This file is indexed.

/usr/lib/gcc/x86_64-linux-gnu/5/include/d/std/internal/test/dummyrange.d is in libphobos-5-dev 5.5.0-12ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/**
For testing only.
Used with the dummy ranges for testing higher order ranges.
*/
module std.internal.test.dummyrange;

import std.typecons;
import std.typetuple;
import std.range.primitives;

enum RangeType
{
    Input,
    Forward,
    Bidirectional,
    Random
}

enum Length
{
    Yes,
    No
}

enum ReturnBy
{
    Reference,
    Value
}

// Range that's useful for testing other higher order ranges,
// can be parametrized with attributes.  It just dumbs down an array of
// numbers 1..10.
struct DummyRange(ReturnBy _r, Length _l, RangeType _rt)
{
    // These enums are so that the template params are visible outside
    // this instantiation.
    enum r = _r;
    enum l = _l;
    enum rt = _rt;

    uint[] arr = [1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U];

    void reinit()
    {
        // Workaround for DMD bug 4378
        arr = [1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U];
    }

    void popFront()
    {
        arr = arr[1..$];
    }

    @property bool empty() const
    {
        return arr.length == 0;
    }

    static if(r == ReturnBy.Reference)
    {
        @property ref inout(uint) front() inout
        {
            return arr[0];
        }

        @property void front(uint val)
        {
            arr[0] = val;
        }
    }
    else
    {
        @property uint front() const
        {
            return arr[0];
        }
    }

    static if(rt >= RangeType.Forward)
    {
        @property typeof(this) save()
        {
            return this;
        }
    }

    static if(rt >= RangeType.Bidirectional)
    {
        void popBack()
        {
            arr = arr[0..$ - 1];
        }

        static if(r == ReturnBy.Reference)
        {
            @property ref inout(uint) back() inout
            {
                return arr[$ - 1];
            }

            @property void back(uint val)
            {
                arr[$ - 1] = val;
            }

        }
        else
        {
            @property uint back() const
            {
                return arr[$ - 1];
            }
        }
    }

    static if(rt >= RangeType.Random)
    {
        static if(r == ReturnBy.Reference)
        {
            ref inout(uint) opIndex(size_t index) inout
            {
                return arr[index];
            }

            void opIndexAssign(uint val, size_t index)
            {
                arr[index] = val;
            }
        }
        else
        {
            uint opIndex(size_t index) const
            {
                return arr[index];
            }
        }

        typeof(this) opSlice(size_t lower, size_t upper)
        {
            auto ret = this;
            ret.arr = arr[lower..upper];
            return ret;
        }
    }

    static if(l == Length.Yes)
    {
        @property size_t length() const
        {
            return arr.length;
        }

        alias opDollar = length;
    }
}

enum dummyLength = 10;

alias AllDummyRanges = TypeTuple!(
    DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Forward),
    DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Bidirectional),
    DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Random),
    DummyRange!(ReturnBy.Reference, Length.No, RangeType.Forward),
    DummyRange!(ReturnBy.Reference, Length.No, RangeType.Bidirectional),
    DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Input),
    DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Forward),
    DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Bidirectional),
    DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random),
    DummyRange!(ReturnBy.Value, Length.No, RangeType.Input),
    DummyRange!(ReturnBy.Value, Length.No, RangeType.Forward),
    DummyRange!(ReturnBy.Value, Length.No, RangeType.Bidirectional)
);

/**
Tests whether forward, bidirectional and random access properties are
propagated properly from the base range(s) R to the higher order range
H.  Useful in combination with DummyRange for testing several higher
order ranges.
*/
template propagatesRangeType(H, R...)
{
    static if(allSatisfy!(isRandomAccessRange, R))
        enum bool propagatesRangeType = isRandomAccessRange!H;
    else static if(allSatisfy!(isBidirectionalRange, R))
        enum bool propagatesRangeType = isBidirectionalRange!H;
    else static if(allSatisfy!(isForwardRange, R))
        enum bool propagatesRangeType = isForwardRange!H;
    else
        enum bool propagatesRangeType = isInputRange!H;
}

template propagatesLength(H, R...)
{
    static if(allSatisfy!(hasLength, R))
        enum bool propagatesLength = hasLength!H;
    else
        enum bool propagatesLength = !hasLength!H;
}

/**
Reference type input range
*/
class ReferenceInputRange(T)
{
    import std.array : array;

    this(Range)(Range r) if (isInputRange!Range) {_payload = array(r);}
    final @property ref T front(){return _payload.front;}
    final void popFront(){_payload.popFront();}
    final @property bool empty(){return _payload.empty;}
    protected T[] _payload;
}

/**
Reference forward range
*/
class ReferenceForwardRange(T) : ReferenceInputRange!T
{
    this(Range)(Range r) if (isInputRange!Range) {super(r);}
    final @property ReferenceForwardRange save()
    {return new ReferenceForwardRange!T(_payload);}
}

//Infinite input range
class ReferenceInfiniteInputRange(T)
{
    this(T first = T.init) {_val = first;}
    final @property T front(){return _val;}
    final void popFront(){++_val;}
    enum bool empty = false;
    protected T _val;
}

//Infinite forward range
class ReferenceInfiniteForwardRange(T) : ReferenceInfiniteInputRange!T
{
    this(T first = T.init) {super(first);}
    final @property ReferenceInfiniteForwardRange save()
    {return new ReferenceInfiniteForwardRange!T(_val);}
}