma = av; }
INLINE void mpsubz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; mpaff(mpsub(x,y),z); avma = av; }
INLINE void mpmulz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; mpaff(mpmul(x,y),z); avma = av; }
INLINE void muliiz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affii(mulii(x,y),z); avma = av; }
INLINE void mulirz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; mpaff(mulir(x,y),z); avma = av; }
INLINE void mulriz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; mpaff(mulri(x,y),z); avma = av; }
INLINE void mulrrz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affrr(mulrr(x,y),z); avma = av; }
INLINE void mulsiz(long s, GEN y, GEN z)
{ pari_sp av = avma; affii(mulsi(s,y),z); avma = av; }
INLINE void mulsrz(long s, GEN y, GEN z)
{ pari_sp av = avma; mpaff(mulsr(s,y),z); avma = av; }
INLINE void mulssz(long s, long y, GEN z)
{ pari_sp av = avma; affii(mulss(s,y),z); avma = av; }
INLINE void remiiz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affii(remii(x,y),z); avma = av; }
INLINE void remisz(GEN y, long s, GEN z)
{ pari_sp av = avma; affii(remis(y,s),z); avma = av; }
INLINE void remsiz(long s, GEN y, GEN z)
{ pari_sp av = avma; affii(remsi(s,y),z); avma = av; }
INLINE void remssz(long s, long y, GEN z)
{ pari_sp av = avma; affii(remss(s,y),z); avma = av; }
INLINE void subiiz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affii(subii(x,y),z); avma = av; }
INLINE void subirz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affrr(subir(x,y),z); avma = av; }
INLINE void subisz(GEN y, long s, GEN z)
{ pari_sp av = avma; affii(addsi(-s,y),z); avma = av; }
INLINE void subriz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affrr(subri(x,y),z); avma = av; }
INLINE void subrrz(GEN x, GEN y, GEN z)
{ pari_sp av = avma; affrr(subrr(x,y),z); avma = av; }
INLINE void subrsz(GEN y, long s, GEN z)
{ pari_sp av = avma; affrr(addsr(-s,y),z); avma = av; }
INLINE void subsiz(long s, GEN y, GEN z)
{ pari_sp av = avma; affii(subsi(s,y),z); avma = av; }
INLINE void subsrz(long s, GEN y, GEN z)
{ pari_sp av = avma; affrr(subsr(s,y),z); avma = av; }
INLINE void subssz(long x, long y, GEN z) { addssz(x,-y,z); }
INLINE void
dvmdssz(long x, long y, GEN z, GEN t) {
pari_sp av = avma;
long r;
affii(divss_rem(x,y, &r), z); avma = av; affsi(r,t);
}
INLINE void
dvmdsiz(long x, GEN y, GEN z, GEN t) {
pari_sp av = avma;
long r;
affii(divsi_rem(x,y, &r), z); avma = av; affsi(r,t);
}
INLINE void
dvmdisz(GEN x, long y, GEN z, GEN t) {
pari_sp av = avma;
long r;
affii(divis_rem(x,y, &r),z); avma = av; affsi(r,t);
}
INLINE void
dvmdiiz(GEN x, GEN y, GEN z, GEN t) {
pari_sp av = avma;
GEN r;
affii(dvmdii(x,y,&r),z); affii(r,t); avma=av;
}
|